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Abstract

A Dyck path is a lattice path in the plane integer lattice Z × Z consisting of steps
(1, 1) and (1,−1), each connecting diagonal lattice points, which never passes below
the x-axis. The number of all Dyck paths that start at (0, 0) and finish at (2n, 0) is also
known as the nth Catalan number. In this paper we find a closed formula, depending
on a non-negative integer t and on two lattice points p1 and p2, for the number of Dyck
paths starting at p1, ending at p2, and touching the x-axis exactly t times. Moreover,
we provide explicit expressions for the corresponding generating function and bivariate
generating function.

1 Introduction

The Catalan sequence is the sequence {Cn}n≥0 = {1, 1, 2, 5, 14, 42, 132, 429, . . .}, where Cn =
1

n+1

(

2n

n

)

is called the nth Catalan number. It is sequence A000108 in Sloane’s Encyclopedia

of Integer Sequences. The generating function for the Catalan numbers is given by C(x) =
1−

√
1−4x

2x
. The Catalan numbers provide a complete answer to the problem of counting certain

properties of more than 165 different combinatorial structures (see [21, p. 219] and [20]). For
convenience, the generalization of Catalan numbers presented in this paper is translated in
terms of Dyck paths.

A Dyck path is a lattice path in the integer lattice Z×Z consisting of rise-steps (1, 1) and
fall-steps (1,−1) that connect diagonal lattice points, which never goes below the x-axis.
(See Figure 1 for an illustration.) Let D((i, j), (i′, j′)) denote the set of all Dyck paths that
start at (i, j) and finish at (i′, j′). The number of steps in any such Dyck path equals i′ − i.
Notice that |D((i, j), (i′, j′))| = 0 iff at least one of the following conditions holds:

1Corresponding author. Tel: +972-8-642-8087; Fax: +972-8-647-7650.
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Figure 1: (a) A Dyck path of length 12 from (0, 0) to (12, 0), having exactly two contact points–the
starting point and the finishing point. (b) A Dyck path of length 11 from (1, 1) to (12, 2), having
no contact points.

• i > i′.

• j′ − j > i′ − i.

• j′ − j 6= i′ − i (mod 2).

• j′ < 0 or j < 0.

Otherwise, as a corollary of the Ballot theorem (cf. [10, p. 73]), we get that

|D((i, j), (i′, j′))| =

(

i′ − i
i′−i+|j′−j|

2

)

−
(

i′ − i
i′−i+j′+j+2

2

)

. (1)

The number of Dyck paths that start at (0, 0) and finish at (2n, 0) is also known as the nth
Catalan number Cn.

There is an extensive literature on Dyck paths, often disguised by means of similar
combinatorial objects as Catalan numbers, Motzkin paths, Schröder paths, staircase walks,
Ballot-numbers, and more. We mention here but a limited number of examples of previous
work.

The notion of a peak on a Dyck path was introduced by Deutsch in [7], where it is shown
that the number of Dyck paths of length 2n starting and ending on the x-axis with no peaks
at height 1 is given by the nth Fine number Fn, {Fn}n≥0 = {1, 0, 1, 2, 6, 18, 57, . . .}. In [19], a
complete answer for the number of Dyck paths in D((0, 0), (2n, 0)) with no peaks at height k
is given. Further, an explicit expression for the generating function for the number of Dyck
paths in D((0, 0), (2n, 0)) with exactly r peaks at height k is provided [15].

Connections between Dyck paths and pattern-avoiding permutations have been a subject
of ongoing research. Among various works in this context is the work of Knuth [13], where
it is shown that Sn(312) satisfy the Catalan recurrence, and the works of Bandlow and
Killpatrick [2], Krattenthaler [14], and Mansour et al. [16], where bijections between Dyck
paths and permutations that avoid certain patterns of size three are presented.

The close relationship between lattice paths and queueing theory models has been ex-
tensively studied. The seminal papers by Mohanty [17] and Flajolet and Guillemin [11] offer
lattice path perspectives for the Karlin-McGregor theory of birth-death processes, which is
closely related to various queueing theory models. The book by Fayolle et al. on random
walks in the plane integer lattice [9] is historically motivated by such queueing theory ques-
tions [8]. In [18], a combinatorial technique based on lattice path counting is applied to derive
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the transient solution of the M/M/c queueing model, and in [3] this result is extended to
(almost) arbitrary birth-death processes. In [1], equilibrium probability distributions of the
queue length in the M/M/1, M/Ek/1 and El/Ek/1 queueing models are presented, based
on the generating function for the number of minimal lattice paths. In [6], service times of
customers in the M/M/1 queueing model are analyzed, and it is shown that a family of poly-
nomial generating sequence associated with Dyck paths of length 2n provide the correlation
function of the successive services in a busy period with n + 1 customers.

Brak and Essam [4] considered the case of k ≥ 1 non-intersecting Dyck paths that start
and finish on the x-axis. For the particular case of k = 1, the contact polynomial defined
as Pn(x) :=

∑n+1
t=2 |Dt((0, 0), (2n, 0))|xt is proved2 to satisfy Pn(C(x)) =

∑∞
ℓ=0 Cn+ℓx

ℓ. Via
a bijection between bi-colored Dyck paths and plain Dyck paths, the analogue of the Chu-
Vandemonde summation formula for Dyck paths is derived.

In this paper we study “generalized” Dyck paths, starting and ending at arbitrary points
in the non-negative half-plane, “touching” the x-axis any predetermined number of times,
and never passing below the x-axis. We say that a Dyck path P touches the x-axis t times,
if exactly t points on P have zero as their y coordinate. Following [4], any point of P
that intersects the x-axis is called a contact. Denote the set of all Dyck paths starting at
(i, j), ending at (i′, j′), and touching the x-axis exactly t times by Dt((i, j), (i

′, j′)). We have
D((i, j), (i′, j′)) =

⋃

t∈N
Dt((i, j), (i

′, j′)). Notice that

|D0((0, 1), (2n, 1))| = |D((0, 0), (2n, 0))| = Cn.

More generally, we have |D0((i, j), (i
′, j′))| = |D((i, j − 1), (i′, j′ − 1))|. In the sequel, we

henceforth concentrate on Dyck paths that touch the x-axis at least once.

1.1 Main Results

Our main contribution is the following theorem, for which we provide a simple combinatorial
proof.

Theorem 1. For any pair of lattice points (i, j) and (i′, j′), and for any integer t ≥ 1,

|Dt((i, j), (i
′, j′))| =































0, if j < 0 or j′ < 0;

|D((i, j + t − 2), (i′ − t, 0))|, if j′ = 0;

|D((i, j + t − 1), (i′ − t, j′ − 1))|−
|D((i, j + t − 2), (i′ − t, j′ − 2))|, if j′ > 0.

In the degenerate case t + |j| + |j′| + |i′ − i| = 1, |Dt((i, j), (i
′, j′))| = 1.

We also find an explicit expression for the corresponding generating function.

2In [4], a combinatorial proof for Pn(C(x)) =
∑

∞

ℓ=0 Cn+ℓx
ℓ is provided. However, this result had already

been proved analytically in an earlier work [5].
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Theorem 2. For any non-negative integers j, j′ and t, with t ≥ 1,

Dj,j′

t (x) :=
∑

n≥0

dj,j′

t (n)xn =
(1 −

√
1 − 4x2)t+j+j′−1

2(t+j+j′−1) · x(j+j′)
,

where Dj,j′

t (x) is the generating function of the sequence dj,j′

t (n) := |Dt((0, j), (n, j′))|.

We derive the bivariate generating function as an easy consequence of Theorem 2.

Corollary 3. For any non-negative integers j and j′,

Φj,j′(x, y) :=
∑

t≥1,n≥0

dj,j′(n, t)xnyt =
y(1 −

√
1 − 4x2)j+j′

2(j+j′−1)x(j+j′)(y ·
√

1 − 4x2 + 2 − y)
,

where Φj,j′(x, y) is the bivariate generating function of the sequence dj,j′(n, t) := |Dt((0, j), (n, j′))|.

1.2 Minor Results

• By Theorem 1 and (1), we determine the coefficients of the contact polynomial, as
follows:

Pn(x) :=
n+1
∑

t=2

|Dt((0, 0), (2n, 0))|xt =
n+1
∑

t=2

|D((0, 0), (2n − t, t − 2))|xt

=
n+1
∑

t=2

[(

2n − t

n − 1

)

−
(

2n − t

n

)]

xt =
n+1
∑

t=2

t − 1

n − t + 1

(

2n − t

n

)

xt.

• The following formula, which is the analogue of the Chu-Vandemonde summation for-
mula for Dyck paths, was proved in [4]:

1

n + b + 1

(

2n + 2b

n + b

)

=
n

∑

m=1

m

n

(

2n − m − 1

n − 1

)

m + 1

b + m + 1

(

2b + m

b

)

,∀b ≥ 0, n ≥ 1

(2)
In Section 4, we provide a simple proof for (2) using different techniques that involve
our new knowledge on the contact polynomial and an interesting identity from [5].

1.3 Notation and Basic Facts

Consider some infinite sequence {sn}n≥0 := {s0, s1, s2, . . .}. It is common to denote the nth
element sn also as s(n) and the entire sequence {sn}n≥0 also as s. For n < 0, define sn := 0.
For any integer m, define s[m] as the sequence {sm, sm+1, . . .}, namely, s[m]n = sn+m if n ≥ 0,
and 0 otherwise. We define H(s) as the sequence {s0, 0, s1, 0, s2, 0 . . .}, namely, H(s)n = sn

2

if n is even, and 0 otherwise. We define sk to be the result of applying k convolutions of s
with itself, that is, sk := s ∗ s . . . ∗ s.
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Fact 1. For any sequences of non-negative integers s and t with generating functions S(x)
and T (x), respectively, we have

• The generating function of their convolution s ∗ t is S(x) · T (x).

• The generating function of s[m] is3 S(x) · x−m.

• The generating function of H(s) is S(x2).

• The generating function of sk is S(x)k.

We will use the following observation in the sequel (often implicitly):

Observation 1. For any integers i, i′, j, j′ and t, with t ≥ 1, there are natural bijections

between

• Dt((i, j), (i
′, j′)) and Dt((0, j), (i

′ − i, j′)).

• Dt((i, j), (i
′, j′)) and Dt((i, j

′), (i′, j)).

2 Proof of Theorem 1

This section is organized as follows. We start with an investigation of Dyck paths that touch
the x-axis exactly once (Section 2.1). Then, we show that there is a bijection between the set
of Dyck paths that touch the x-axis any predetermined number of times and the set of Dyck
paths that touch it just once (Section 2.2). Equipped with appropriate tools, we conclude
with a simple proof of Theorem 1 (Section 2.3).

Remark 4. Observe that there is a natural bijection between

Dt((i, j), (i
′, 0))

and
Dt−1((i, j), (i

′ − 1, 1)),

implying that the case j′ = 0 of Theorem 1 may be deduced directly from the case j′ > 0.
Nevertheless, we provide an alternative proof for the case j′ = 0, independent of the case
j′ > 0.

2.1 Touching the x-Axis Just Once

In this section we restrict our attention to Dyck paths that touch the x-axis once.

Lemma 5. For any integers i, j and i′, such that j > 0,

|D1((i, j), (i
′, 0))| = |D((i, j − 1), (i′ − 1, 0))|.

3In the sequel, whenever a shifted sequence s[m] with a positive integer m is used, S(x) will always be
divisible by xm. Thus the notation S(x) · x−m is unambiguous .
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(0,1)

(1,0)

(9,2)

(1,0) (3,0) (5,0)

(8,1)
(0,1)

P f(P )

Figure 2: The Dyck path P on the left is in D1((0, 1), (9, 2)), having (1, 0) as a unique contact
point. The Dyck path f(P ) on the right is in D3((0, 1), (8, 1)), having in addition to (1, 0) also
(3, 0) and (5, 0) as contact points.

Proof. For any Dyck path P in D1((i, j), (i
′, 0)), its last move is a fall-step, connecting

(i′ − 1, 1) and (i′, 0). Omitting this last move from P yields a Dyck path of length i′ − 1
that finishes at (i′ − 1, 1), never passing below y = 1. This naturally induces a bijection
between D1((i, j), (i

′, 0)) and D0((i, j), (i
′ − 1, 1)). The proof is concluded by observing that

|D0((i, j), (i
′ − 1, 1))| = |D((i, j − 1), (i′ − 1, 0))|.

Lemma 6. For any integers i, j, i′ and j′, such that j ≥ 0 and j′ > 0,

|D1((i, j), (i
′, j′))| = |D((i, j), (i′ − 1, j′ − 1))| − |D((i, j − 1), (i′ − 1, j′ − 2))|.

Proof. We first claim that there is a bijection between

D1((i, j), (i
′, j′))

and
S :=

⋃

k>0

Dk((i, j), (i
′ − 1, j′ − 1)).

To see this, consider the following map f , taking a Dyck path P in D1((i, j), (i
′, j′)) and

sending it to the one obtained from it by omitting the step which occurs immediately after
reaching the contact point. (See Figure 2 for an illustration.) Clearly, f(P ) touches the x-axis
at least once, starts at (i, j), and finishes at (i′−1, j′−1); that is, f(P ) ∈ ⋃

k>0 Dk((i, j), (i
′−

1, j′ − 1)). It is easy to verify that f is bijective, as required.
Observe that

S = D((i, j), (i′ − 1, j′ − 1)) \ D0((i, j), (i
′ − 1, j′ − 1))

and
|D0((i, j), (i

′ − 1, j′ − 1))| = |D((i, j − 1), (i′ − 1, j′ − 2))|,
and we are done.

2.2 The General Case

We use the next statement in the special case ℓ = t − 1 for proving Theorem 1.
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(8,0)

(0,1)

(0,1)

(0,4)

(10,−1)

(13,2)

(10,2)

(3,0)

P ′

f(P )

P

p2 p3 p4p1

y = −3

Figure 3: The Dyck path P at the top is in D4((0, 1), (13, 2)), and has four contact points:
p1 = (3, 0), p2 = (5, 0), p3 = (7, 0) and p4 = (11, 0). The path P ′ at the middle part of the figure is
a diagonal lattice path of length 10 from (0, 1) to (10,−1), obtained from P by omitting the three
rise-steps U1, U2 and U3. The Dyck path f(P ) at the bottom is in D1((0, 4), (10, 2)), having one
contact point–(8, 0).

Proposition 7. For any integers i, j, i′, j′, ℓ, such that j, j′ ≥ 0, t ≥ 1 and 0 ≤ ℓ ≤ t − 1,
there is a bijection between Dt((i, j), (i

′, j′)) and Dt−ℓ((i, j + ℓ), (i′ − ℓ, j′)).

Proof. We construct a bijection f : Dt((i, j), (i
′, j′)) → Dt−ℓ((i, j + ℓ), (i′ − ℓ, j′)). Let P

be some path in Dt((i, j), (i
′, j′)). Denote the t contact points of P , from left to right, by

p1, . . . , pt, and let Ui be the step in P which occurs immediately after reaching pi, for each
1 ≤ i ≤ ℓ. As P does not pass below the x-axis, the Ui’s are all rise-steps. Consider the
Dyck path P ′ obtained from P by omitting these ℓ rise-steps and define f(P ) as the one
obtained from it by a shift of all the points in it, ℓ units up. (See Figure 3 for an illustration
in the case ℓ = t − 1.)

Observe that f(P ) starts at (i, j + ℓ), finishes at (i′ − ℓ, j′), touches the x-axis exactly
t− ℓ times, and never passes below the x-axis. Hence, f(P ) ∈ Dt−ℓ((i, j + ℓ), (i′ − ℓ, j′)). To
show that f is bijective, we construct its inverse. Take some Dyck path Q in Dt−ℓ((i, j +
ℓ), (i′ − ℓ, j′)). Let Q′ be the Dyck path obtained from Q by a shift of all points in it, ℓ
units down. Let q1 be the left-most point in Q′ that touches the x-axis and define qi as the
left-most point in Q′ with y-coordinate 1 − i, for each 2 ≤ i ≤ ℓ. We define f−1(Q) to be
the Dyck path obtained from Q′ by inserting a rise-step Ui immediately after reaching qi,
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for each 1 ≤ i ≤ ℓ. It is easy to verify that f−1(Q) ∈ Dt((i, j), (i
′, j′)) and f(f−1(Q)) = Q.

The proposition follows.

2.3 Proof of Theorem 1

Suppose first that t+ |j|+ |j′|+ |i′− i| > 1. The result is immediate if either j < 0 or j′ < 0.
We henceforth assume that j, j′ ≥ 0.
Setting ℓ = t − 1 in Proposition 7, we find that

|Dt((i, j), (i
′, j′)| = |D1((i, j + t − 1), (i′ − t + 1, j′)|.

We distinguish the two following cases:

Case 1: j′ = 0. We need to show that

|D1((i, j + t − 1), (i′ − t + 1, 0))| = |D((i, j + t − 2), (i′ − t, 0))|.

If j + t − 1 > 0, then this equation follows from Lemma 5. Otherwise t = 1, j = j′ = 0, and
so, |i′ − i| > 0. It is easy to verify that both hand sides of the equation vanish in the latter
case.

Case 2: j′ > 0. By Lemma 6, we have

|D1((i, j+t−1), (i′−t+1, j′))| = |D((i, j+t−1), (i′−t, j′−1))|−|D((i, j+t−2), (i′−t, j′−2))|.

In the degenerate case t+ |j|+ |j′|+ |i′− i| = 1, we have t = 1, j = j′ = 0, and i′ = i. The
result in this case follows from the fact that D1((i, 0), (i, 0)) is comprised of a single Dyck
path of length zero that starts and finishes at (i, 0).

3 Proof of Theorem 2

Define φ(n, k) := |Dk+2((0, 0), (n, 0))|, for any non-negative integers n and k, and let an :=
φ(n, 0). It is easy to verify that for odd values of n, an = 0, whereas for even values of n,
an = cn

2
−1, except for n = 0, where a0 = 0. Equivalently, we have an = H(C[−1])n. Thus,

the generating function for the sequence a is given by A(x) = 1−
√

1−4x2

2
.

We use Lemmas 8 and 9 to prove Theorem 2.

Lemma 8. For any non-negative integers n and k, φ(n, k) = ak+1(n).

Proof. We construct a bijection

g : Dk+2((0, 0), (n, 0)) →
⊕

{1≤ni∈N|n=
P

k+1

i=1
ni}

k+1
∏

i=1

D2((0, 0), (ni, 0)).

Let P be some path in Dk+2((0, 0), (n, 0)). Denote the k + 2 contact points of P , from left
to right, by p1 = (x1, 0), . . . , pk+2 = (xk+2, 0). (Note that x1 = 0, xk+2 = n.) Those points
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c)

b)

a)

p2 = (4, 0)

p2 = (4, 0) p3 = (10, 0)p1 = (0, 0)

(4, 0)(0, 0)

S ′
2

p3 = (10, 0)

P

S1 S2

S ′
1

(6, 0)(0, 0)

p1 = (0, 0) p2 = (4, 0)

Figure 4: (a) The Dyck path P is in D3((0, 0), (10, 0)), and has three contact points: p1 = (0, 0),
p2 = (4, 0) and p3 = (10, 0). (b) A partition of P according to its contact points into two consecutive
sub-paths S1 and S2, where S1 is in D2((0, 0), (4, 0)) and S2 is in D2((4, 0), (10, 0)). (c) The Dyck
path S′

1 (respectively, S′
2) is obtained from S1 (resp., S2) by a shift of all points in it, x1 = 0 (resp.,

x2 = 4) units left.

define a partition of P into consecutive sub-paths, namely, for each 1 ≤ i ≤ k + 1, we define
Si to be the sub-path of P between pi and pi+1. For each 1 ≤ i ≤ k+1, define ni = xi+1−xi,
and let S ′

i be the Dyck path in D2((0, 0), (ni, 0)) obtained from Si by a shift of all points
in it, xi units left. (See Figure 4 for an illustration.) We define g(P ) as

∏k+1
i=1 S ′

i. Clearly,
this map is bijective (the inverse is given by the concatenation of all sub-paths {S ′

i} in their
respective order). This implies that both sets have the same cardinality, that is,

φ(n, k) =
∑

{1≤ni∈N|n=
P

k+1

i=1
ni}

k+1
∏

i=1

|D2((0, 0), (ni, 0))| =
∑

{1≤ni∈N|n=
P

k+1

i=1
ni}

k+1
∏

i=1

ani
. (3)

Since a0 = 0, the right-hand side of (3) is equal to
∑

{0≤ni∈N|n=
P

k+1

i=1
ni}

∏k+1
i=1 ani

. But the

latter term is precisely ak+1(n), which completes the proof.

The following statement implies that the problem of finding the number of Dyck paths
that start and finish at points with arbitrary y-coordinates is equivalent to the problem of
finding the number of Dyck paths that start and finish on the x-axis. It follows as a simple
corollary of Proposition 7 and Observation 1.
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Lemma 9. For any integers i, i′, j, j′ and t, such that j, j′ ≥ 0 and t ≥ 1, there is a bijection

between Dt((i, j), (i
′, j′)) and Dt+j+j′((i, 0), (i′ + j + j′, 0)).

To complete the proof of Theorem 2, we distinguish the two following cases:
Case 1: t + j + j′ = 1. In this case t = 1, j = j′ = 0, and so, dj,j′

j (n) = d0,0
1 (n) =

|D1((0, 0), (n, 0))|. By Theorem 1, d0,0
1 (n) = 0 for all n > 0, and d0,0

1 (0) = 1. It follows that

D0,0
1 (x) =

∑

n≥0

d0,0
1 (n)xn = 1 =

(1 −
√

1 − 4x2)t+j+j′−1

2(t+j+j′−1) · x(j+j′)
.

Case 2: t + j + j′ ≥ 2. By Lemma 9, we have

dj,j′

t (n) = |Dt((0, j), (n, j′))| = |Dt+j+j′((0, 0), (n + j + j′, 0))| = φ(n + j + j′, t + j + j′ − 2).

By Lemma 8, we deduce that

dj,j′

t (n) = φ(n + j + j′, t + j + j′ − 2) = at+j+j′−1(n + j + j′) = at+j+j′−1[j + j′](n).

Therefore,

Dj,j′

t (x) =
∑

n≥0

dj,j′

t (n)xn =
A(x)t+j+j′−1

x(j+j′)
=

(1 −
√

1 − 4x2)t+j+j′−1

2(t+j+j′−1) · x(j+j′)
.

4 Chu-Vandemonde Summation Formula

In this section we provide a simple proof for the analogue of the Chu-Vandemonde summation
formula for Dyck paths, which was already obtained by different techniques in [4, p. 4, Eq.
(18)] Refer to [12] for similar results.

Following [4], we define Bp,q := |D((0, 0), (p, q))|, for any non-negative integers p and q.
By Theorem 1 and the second part of Observation 1, the equation

Pn(x) =
n+1
∑

t=2

|Dt((0, 0), (2n, 0))|xt =
n+1
∑

t=2

|D((0, t − 2), (2n − t, 0))|xt =
n+1
∑

t=2

B2n−t,t−2x
t

holds. In [4, 5], it is proved that Pn(C(x)) =
∑∞

b=0 Cn+bx
b. We obtain the following identity:

∑∞
b=0 Cn+bx

b =
∑n+1

t=2 B2n−t,t−2(
1−

√
1−4x

2x
)t =

∑n+1
t=2 B2n−t,t−2

( 1−
√

1−4x

2
)t

xt =

∑n+1
t=2 B2n−t,t−2

∑∞
m=0 at(2m + 2t)xm =

∑∞
b=0(

∑n+1
t=2 B2n−t,t−2 · at(2b + 2t))xb.

(4)

By Lemma 8 and Theorem 1, we have

at(2b + 2t) = |Dt+1((0, 0), (2b + 2t, 0))| = |D((0, t − 1), (2b + t − 1, 0))| = B2b+t−1,t−1.
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Equating coefficients in (4) yields

Cn+b =
n+1
∑

t=2

B2n−t,t−2B2b+t−1,t−1 =
n

∑

m=1

B2n−m−1,m−1B2b+m,m,∀b ≥ 0

or equivalently,

1

n + b + 1

(

2n + 2b

n + b

)

=
n

∑

m=1

m

n

(

2n − m − 1

n − 1

)

m + 1

b + m + 1

(

2b + m

b

)

,∀b ≥ 0, n ≥ 1

which is the analogue of the Chu-Vandemonde formula for Dyck paths.
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