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Abstract

Carlitz and Riordan began a study on closed form of generating functions for powers

of second-order recurrence sequences. This investigation was completed by Stănică. In

this paper we consider exponential and other types of generating functions for such

sequences. Moreover, an extensive table of generating functions is provided.

1 Introduction

The Fibonacci sequence, which is is sequence A000045 in Sloane’s Encylopedia, [11] is defined
recursively as follows:

Fn = Fn−1 + Fn−2 (n ≥ 2),

with initial conditions
F0 = 0, F1 = 1.

The Lucas numbers Ln, which comprise Sloane’s sequence A000032, are defined by the same
manner but with initial conditions

L0 = 2, L1 = 1.

In 1962, Riordan [9] determined the generating functions for powers of Fibonacci numbers:

fk(x) =
∞
∑

n=0

F k
nxn.
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This question had been suggested by Golomb [4] in 1957. Riordan found the recursive
solution

(1 − Lkx + (−1)kx2)fk(x) = 1 + x

[k/2]
∑

j=1

(−1)jAkjfk−2j(x(−1)j), (1)

with initial functions

f0(x) =
1

1 − x
, and f1(x) =

1

1 − x − x2
.

We mention that in his paper Riordan used the F0 = F1 = 1 condition. In the result above,
the coefficients Akj have a complicated definition and cannot be handled easily.

In the same journal and volume, Carlitz [3] made the following generalization. Let

un = pun−1 − qun−2 (n ≥ 2),

with initial conditions
u0 = 1, u1 = p.

He computed the generating functions for the sequences uk
n. They have the same form as

Eq. (1).
In his recent paper [12], Stănică gave the most general and simple answer for the questions

above (see Theorem 1) with an easy proof. Namely, let the so-called second-order recurrence
sequence be given by

un = pun−1 + qun−2 (n ≥ 2), (2)

where p, q, u0 and u1 are arbitrary numbers such that we eliminate the degenerate case
p2 + 4q = 0. Then let

α =
1

2
(p +

√

p2 + 4q), β =
1

2
(p −

√

p2 + 4q), (3)

A =
u1 − u0β

α − β
, B =

u1 − u0α

α − β
. (4)

It is known that un can be written in the form

un = Aαn − Bβn (Binet formula).

Many famous sequences have this shape. A comprehensive table can be found at the end
of the paper.

To present Stănică’s result, we need to introduce the sequence Vn given by its Binet
formula:

Vn = αn + βn, V0 = 2, V1 = p.

Theorem 1 (Stănică). The generating function for the rth power of the sequence un is

∞
∑

n=0

ur
nx

n =

2



r−1

2
∑

k=0

(−1)kAkBk

(

r

k

)

Ar−2k − Br−2k + (−b)k(Br−2kαr−2k − Ar−2kβr−2k)x

1 − (−b)kVr−2k − x2
,

if r is odd, and
∞
∑

n=0

ur
nx

n =

r
2
−1
∑

k=0

(−1)kAkBk

(

r

k

)

Br−2k + Ar−2k − (−b)k(Br−2kαr−2k + Ar−2kβr−2k)x

1 − (−b)kVr−2kx + x2

+

(

r
r
2

)

A
r
2 (−B)

r
2

1 − (−1)
r
2 x

,

if r is even.

In the spirit of this result we present the same formulas for even and odd indices, expo-
nential generating functions for powers, product of such sequences and so on.

2 Non-exponential generating functions

The result in this and the following sections yield rich and varied examples which are collected
in separate tables at the end of the paper.

First, the generating function for un is given:

Proposition 2. We have
∞
∑

n=0

unxn =
u0 + (u1 − pu0)x

1 − px − qx2
.

For the sake of a more readable presentation, the proof of this statement and all of the
others will be collected in a separate section. We remark that Proposition 2 is not new but
the proof is easy and typical.

Sequences with even and odd indices appear so often that it is worth to construct the
general generating function of this type.

Theorem 3. The generating function for the sequence u2n is

∞
∑

n=0

u2nxn =
u0 + (u2 − u0(p

2 + 2q))x

1 − (p2 + 2q)x + q2x2
,

while
∞
∑

n=0

u2n+1x
n =

u1 + (u0pq − u1q)x

1 − (p2 + 2q)x + q2x2
.
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Example 4. As a consequence, we can state the following identity which we use later.

∞
∑

n=0

F2nx
n =

x

1 − 3x + x2
.

See the paper of Johnson [6], for example.

Generating functions for powers of even and odd indices are interesting. The following
theorem contains these results.

Theorem 5. Let un = pun−1 + qun−2 be a sequence with initial values u0 and u1. Then

∞
∑

n=0

ur
2nxn =

r−1

2
∑

k=0

(−1)kEkF k

(

r

k

)

Er−2k − F r−2k + q2k(F r−2kρr−2k − Er−2kσr−2k)x

1 − q2kVr−2k − x2
,

if r is odd, and
∞
∑

n=0

ur
2nxn =

r
2
−1
∑

k=0

(−1)kEkF k

(

r

k

)

F r−2k + Er−2k − q2k(F r−2kρr−2k + Er−2kσr−2k)x

1 − q2kVr−2kx + x2

+

(

r
r
2

)

E
r
2 (−F )

r
2

1 − (−1)
r
2 x

,

if r is even. For odd indices we have to make the substitution E ; G and F ; H. Here

ρ =
1

2

(

p2 + 2q + p
√

p2 + 4q
)

,

σ =
1

2

(

p2 + 2q − p
√

p2 + 4q
)

,

E =
u2 − u0σ

ρ − σ
, F =

u2 − u0ρ

ρ − σ
,

G =
u3 − u1σ

ρ − σ
, H =

u3 − u1ρ

ρ − σ
,

Vn = ρn + σn, V0 = 2, V1 = p2 + 2q.

Remark 6. These constants are calculated for the named sequences:
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Sequence ρ σ E F G H

Fn
3+

√
5

2
3−

√
5

2

√
5

5

√
5

5

√
5

5
φ

√
5

5
φ

Ln
3+

√
5

2
3−

√
5

2
1 −1

√
5

10
(5 +

√
5)

√
5

10
(5 −

√
5)

Pn 3 + 2
√

2 3 − 2
√

2
√

2
4

√
2

4

√
2

4
(1 +

√
2)

√
2

4
(1 −

√
2)

Qn 3 + 2
√

2 3 − 2
√

2 1 −1
√

2
2

(2 +
√

2)
√

2
2

(2 −
√

2)

Jn 4 1 1
3

1
3

2
3

−1
3

jn 4 1 1 −1 2 1

The product of the sequences un and vn has a simple generating function as given in the
following proposition.

Proposition 7. Let un and vn be two second-order recurrence sequences given by their Binet

formulae:

un = Aαn − Bβn, vn = Cγn − Dδn,

where A,B,C,D, α, β, γ, δ are defined as in Eqs. (3) and (4). Then the generating function

for unvn is
∞
∑

n=0

unvnx
n =

AC

1 − αγx
−

AD

1 − αδx
−

BC

1 − βγx
+

BD

1 − βδx
.

We mention that a similar statement can be obtained for the products unv2n, u2nv2n,
u2n+1v2n, u2n+1v2n+1, etc.

Remark 8. As a special case, let un = Fn and vn = Ln. Then it is well known (from Binet
formula, for example) that

A = B =
1
√

5
, α =

1 +
√

5

2
β =

1 −
√

5

2
,

C = 1, D = −1, γ =
1 +

√
5

2
δ =

1 −
√

5

2
.

The quantity 1+
√

5
2

is called the golden ratio (or golden mean, or golden section). For further

use we apply the standard notation φ for this, and φ for 1−
√

5
2

. We remark that φφ = −1

and φ − φ = φ2 − φ
2

=
√

5.
Therefore

∞
∑

n=0

FnLnxn =
1
√

5

(

1

1 − φ2x
+

1

1 + x
−

1

1 + x
−

1

1 − φ
2
x

)

=
1
√

5

(φ2 − φ
2
)x

(1 − φ2x)(1 − φ
2
x)

=
x

x2 − 3x + 1
.

Comparing the result obtained in Example 4, this yields the known identity

F2n = FnLn.

See Mordell’s book [8, pp. 60–61].
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Remark 9. The variation un = Fn and vn = Pn (where Pn are the Pell numbers A000129)
also have combinatorial sense. See the paper of Sellers [10]. The generating function for
FnPn is known A001582, but it can be deduced using the proposition above:

∞
∑

n=0

FnPnxn =
x − x3

x4 − 2x3 − 7x2 − 2x + 1
.

Using Theorem 15, the exponential generating function for FnPn is derived:

∞
∑

n=0

FnPn
xn

n!
=

1

4

√

2

5

[

eφ(1+
√

2)x − eφ(1−
√

2)x − eφ(1+
√

2)x + eφ(1−
√

2)x
]

.

Remark 10. As the author realized, the sequence (Jnjn) appears in the on-line encyclo-
pedia [11] but not under this identification (Jn and jn are called Jacobsthal A001045 and
Jacobsthal-Lucas A014551 numbers). The sequence A002450 has the generating function as
(Jnjn). Thus, the definition of A002450 gives the (otherwise elementary but not depicted)
observation

Jnjn =
4n − 1

3
.

Let us turn the discussion’s direction to the determination of generating functions with
coefficients un

nq . (We do not restrict ourselves to the case of positive q.) To do this, we present
the notion of polylogarithms which are themselves generating functions, having coefficients
1
nq . Concretely,

Liq(x) =
∞
∑

n=1

xn

nq
.

Because of the coefficients 1
nq , it is extremely difficult to find closed forms of these sums but

the situation changes when we take negative powers:

∞
∑

n=1

nqxn = Li−q(x) =
1

(1 − x)q+1

q−1
∑

i=0

〈

q

i

〉

xq−i,

where the symbol
〈

a
b

〉

denotes the Eulerian numbers; that is,
〈

a
b

〉

is the number of permuta-
tions on the set 1, . . . , a in which exactly b elements are greater than the previous element
[5].

After these introductory steps, we state the following.

Proposition 11. For any un second-order recurrence sequence and for any q ∈ Z,

∞
∑

n=1

un

nq
xn = A Liq(αx) − B Liq(βx).

In particular, if q = 1 then

∞
∑

n=1

un

n
xn = −A ln(1 − αx) + B ln(1 − βx), (5)
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while for q = −1
∞
∑

n=1

nunxn = A
x

(1 − αx)2
− B

x

(1 − βx)2
.

Applications can be found at the end of the paper. We mention that the special case
un = Fn and x = 1

2
was investigated by Benjamin et al. [2] from a probabilistic point of

view. Moreover, we can easily formulate the parallel results for even and odd indices:

∞
∑

n=1

u2n

nq
xn = E Liq(ρx) − F Liq(σx),

∞
∑

n=1

u2n+1

nq
xn = G Liq(ρx) − H Liq(σx).

Remark 12. In their paper on transcendence theory, Adhikari et al. [1] noted the beautiful
fact that the sum

∞
∑

n=1

Fn

n2n

is transcendental.
Possessing the results above, we are able to take a closer look at this sum. Let un = Fn

and x = 1
2

in Eq. (5). Then

∞
∑

n=1

Fn

n2n
= −

1
√

5
ln

(

1 −
φ

2

)

+
1
√

5
ln

(

1 −
φ

2

)

=
1
√

5

(

− ln

(

3 −
√

5

4

)

+ ln

(

3 +
√

5

4

))

=
1
√

5
ln

(

3 +
√

5

3 −
√

5

)

=
1
√

5
ln

(

2 − φ

2 − φ

)

.

So, this value is a transcendental number.
A similar calculation shows that

∞
∑

n=1

Ln

n2n
= 2 ln(2),

which is again a transcendental number. In addition, we present an interesting example
for series whose members’ denominators and the sum are the same but the numerators are
different. Namely,

∞
∑

n=1

Ln

n2n
= 2 ln(2) =

∞
∑

n=1

2

n2n
.

Finding closed form for different arguments of polylogarithms is an intensively investi-
gated and very hard topic. Fortunately, some functional equations gives the chance to find
a closed form for the sum of certain series involving Fibonacci and Lucas numbers. In the
book [7, pp. 6–7, 137–139] of Lewin, these are all the known special values:
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Li2(1) = π2

6
,

Li2(−1) = −π2

12
,

Li2
(

1
2

)

= π2

12
− 1

2
log2(2),

Li2(φ) = 1
2
log2(−φ) − π2

15
,

Li2(−φ) = − log2(−φ) + π2

10
,

Li2(−φ) = 1
2
log2(φ) − π2

10
,

Li2

(

1
φ2

)

= π2

15
− 1

4
log2

(

1
φ2

)

,

Li3(−1) = −3
4
ζ(3),

Li3
(

1
2

)

= 7
8
ζ(3) − π2

12
log(2) + 1

6
log3(2),

Li3

(

1
φ2

)

= 4
5
ζ(3) + π2

15
log
(

1
φ2

)

− 1
12

log3
(

1
φ2

)

.

Here ζ(3) = Li3(1) is the Apéry’s constant without known closed form.
With these identities, we deduce the following beautiful sums:

∞
∑

n=1

(−1)nFn

φnn2
=

1
√

5

(

log2(φ) −
3π2

20

)

,

∞
∑

n=1

(−1)nLn

φnn2
= − log2(φ) −

π2

60
,

∞
∑

n=1

(−1)nFn

φnn3
=

1
√

5

(

2π2

15
log(φ) −

2

3
log3(φ) −

31

20
ζ(3)

)

,

∞
∑

n=1

(−1)nLn

φnn3
=

1

20
ζ(3) −

2π2

15
log(φ) +

2

3
log3(φ).

Using Proposition 11,

∞
∑

n=1

(−1)nFn

φnn2
=

∞
∑

n=1

Fn

n2
φ

n
=

1
√

5
Li2(φφ) −

1
√

5
Li2(φφ)

=
1
√

5

(

Li2(−1) − Li2

(

1

φ2

))

,

since φ = −1
φ

. Using the table of polylogarithms above, an elementary calculation shows the

result. The same approach can be applied to derive the other sums (with data from the
table with respect to A,B, α, β).

We can rewrite these sums in a more curious form, because

√
5 − 1

2
= 2 sin

( π

10

)

.
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That is,
−1

φ
= φ = −2 sin

( π

10

)

.

Whence, for example,
∞
∑

n=1

(−1)nFn

φnn2
=

∞
∑

n=1

(−2)nFn

n2
sinn

( π

10

)

.

3 Exponential generating functions

The results in the section above can also have exponential versions, which we give next. Since
such expressions often cannot be simplified and finding the exponential generating function
is only a substitution of constants, we omit the tables.

Theorem 13. The recurrence sequence un has the exponential generating function

∞
∑

n=0

un
xn

n!
= Aeαx − Beβx,

while for even and odd indices

∞
∑

n=0

u2n
xn

n!
= Eeρx − Feσx,

∞
∑

n=0

u2n+1
xn

n!
= Geρx − Heσx,

where E,F,G,H, ρ, σ are defined in Theorem 5.

We phrase the exponential version of Stănică’s theorem in a wider sense.

Theorem 14. We have
∞
∑

n=0

ur
n

xn

n!
=

r
∑

k=0

(

r

k

)

Ak(−B)r−keαkβr−kx,

∞
∑

n=0

ur
2n

xn

n!
=

r
∑

k=0

(

r

k

)

Ek(−F )r−keρkσr−kx,

∞
∑

n=0

ur
2n+1

xn

n!
=

r
∑

k=0

(

r

k

)

Gk(−H)r−keρkσr−kx.

The exponential generating function for product of recurrence sequences is presented in
the following

Theorem 15. Under the hypotheses of Proposition 7, we have

∞
∑

n=0

unvn
xn

n!
= ACeαγx − ADeαδx − BCeβγx + BDeβδx.

Again, the same statement can be obtained for the products unv2n, u2nv2n, u2n+1v2n, u2n+1v2n+1,

etc.
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4 Proofs

Proof of Proposition 2. Let the generating function be f(x). Then

f(x) − pxf(x) − qx2f(x) = u0 + u1x − pu0x +
∞
∑

n=2

(un − pun−1 − qun−2)x
n

= u0 + u1x − pu0x,

by Eq. (2). The result follows.
Proof of Theorem 3. In order to reach our aim, we need the following identity:

u2n = (p2 + 2q)u2n−2 − q2u2n−4. (6)

Since
u2n−1 = pu2n−2 + qu2n−3, and u2n−2 = pu2n−3 + qu2n−4,

we get that

u2n−3 =
1

q
(u2n−1 − pu2n−2) =

1

p
(u2n−2 − qu2n−4).

If we express u2n−1 and consider the identity

u2n−1 =
1

p
(u2n − qu2n−2),

we will arrive at Eq. (6).
Let fe(x) be the generating function for u2n (“e” abbreviates the word “even”). Then

q2x2fe(x) − (p2 + 2q)xfe(x) + fe(x)

= q2

∞
∑

n=2

u2n−4x
n − (p2 + 2q)

∞
∑

n=1

u2n−2x
n +

∞
∑

n=0

u2nxn

=
∞
∑

n=2

(q2u2n−4 − (p2 + 2q)u2n−2 + u2n)xn − (p2 + 2q)u0x + u0 + u2x.

= u0 + (u2 − u0(p
2 + 2q))x.

We get the result.
Let fo(x) be the generating function for the sequence u2n+1.

pfo(x) + qfe(x) =
∞
∑

n=0

(pu2n+1 + qu2n)xn =
∞
∑

n=0

u2n+2x
n

=
1

x

∞
∑

n=1

u2nxn =
1

x

(

∞
∑

n=0

u2nxn − u0

)

=
1

x
(fe(x) − u0).

Thus

fo(x) =
1

p

(

fe(x)

(

1

x
− q

)

−
u0

x

)

.
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If we consider the closed form of fe(x) this formula can be transformed into the wanted
form.

Proof of Theorem 5. We know (see Eq. (6)), that

u2n = (p2 + 2q)u2n−2 − q2u2n−4.

This allows us to construct a second-order recurrence sequence vn from un with the property

vn = u2n,

namely,
vn := (p2 + 2q)vn−1 − q2vn−2, v0 := u0, v1 := u2. (7)

Therefore

ρ =
1

2

(

p2 + 2q +
√

(p2 + 2q)2 + 4(−q2)
)

=
1

2

(

p2 + 2q + p
√

p2 + 4q
)

,

σ =
1

2

(

p2 + 2q −
√

(p2 + 2q)2 + 4(−q2)
)

=
1

2

(

p2 + 2q − p
√

p2 + 4q
)

,

E =
v1 − v0σ

ρ − σ
=

u2 − u0σ

ρ − σ
, F =

v1 − v0ρ

ρ − σ
=

u2 − u0ρ

ρ − σ

with respect to the sequence vn. That is,

vn = Eρn − Fσn.

If we apply Stănică’s theorem for vn = u2n, we get the first statement. Secondly, we find the
corresponding identity of Eq. (6).

u2n−1 = pu2n−2 + qu2n−3, and u2n = pu2n−1 + qu2n−2.

We express u2n−2 from these:

u2n−2 =
1

p
(u2n−1 − qu2n−3) =

1

q
(u2n − pu2n−1),

whence
u2n =

q

p
(u2n−1 − qu2n−3) + pu2n−1.

On the other hand,

u2n =
1

p
(u2n+1 − qu2n−1).

Putting together the last two equalities we get the wanted formula:

u2n+1 = (p2 + 2q)u2n−1 − q2u2n−3. (8)

Again, we are able to construct the sequence wn for which

wn = u2n+1.

11



We are in the same situation as before. The only thing we should care about is that

w0 = u1, w1 = u3.

Proof of Proposition 7. If un and vn have the form as in the proposition, then we see that

unvn = AC(αγ)n − AD(αδ)n − BC(βγ)n + BD(βδ)n.

Thus
∞
∑

n=0

unvnx
n

= AC

∞
∑

n=0

(αγx)n − AD

∞
∑

n=0

(αδx)n − BC

∞
∑

n=0

(βγx)n + BD

∞
∑

n=0

(βδx)n.

The result follows. In addition, we mention that there are too many parameters, so it is not
worth to look for an expression with parameters u0, u1, v0, v1, p, q, r, s directly. However, the
remains can be completed easily, as the author calculated for the standard sequences.

Proof of Proposition 11. It is straightforward from Binet formula and the definition of
polylogarithms.

Proof of Theorem 13. This proof is again straightforward,

∞
∑

n=0

un
xn

n!
= A

∞
∑

n=0

(αx)n

n!
− B

∞
∑

n=0

(βx)n

n!
= Aeαx − Beβx.

Finally, we choose vn and wn as in the proof of Theorem 5, and follow the usual argument.
Proofs of Theorems 14 and 15. The binomial theorem, the same approach as described

in the proof of Theorem 5 and the Binet formula immediately gives the results:

∞
∑

n=0

ur
n

xn

n!
=

∞
∑

n=0

(Aαn − Bβn)r xn

n!

=
∞
∑

n=0

r
∑

k=0

(

r

k

)

Ak(αk)n(−B)r−k(βr−k)n xn

n!

=
r
∑

k=0

(

r

k

)

Ak(−B)r−k

∞
∑

n=0

(αk)n(βr−k)n xn

n!

=
r
∑

k=0

(

r

k

)

Ak(−B)r−keαkβr−kx.

The rest can be proven by the same approach.
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5 Tables

Standard parameters for the named sequences

Name Notation u0 u1 p q First few values

Fibonacci Fn 0 1 1 1 0, 1, 1, 2, 3, 5, 8, 13, 21
Lucas Ln 2 1 1 1 2, 1, 3, 4, 7, 11, 18, 29, 47
Pell Pn 0 1 2 1 0,1,2,5,12,29,70,169,408
Pell-Lucas Qn 2 2 2 1 2,2,6,14,34,82,198,478
Jacobsthal Jn 0 1 1 2 0, 1, 1, 3, 5, 11, 21, 43, 85
Jacobsthal-Lucas jn 2 1 1 2 2,1,5,7,17,31,65,127,257

Sequence A B α β

Fn
1√
5

1√
5

1+
√

5
2

1−
√

5
2

Ln 1 −1 1+
√

5
2

1−
√

5
2

Pn

√
2

4

√
2

4
1 +

√
2 1 −

√
2

Qn 1 −1 1 +
√

2 1 −
√

2

Jn
1
3

1
3

2 −1

jn 1 −1 2 −1

Ordinary generating functions

Coefficient of xn Generating function

Fn
x

1−x−x2

Ln
2−x

1−x−x2

Pn
x

1−2x−x2

Qn
2−2x

1−2x−x2

Jn
x

1−x−2x2

jn
2−x

1−x−2x2

13



Generating functions of even and odd indices

xn Generating function xn Generating function

F2n
x

1−3x+x2 F2n+1
1−x

1−3x+x2

L2n
2−3x

1−3x+x2 L2n+1
1+x

1−3x+x2

P2n
2x

1−6x+x2 P2n+1
1−x

1−6x+x2

Q2n
2−6x

1−6x+x2 Q2n+1
2+2x

1−6x+x2

J2n
x

1−5x+4x2 J2n+1
1−2x

1−5x+4x2

j2n
2−5x

1−5x+4x2 j2n+1
1+2x

1−5x+4x2

Generating functions for products of sequences

Coefficient of xn Generating function

FnLn
x

1−3x+x2

FnPn
x−x3

1−2x−7x2−2x3+x4

FnQn
2x+2x2+2x3

1−2x−7x2−2x3+x4

FnJn
1−2x2

1−x−7x2−2x3+4x4

Fnjn
x+4x2+2x3

1−x−7x2−2x3+4x4

LnPn
x+4x2+x3

1−2x−7x2−2x3+x4

LnQn
4−6x−14x2−2x3

1−2x−7x2−2x3+x4

LnJn
x+2x2+2x3

1−x−7x2−2x3+4x2

Lnjn
4−3x−14x2−2x3

1−x−7x2−2x3+4x4

PnQn
2x

1−6x+x2

PnJn
x−2x3

1−2x−13x2−4x3+4x4

Pnjn
x+8x2+2x3

1−2x−13x2−4x3+4x4

QnJn
2x+2x2+4x3

1−2x−13x2−4x3+4x4

Qnjn
4−6x−26x2−4x3

1−2x−13x2−4x3+4x4

Jnjn
x

1−5x+4x2
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Generating functions for squares

xn Gen. function xn Gen. function xn Gen. function

F 2
n

x−x2

1−2x−2x2+x3 F 2
2n

x+x2

1−8x+8x2−x3 F 2
2n+1

1−4x+x2

1−8x+8x2−x3

L2
n

4−7x−x2

1−2x−2x2+x3 L2
2n

4−23x+9x2

1−8x+8x2−x3 L2
2n+1

1+8x+x2

1−8x+8x2−x3

P 2
n

x−x2

1−5x−5x2+x3 P 2
2n

4x+4x2

1−35x+35x2−x3 P 2
2n+1

1−10x+x2

1−35x+35x2−x3

Q2
n

4−16x−4x2

1−5x−5x2+x3 Q2
2n

4−104x+36x2

1−35x+35x2−x3 Q2
2n+1

4+56x+4x2

1−35x+35x2−x3

J2
n

x−2x2

1−3x−6x2+8x3 J2
2n

x+4x2

1−21x+84x2−64x3 J2
2n+1

1−12x+16x2

1−21x+84x2−64x3

j2
n

4−11x−2x2

1−3x−6x2+8x3 j2
2n

4−59x+100x2

1−21x+84x2−64x3 j2
2n+1

1+28x+16x2

1−21x+84x2−64x3

Generating functions for sequences (n · u(2)n)

xn Gen. function xn Gen. function

nFn
x+x3

1−2x−x2+2x3+x4 nF2n
x−x3

1−6x+11x2−6x3+x4

nLn
x+4x2−x3

1−2x−x2+2x3+x4 nL2n
3x−4x2+3x3

1−6x+11x2−6x3+x4

nPn
x+x3

1−4x+2x2+4x3+x4 nP2n
2x−2x3

1−12x+38x2−12x3+x4

nQn
2x+4x2−2x3

1−4x+2x2+4x3+x4 nQ2n
6x−4x2+6x3

1−12x+38x2−12x3+x4

nJn
x+2x3

1−2x−3x2+4x3+4x4 nJ2n
x−4x3

1−10x+33x2−40x3+16x4

njn
x+8x2−2x3

1−2x−3x2+4x3+4x4 nj2n
5x−16x2+20x3

1−10x+33x2−40x3+16x4

Generating functions for sequences (n · u2n+1)

Coefficient of xn Generating function

nF2n+1
2x−2x2+x3

1−6x+11x2−6x3+x4

nL2n+1
4x−2x2−x3

1−6x+11x2−6x3+x4

nP2n+1
5x−2x2+x3

1−12x+38x2−12x3+x4

nQ2n+1
14x−4x2−2x3

1−12x+38x2−12x3+x4

nJ2n+1
3x−8x2+8x3

1−10x+33x2−40x3+16x4

nj2n+1
7x−8x2−8x3

1−10x+33x2−40x3+16x4
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[12] P. Stănică, Generating functions, weighted and non-weighted sums for powers of second-
order recurrence sequences, Fib. Quart. 41(4) (2003), 321–333.

2000 Mathematics Subject Classification: Primary 11B39.
Keywords: Recurrence sequences, Fibonacci sequence, Lucas sequence, Pell sequence, Pell-
Lucas sequence, Jacobsthal sequence, Jacobsthal-Lucas sequence, generating function, ex-
ponential generating function.

(Concerned with sequences A000032, A000045, A000129, A001045, A001582, A002450, and
A014551.)

Received July 17 2007; revised version received April 24 2009. Published in Journal of

Integer Sequences, April 29 2009.

Return to Journal of Integer Sequences home page.

16

http://www.dur.ac.uk/bob.johnson/fibonacci/
http://www.cs.uwaterloo.ca/journals/JIS/VOL5/Sellers/sellers4.html
http://www.research.att.com/~njas/sequences/
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000032
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000045
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000129
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001045
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001582
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002450
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A014551
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Non-exponential generating functions
	Exponential generating functions
	Proofs
	Tables

