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Abstract

We study a family of sequences of Catalan-like numbers based on the series rever-

sion process. Properties of these sequences are derived, including continued fraction

expansions, associated orthogonal polynomials and associated Aigner matrices, which

turn out to be Riordan arrays.

1 Introduction

The purpose of this note is to explore some properties of the family of sequences obtained
by reverting the expression

x(1 + rx)

1 + 2rx + r(r + 1)x2

where r is an integer parameter. The analysis involves elements of the theory of Riordan
arrays [15], orthogonal polynomials [5, 10], continued fractions [18], the Deleham construc-
tion (see A084938) and Hankel transforms [13]. The overall context of this note is that of
“Catalan-like” numbers, a notion defined and developed by Martin Aigner [1, 2]. See also
[8, 9, 20]. In the sequel, [xn] denotes the operator that extracts the coefficient of xn in a
power series, Rev denotes the operation of reverting a sequence (thus f̄(x) = Revf(x) satis-
fies f(f̄(x)) = x), [P ] is the Iverson operator [11] equal to 0 if P is false, and 1 if P is true,
and

c(x) =
1 −

√
1 − 4x

2x
=

1

1 −
x

1 −
x

1 −
x

1 − · · ·
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is the g.f. of the Catalan numbers A000108. In addition, (g, f) will denote a Riordan array
whose k-th column has generating function g(x)f(x)k. In the next section, we shall provide
an introduction to the Riordan group. We recall that a number sequence an is “Catalan-like”
if none of the Hankel determinants |ai+j|ni,j=0 is zero, while a lower-triangular matrix (an,k)
is called an Aigner matrix if there exist two sequences sn and tn such that

a0,0 = 1, a0,k = 0 (k > 0)

and
an,k = an−1,k−1 + skan−1,k + tk+1an−1,k+1 (n, k ≥ 1).

The (integer) Hankel transform of the sequence an is the sequence hn with general term

hn = |ai+j|ni,j=0.

2 The Riordan group

The Riordan group [15], [17], is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + . . . and
f(x) = f1x + f2x

2 + . . . where f1 6= 0 [17]. The associated matrix is the matrix whose
i-th column is generated by g(x)f(x)i (the first column being indexed by 0). The matrix
corresponding to the pair g, f is denoted by (g, f) or R(g, f). The group law is then given
by

(g, f) ∗ (h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

A Riordan array of the form (g(x), x), where g(x) is the generating function of the se-
quence an, is called the sequence array of the sequence an. Its general term is an−k. Such
arrays are also called Appell arrays as they form the elements of the Appell subgroup.

If M is the matrix (g, f), and a = (a0, a1, . . .)
′ is an integer sequence with ordinary gener-

ating function A (x), then the sequence Ma has ordinary generating function g(x)A(f(x)).
The (infinite) matrix (g, f) can thus be considered to act on the ring of integer sequences
ZN by multiplication, where a sequence is regarded as a (infinite) column vector. We can
extend this action to the ring of power series Z[[x]] by

(g, f) : A(x) −→ (g, f) · A(x) = g(x)A(f(x)).

Example 1. The binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan group. It

has general element
(

n

k

)

. More generally, Bm is the element ( 1
1−mx

, x
1−mx

) of the Riordan

group, with general term
(

n

k

)

mn−k. It is easy to show that the inverse B−m of Bm is given
by ( 1

1+mx
, x

1+mx
).

The row sums of the matrix (g, f) have generating function

(g, f) · 1

1 − x
=

g(x)

1 − f(x)
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while the diagonal sums of (g, f) (sums of left-to-right diagonals in the North East direc-
tion) have generating function g(x)/(1 − xf(x)). These coincide with the row sums of the
“generalized” Riordan array (g, xf).i

The bi-variate generating function of the Riordan array (g, f) is given by g(x)
1−yf(x)

.

3 The sequences an(r)

The reversion of the function
x(1 + rx)

1 + 2rx + r(r + 1)x

is obtained by solving the equation

u(1 + ru)

1 + 2ru + r(r + 1)u
= x

for the unknown u. We obtain

u =

√
1 − 4rx2 + 2rx − 1

2r(1 − (r + 1)x)
.

We now define

an(r) = [xn+1]Rev
x(1 + rx)

1 + 2rx + r(r + 1)x2

= [xn+1]

√
1 − 4rx2 + 2rx − 1

2r(1 − (r + 1)x)

= [xn]

√
1 − 4rx2 + 2rx − 1

2xr(1 − (r + 1)x)

= [xn]
c(rx2)

1 − rxc(rx2)

= [xn](c(rx2), rxc(rx2)) · 1

1 − x

= [xn](c(rx2), xc(rx2)) · 1

1 − rx

=
n

∑

k=0

k + 1

n + k + 2

(

n
n−k

2

)

(1 + (−1)n−k)r
n−k

2 rk

=
n

∑

k=0

k + 1

n + k + 2

(

n
n−k

2

)

(1 + (−1)n−k)r
n+k

2

=
n

∑

k=0

[n ≤ 2k]

(

n

k

)

2k − n + 1

k + 1
rk.

The final equalities above follow from the fact that the general term of the Riordan array

(c(rx2), xc(rx2))
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is given by
k + 1

n + k + 2

(

n
n−k

2

)

(1 + (−1)n−k)r
n−k

2 .

A short table of these sequences is given below.

r A-number Reversion of

1 A001405 x(1+x)
1+2x+2x2

2 A151281 x(1+2x)
1+4x+6x2

3 A151162 x(1+3x)
1+6x+12x2

4 A151254 x(1+4x)
1+8x+20x2

5 A156195 x(1+5x)
1+10x+30x2

6 A156361 x(1+6x)
1+12x+42x2

For example, an(1) is the sequence of central binomial numbers
(

n

⌊n

2
⌋
)

, while an(3) counts the

number of walks within N3 (the first octant of Z3) starting at (0, 0, 0) and consisting of n
steps taken from {(−1, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} [3].

4 Continued fractions

We have

c(rx2)

1 − rxc(rx2)
=

1
1

c(rx2)
− rx

=
1

1 − rx + ( 1
c(rx2)

− 1)

=
1

1 − rx + 1−c(rx2)
c(rx2)

=
1

1 − rx − rx2c(rx2)

=
1

1 − rx −
rx2

1 −
rx2

1 −
rx2

1 − · · ·

.

Thus the generating function of an(r) is given by the continued fraction above. An immediate

consequence of this is that an(r) has Hankel transform r(
n+1

2 ) [12, 18]. This proves that these
numbers are “Catalan-like” (r 6= 0). We note that the above implies that the bi-variate
generating function of the Riordan array

(c(rx2), xc(rx2))

4
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is given by
1

1 − xy −
rx2

1 −
rx2

1 −
rx2

1 − · · ·
while that of the generalized Riordan array

(c(rx2), rxc(rx2))

is given by
1

1 − rxy −
rx2

1 −
rx2

1 −
rx2

1 − · · ·

.

There is another link to continued fractions, via the Deleham construction. For the purposes
of this note, we define this as follows. Given two sequences rn and sn,we use the notation

r ∆ s = [r0, r1, r2, . . .] ∆ [s0, s1, s2, . . .]

to denote the number triangle whose bi-variate generating function is given by

1

1 −
(r0x + s0xy)

1 −
(r1x + s1xy)

1 −
(r2x + s2xy)

1 − · · ·

.

In this instance, we follow Deleham in A120730 by taking rn to be the sequence that begins

0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, . . .

and sn to be the sequence that begins

1, 0, 0,−1, 1, 0, 0,−1, 1, 0, 0,−1, 1, 0, . . .

5
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(extending periodically). We thus arrive at the number triangle with bi-variate generating
function

1

1 −
xy

1 −
x

1 +
x

1 +
xy

1 −
xy

1 −
x

1 +
x

1 +
xy

1 − · · ·

.

This is the triangle with general term

[n ≤ 2k]

(

n

k

)

2k − n + 1

k + 1
.

A consequence of the fact that

an(r) =
n

∑

k=0

[n ≤ 2k]

(

n

k

)

2k − n + 1

k + 1
rk

is that the generating function of an(r) may also be expressed as

1

1 −
rx

1 −
x

1 +
x

1 +
rx

1 −
rx

1 −
x

1 +
x

1 +
rx

1 − · · ·

.
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For example, the generating function of the central binomial numbers
(

n

⌊n

2
⌋
)

can be expressed
as

1

1 −
x

1 −
x

1 +
x

1 +
x

1 −
x

1 −
x

1 +
x

1 +
x

1 − · · ·

=
1

1 − x −
x2

1 −
x2

1 −
x2

1 − · · ·

.

Similarly the generating function of the sequence with g.f. given by c(2x2

1−2xc(2x2)
, or A151281

(the number of walks within N2 (the first quadrant of Z2) starting at (0, 0) and consisting
of n steps taken from {(−1, 0), (1, 0), (1, 1)}), can be expressed as a continued fraction as
follows :

1

1 −
2x

1 −
x

1 +
x

1 +
2x

1 −
2x

1 −
x

1 +
x

1 +
2x

1 − · · ·

=
1

1 − 2x −
2x2

1 −
2x2

1 −
2x2

1 − · · ·

.

5 LDLt decomposition and orthogonal polynomials

We let H = H(r) denote the Hankel matrix of the sequence an(r), with general element
ai+j(r). The theory of “Catalan-like” numbers ensures us that

H = LDLt

where D is a diagonal matrix, and L = L(r) is a lower-triangular matrix with 1’s on the
diagonal. Moreover, L−1 is the coefficient array of a family of orthogonal polynomials [14, 19].

Given that the Hankel transform of an(r) is r(
n+1

2 ), it is clear from the theory that in fact

D = Diag{1, r, r2, r3, . . .}.
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We obtain

L =

(

c(rx2)

1 − rxc(rx2)
, xc(rx2)

)

,

and

L−1 =

(

1 − rx

1 + rx2
,

x

1 + rx2

)

.

This latter matrix has general term

(−r)⌊
n−k+1

2
⌋
(

n − ⌊n−k+1
2

⌋
⌊n−k

2
⌋

)

.

The matrix L−1 is the coefficient array of a set of generalized Chebyshev polynomials of the
third kind. To see this, we first let

Un(x; r) =

⌊n

2
⌋

∑

k=0

(

n − k

k

)

(−r)k(2x)n−2k.

Un(x; 1) corresponds to the usual Chebyshev polynomials of the second kind. The family of
polynomials

Un(x/2; r)

has coefficient array
(

1

1 + rx2
,

x

1 + rx2

)

.

The generalized Chebyshev polynomials of the third kind can then be defined to be

Vn(x; r) = Un(x; r) − rUn−1(x; r).

(Again, r = 1 corresponds to the usual Chebyshev polynomials of the third kind [4]). Then
L−1 is the coefficient array of the orthogonal polynomials Vn(x/2; r). We can easily verify
that these polynomials satisfy the three-term recurrence

Vn+2(x/2; r) = xVn+1(x/2; r) − rVn(x/2; r).

Example 2. We take the case r=3. Then we get

L(3) =























1 0 0 0 0 0 . . .
3 1 0 0 0 0 . . .
12 3 1 0 0 0 . . .
45 15 3 1 0 0 . . .
180 54 18 3 1 0 . . .
702 234 63 21 3 1 . . .
...

...
...

...
...

...
. . .
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and

L(3)−1 =























1 0 0 0 0 0 . . .
−3 1 0 0 0 0 . . .
−3 −3 1 0 0 0 . . .
9 −6 −3 1 0 0 . . .
9 18 −9 −3 1 0 . . .

−27 27 27 −12 −3 1 . . .
...

...
...

...
...

...
. . .























.

L(3) is an Aigner matrix for the sequences 3, 0, 0, 0, . . . and 3, 3, 3, . . .. Thus for instance

702 = 3 · 180 + 3 · 54, 234 = 180 + 3 · 18.

The generalized Chebyshev polynomials of the third kind associated to an(3) begin

1, x − 3, x2 − 3x − 3, x3 − 3x2 − 6x − 9, . . .

6 Moment representation

By means of the Stieltjes transform [10], we can establish that

an(r) =
1

2π

∫ 2
√

r

−2
√

r

xn

√
4r − x2

r(r + 1 − x)
dx +

r − 1

r
(r + 1)n.

7 Production matrices

It is instructive to examine the production matrices [6, 7] of some of the Riordan arrays
involved in this note. The Riordan array

(c(rx2), xc(rx2))

has production matrix






















0 1 0 0 0 0 . . .
r 0 1 0 0 0 . . .
0 r 0 1 0 0 . . .
0 0 r 0 1 0 . . .
0 0 0 r 0 1 . . .
0 0 0 0 r 0 . . .
...

...
...

...
...

...
. . .























while the generalized Riordan array

(c(rx2), rxc(rx2))
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has production matrix






















0 r 0 0 0 0 . . .
1 0 r 0 0 0 . . .
0 1 0 r 0 0 . . .
0 0 1 0 r 0 . . .
0 0 0 1 0 r . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .























.

The Riordan array

L =

(

c(rx2)

1 − rxc(rx2)
, xc(rx2)

)

has production matrix






















r 1 0 0 0 0 . . .
r 0 1 0 0 0 . . .
0 r 0 1 0 0 . . .
0 0 r 0 1 0 . . .
0 0 0 r 0 1 . . .
0 0 0 0 r 0 . . .
...

...
...

...
...

...
. . .























which confirms that its first column, which is an(r), has generating function given by the
continued fraction

1

1 − rx −
rx2

1 −
rx2

1 − · · ·

.

L is thus the Aigner matrix for the sequences sn given by r, 0, 0, 0, . . . and tn given by
r, r, r, . . ..

8 an(r) as row sums

Following [9], it is possible to exhibit the sequences an(r) as the row sums of a given number
triangle. In effect, the matrix LB−1, where B is the Binomial matrix with general term

(

n

k

)

(Pascal’s triangle, A007318), has row sums equal to an(r). This matrix is the inverse of
(

1

1 − x
,

x

1 − x

)

·
(

1 − rx

1 + rx2
,

x

1 + rx2

)

=

(

1 − (r + 1)x

1 − 2x + (r + 1)x2
,

x(1 − x)

1 − 2x + (r + 1)x2

)

.

We may verify this algebraically: the row sums of

LB−1 =

(

c(rx2)

1 − rxc(rx2)

1

1 + xc(rx2)
,

xc(rx2)

1 + xc(rx2)

)

do have generating function c(rx2)
1−rxc(rx2)

.
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