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Abstract

The generating functions of 2 double schemes of numbers are explicitly computed

using the kernel method, which leads to easy proofs of partition formulæ for Fibonacci

numbers.

1 Introduction

The numbers given by the recursions

bn+1,k = cn,k−1 + 2cn,k − bn,k,

cn+1,k = bn+1,k + 2bn+1,k+1 − cn,k

for n ≥ 0, with b0,0 = c0,0 = 1, cn,−1 = cn,0 are used by Fahr and Ringel in [1] to partition
the Fibonacci numbers. We want to shed new light on these numbers, by computing their
(bivariate) generating functions. These lead then also to straight forward proofs of the
partition formulæ given by Fahr and Ringel in [1]. Notice, however, that these proofs do not
provide any insight.
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2 The generating functions

Introducing generating functions

B(z, x) :=
∑

0≤k≤n

bn,kz
nxk,

C(z, x) :=
∑

0≤k≤n

cn,kz
nxk,

these recursions translate into

B(z, x) = 1 + zxC(z, x) + 2zC(z, x) − zB(z, x) + zC(z, 0),

C(z, x) = B(z, x) +
2

x
[B(z, x) − B(z, 0)] − zC(z, x).

This leads to

C(z, x) = −
x + z(x − 4)C(z, 0)

zx2 − z2x + 2zx − x + 4z
.

To solve that, we factor the denominator:

C(z, x) =
−x + z(4 − x)C(z, 0)

z(x − r1(z))(x − r2(z))

with

r1,2(z) =
(1 − z)2 ± (1 + z)

√
1 − 6z + z2

2z
.

Since 1/(x − r2(z)) has no power series expansion in z and x, the factor must cancel, i.e.,

−r2(z) + z(4 − r2(z))C(z, 0) = 0,

whence

C(z, 0) =
−1 + 4z − z2 + (1 + z)

√
1 − 6z + z2

2z(1 − 7z + z2)
.

This is the famous kernel method, see, e.g., [2].
After cancellation, this leads to

C(z, x) =
4r2(z)

2z(1 − 4xr2(z))

1 − 10z + z2 + (1 + z)
√

1 − 6z + z2

1 − 7z + z2
,

and

[xk]C(z, x) =
(4r2(z))k+1

2z

1 − 10z + z2 + (1 + z)
√

1 − 6z + z2

1 − 7z + z2
.

From this we get

B(z, x) =
−(1 + z)(z2x − 8xz + 4z + x) + (−z2x + 12z + 4 zx − x)

√
1 − 6z + z2

2(1 − 7z + z2)(−z2x + 2zx − x + 4z + zx2)
.
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The formula
f4(n+1) = 3

∑

k≥0

4kcn,k,

given by Fahr and Ringel in [1], can now easily be verified, since the generating function of
the right-hand side is

3C(z, 4) =
3

1 − 7z + z2
,

which is also the generating function of the left-hand side, which can be seen for example
from the Binet form of the Fibonacci numbers.

The other formula

f4n+2 = bn,0 +
3

2

∑

k≥1

4kbn,k,

follows from the generating function

B(z, 0) +
3

2

(

B(z, 4) − B(z, 0)
)

=
1 + z

1 − 7z + z2
.
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