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In this note, all graphs G = (V, E) under consideration will be finite, undirected, and loopless
but may contain multiple edges. We denote the degree sequence of the vertices vy, vq, ..., v,
by dy,ds,...,d, with the convention that d; < dy < --- < d,. We will say that a degree
., dy is unigraphical if there is one and only one graph which realizes this
degree sequence. We will also refer to such a degree sequence as a unigraphical partition.
In the early 1960s, S.L. Hakimi [2, 3], characterized those degree sequences which are
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Abstract

In the early 1960s, S. L. Hakimi proved necessary and sufficient conditions for a
given sequence of positive integers di, do, ..., d, to be the degree sequence of a unique
graph (that is, one and only one graph realization exists for such a degree sequence).
Our goal in this note is to utilize Hakimi’s characterization to prove a closed formula
for the function dyp;(2m), the number of “unigraphical partitions” with degree sum
2m.

Introduction and Statement of Results

unigraphical. His results are the following:


mailto:m.hirschhorn@unsw.edu.au
mailto:sellersj@math.psu.edu

Theorem 1. Let 1 < dy < dy < --- < d, be integers. Then there exists a unique graph with
degree sequence dy,ds, ..., d, if and only if

o di+dy+---+d, is even and
o di+do+ds+-+dy1>d,
and at least one of the following conditions is satisfied:
(A) di +dy+ - +dp1 = dy,
(B) n <3,
(C)di+da+...dpy=dp+2anddy =dy =+ =dy_q,
(D) di=1 fori=1,2,...,n—1
(E) n=4,dy =1, and dy = d3 = dy # 1,
Note that the first two criteria above are necessary for a sequence 1 < dy < dy < --- <d,

to be realizable by some graph [2, Theorem 1|, while the last five criteria are specific to the
realization of a sequence 1 < d; < dy < --- < d, as the degree sequence of a unique graph
[3, Theorem 5.

In this brief note, we use Theorem 1 to enumerate all unigraphical degree sequences of
sum 2m, the number of which we denote by dy,i(2m). Our ultimate goal is to prove the
following:

Theorem 2. For all m > 3,

2

duni (2) = p(m) + <%> Fr(m+1)+m—3+ f(m)

2
where p(m) is the number of unrestricted integer partitions of m (A000041), <T—2> is the
2

nearest integer to T—Q (A001599), T(m + 1) is the number of divisors of m + 1 (A000005),
and f(m) is given by

(0 ifm=0 (mod 6),'
-1 ¢fm=1 (mod 6);

N ifm=2 (mod 6);

f(m) = ~1 ifm=3 (mod6);
ifm=4 (mod 6);

(0 ifm=5 (mod6).

Moreover, dy,i(2) =1 and dyy;(4) = 3.
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The techniques necessary for proving Theorem 2 are elementary and follow from a careful
analysis of the cases described in Theorem 1.

An example may be beneficial at this time before we proceed to the proof below. In the
case m = 4, Theorem 2 yields

2

duni(8) = p(4)+<%>+7(4—|—1)+4—3+f(4)

= 541+4+24+4-340
9.

Thus, there are 9 unigraphical partitions of the integer 8. Below we give each of these
partitions along with their unique graph realization.

O— oo o i

4+4 4+3+1 44242 4+24+1+1 441414141

—o —o o—o
%o—o—o
—o —o o—o
3+3+2 3+1+1+14+14+1241+1+1+14+1+1 1+14+1+1+1+1+1+1

2 Proof of the Main Result

Proof. 1t is easy to check that du,i(2) = 1 and d,i(4) = 3. Now suppose m > 3. Our proof
of Theorem 2 follows by enumerating the degree sequences which fit into each of the five
categories in Theorem 1 and then removing those that have been counted multiple times.
We begin now with this case-by—case enumeration.

Case (A): In this case, since dy +dy+ -+ +d, =2mand dy + dy + - + d,_1 = d,,, we
know that dy + ds + - - - + d,_1 is a partition of m with no restrictions on the parts. Thus,
p(m) enumerates the partitions counted by Case (A ).

Case (B): We postpone this case briefly.

Case (C): We begin this case by noting that n cannot be 2 as this would imply that
di > dy. Next, note that 2m = 2d,, + 2 in this case or d,, = m — 1. This means that
di=dy = - =d,_1 = 7%11 Lastly, we see that every divisor n — 1 of m + 1, other than
the divisor 1, will generate a new unigraphical partition. (The divisor n — 1 = 1 is excluded
since n # 2.) Therefore, the number of unigraphical partitions enumerated in this case is
T(m+1) —1.

Case (D): Since dy +dy + -+ + d,,—1 > d,, we know that d, < m. With the only
additional restriction that dy = dy = --- = d,,_1 = 1, we then see that all partitions of the
foormd, +14+1+---4+ 1 with 1 < d, < m will be unigraphical. Hence, there are m such

partitions counted in this case.



Case (FE): In this case, the partitions in question are of the form d +d +d + 1 = 2m, so
2m =1 (mod 3), and 2m is even. Therefore, 2m =4 (mod 6) which is equivalent to m = 2
(mod 3). Thus, there is exactly one such partition in this case for each m =2 (mod 3).

It is more convenient to enumerate those partitions in (B) \ (A) than those in (B) directly.
The partitions in (B) \ (A) satisfy 1 < d; < dy < d3 < dy + ds, which means d;, dy, d3 form
the sides of a (non—degenerate) triangle of perimeter 2m. The number of such triangles is

2
<%> . See [1, 4] for more details.

Next, we must consider intersections of the five cases in order to find any partitions
that have been counted multiple times. Note that the intersections (4) N (C), (A) N (E),
(B) N (D), (B) N (E), (C)N (E), and (D) N (E) are all empty. Next, we consider the
intersection (4) N (D). This intersection consists of the one partition with d,,+1 = m and
di = dy = -+ = d, = 1. In a similar fashion, (C) N (D) also consists of one partition,

namely d,,,o =m—1land dy =dy =+ =dp1 = 1. (B) N (C) consists of those partitions

1
of the form d + d + (2d — 2) = 2m which implies d = % Thus, (B) N (C) contains one

partition if m is odd and no partitions if m is even.

Finally, it is easy to check that there are no triple intersections as m > 3, which means
we have now covered all possible cases.

Combining all of the analysis above, we see that

2

dyni(2m) = p(m) + <%> +7(m+1)+m—3+ f(m)

as defined above. O]

3 Closing Thoughts

We close by noting that the function f(m) which appears in Theorem 2 is surprisingly related
to Sloane’s sequence A083039. Indeed, f(m)+ 2 = A083039(m — 2) for all m > 3.
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