Journal of Integer Sequences, Vol. 12 (2009), Article 09.4.1

Some Congruences for the Partial Bell Polynomials

Miloud Mihoubi ${ }^{1}$
University of Science and Technology Houari Boumediene
Faculty of Mathematics
P. O. Box 32
16111 El-Alia, Bab-Ezzouar, Algiers
Algeria
miloudmihoubi@hotmail.com

Abstract

Let $B_{n, k}$ and $A_{n}=\sum_{j=1}^{n} B_{n, j}$ with $A_{0}=1$ be, respectively, the $(n, k)^{\text {th }}$ partial and the $n^{\text {th }}$ complete Bell polynomials with indeterminate arguments x_{1}, x_{2}, \ldots. Congruences for A_{n} and $B_{n, k}$ with respect to a prime number have been studied by several authors. In the present paper, we propose some results involving congruences for $B_{n, k}$ when the arguments are integers. We give a relation between Bell polynomials and we apply it to several congruences. The obtained congruences are connected to binomial coefficients.

1 Introduction

Let x_{1}, x_{2}, \ldots denote indeterminates. Recall that the partial Bell polynomials $B_{n, k}\left(x_{1}, x_{2}, \ldots\right)$ are given by

$$
\begin{equation*}
B_{n, k}\left(x_{1}, x_{2}, \ldots\right)=\sum \frac{n!}{k_{1}!k_{2}!\cdots}\left(\frac{x_{1}}{1!}\right)^{k_{1}}\left(\frac{x_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{k_{n-k+1}}, \tag{1}
\end{equation*}
$$

where the summation takes place over all integers $k_{1}, k_{2}, \ldots \geq 0$ such that

$$
k_{1}+2 k_{2}+\cdots+(n-k+1) k_{n-k+1}=n \text { and } k_{1}+k_{2}+\cdots+k_{n-k+1}=k .
$$

[^0]For references, see Bell [1], Comtet [4] and Riordan [7].
Congruences for Bell polynomials have been studied by several authors. Bell [1] and Carlitz [3] give some congruences for complete Bell polynomials. In this paper, we propose some congruences for partial Bell polynomials when the arguments are integers. Indeed, we give a relation between Bell polynomials, given by Theorem 1 below, and we use it in the first part of the paper, and with connection of the results of Carlitz [3] in the second part, to deduce some congruences for partial Bell polynomials. Some applications to Stirling numbers of the first and second kind and to the binomial coefficients are given.

2 Main results

The next theorem gives an interesting relation between Bell polynomials. We use it to establish some congruences for partial Bell polynomials.

Theorem 1. Let $\left\{x_{n}\right\}$ be a real sequence. Then for n, r, k integers with $n, r, k \geq 1$, we have

$$
\begin{equation*}
x_{1}^{k} \sum_{j=1}^{n} B_{n, j}\left(y_{1}, y_{2}, \ldots\right)(k-n r)^{j-1}=x_{1}^{n r} \frac{B_{n+k, k}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{k\binom{n+k}{k}} \tag{2}
\end{equation*}
$$

For $k=n r+s$, Identity (2) becomes
Remark 2. Let $\left\{x_{n}\right\}$ be a real sequence. Then for n, r, s integers with $n, r \geq 1$, we get

$$
\begin{equation*}
x_{1}^{s} A_{n}\left(s y_{1}, s y_{2}, \ldots\right)=\frac{s}{n r+s} \frac{B_{(r+1) n+s, n r+s}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\binom{(r+1) n+s}{n r+s}}, s \geq-n r+1 \tag{3}
\end{equation*}
$$

For $s \geq 0$, we obtain Proposition 8 in [5], (see also [6]).
Theorem 3. Let k, s be a nonnegative integers and p be a prime number. Then for any sequence $\left\{x_{j}\right\}$ of integers we have

$$
(k+s+1) B_{s p, k+s+1}\left(x_{1}, x_{2}, \ldots\right) \equiv 0(\bmod p)
$$

Application 4. If we denote by $s(n, k)$ and $S(n, k)$ for Stirling numbers of first and second kind respectively, then from the well-known identities

$$
B_{n, k}(0!,-1!, 2!, \ldots)=s(n, k) \text { and } B_{n, k}(1,1,1, \ldots)=S(n, k)
$$

when $x_{n}=1$ or $x_{n}=(-1)^{n-1}(n-1)$! in Theorem 3 we obtain

$$
(k+s+1) S(s p, k+s+1) \equiv(k+s+1) s(s p, k+s+1) \equiv 0(\bmod p) .
$$

Theorem 5. Let n, k, s be integers with $n \geq k \geq 1, s \geq 1$ and p be a prime number. Then for any sequence $\left\{x_{j}\right\}$ of integers with x_{1} not a multiple of p we have

$$
\begin{align*}
& \frac{B_{n+s p, k+s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{(k+s p)\binom{n+s p}{k+s p}} \equiv x_{1}^{s} \frac{B_{n, k}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{k\binom{n}{k}}(\bmod p) \quad \text { if } p>n-k+1 \\
& x_{1}^{n} \frac{B_{n+s p, s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{s\binom{n+s p}{s p}} \equiv x_{1}^{s} \frac{B_{(p+1) n, n p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{n\binom{(p+1) n}{n p}}\left(\bmod p^{2}\right) \quad \text { if } p>n+1 . \tag{4}
\end{align*}
$$

Application 6. If we consider the cases $k=1$ and $k=2$ in Theorem 5 we obtain

$$
\begin{aligned}
B_{n+s p, 1+s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right) & \equiv x_{1}^{s} x_{n}(\bmod p) \text { for } p>n \\
B_{n+s p, 2+s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right) & \equiv \frac{x_{1}^{s}}{2} \sum_{j=1}^{n-1}\binom{n}{j} x_{j} x_{n-j}(\bmod p) \text { for } p>n-1 .
\end{aligned}
$$

Then, when $x_{n}=1$ or $x_{n}=(-1)^{n-1}(n-1)$! we obtain

$$
\begin{aligned}
& S(n+s p, 1+s p) \equiv 1(\bmod p) \text { for } p>n, \\
& s(n+s p, 1+s p) \equiv(-1)^{n-1}(n-1)!(\bmod p) \text { for } p>n, \\
& S(n+s p, 2+s p) \equiv 2^{n-1}-1(\bmod p) \text { for } p>n-1 \text { and } \\
& s(n+s p, 2+s p) \equiv(-1)^{n-1} \frac{n(n+1)^{2}}{2}(\bmod p) \text { for } p>n-1,
\end{aligned}
$$

Theorem 7. Let n, k, s, p be integers with $n \geq k \geq 1, s \geq 1, p \geq 1$. Then for any sequence $\left\{x_{j}\right\}$ of integers with x_{1} not a multiple of p we have

$$
\begin{align*}
& \frac{B_{(s+1) n, s n}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\binom{(s+1) n}{s n}} \equiv s x_{1}^{n(s-1)} \frac{B_{2 n, n}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\binom{2 n}{n}}\left(\bmod n^{2}\right), \\
& \frac{B_{n+s p, k+s p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{(k+s p)\binom{n+s p}{k+s p}} \equiv x_{1}^{s} \frac{B_{n, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{n}{k}}(\bmod p), \tag{5}\\
& x_{1}^{n} \frac{B_{n+s p, s p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{s\binom{n+s p}{s p}} \equiv x_{1}^{s} \frac{B_{(p+1) n, n p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{n\binom{p+1) n}{n p}}\left(\bmod n^{2}\right) .
\end{align*}
$$

Application 8. Belbachir et al. [2] have proved that

$$
\begin{equation*}
B_{n, k}(1!, 2!, \ldots,(q+1)!, 0, \ldots)=\frac{n!}{k!}\binom{k}{n-k}_{q} \tag{6}
\end{equation*}
$$

then, for $s \geq 1$ and $p \nmid j$, the two last congruences of (5) and Identity (6) prove that

$$
\binom{k+s p}{j}_{q} \equiv\binom{k}{j}_{q}(\bmod p) \text { and } j\binom{s p}{j}_{q} \equiv s\binom{j p}{j}_{q}\left(\bmod p^{2}\right)
$$

Corollary 9. Let n, k, s be integers with $n \geq k \geq 1$ and p be a prime number. Then for any sequence $\left\{x_{j}\right\}$ of integers with x_{1} not a multiple of p we have

$$
\begin{aligned}
& \frac{B_{(p+1) n, n p}\left(x_{1}, x_{2}, \ldots\right)}{n\binom{(p+1) n}{n p}} \equiv x_{1}^{n-1} \frac{B_{n+p, p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\binom{n+p}{p}}\left(\bmod p^{2}\right) \text { if } p>n+1, \\
& \frac{B_{(p+1) n, n p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{n\binom{(p+1) n}{n p}} \equiv x_{1}^{n-1} \frac{B_{n+p, p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\binom{n+p}{p}}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Application 10. As in Application 8, we have

$$
\binom{j p}{j}_{q} \equiv j\binom{p}{j}_{q}\left(\bmod p^{2}\right) .
$$

Theorem 11. Let $k \geq 2, j \geq 1$ be integers and p be an odd prime number. Then for any sequence of integers $\left\{x_{j}\right\}$ we have

$$
\begin{align*}
& \frac{B_{p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p^{j}+k}{k}} \equiv x_{1}^{k-1} x_{p^{j}+1}(\bmod p) \quad \text { if } p \nmid k x_{1}, \\
& \frac{B_{(r+1) p^{j}, p^{j} r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{p^{j} r\binom{\left(r+1 p^{j}\right.}{p^{j} r}} \equiv x_{1}^{r-1}\left(x_{p^{j}+1}-x_{p^{j-1}+1}\right)(\bmod p) \quad \text { if } p \nmid x_{1} . \tag{7}
\end{align*}
$$

Application 12. As in Application (8), let $j=1$ in the second congruence of Theorem 11. Then

$$
\frac{(p-1)!}{r}\binom{p r}{p}_{q} \equiv-1(\bmod p)
$$

Theorem 13. Let $k \geq 2, j \geq 1$ be integers and p be an odd prime number. Then for any sequence of integers $\left\{x_{j}\right\}$ we have

$$
\begin{aligned}
& \frac{B_{2 p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\left.k c^{2 p^{j}+k} \begin{array}{c}
k
\end{array}\right)} \equiv x_{1}^{k-2}\left((k-1) x_{p^{j}+1}^{2}+x_{1} x_{2 p^{j}+1}\right) \quad(\bmod p) \quad \text { if } p \nmid k x_{1} \\
& \frac{B_{2(r+1) p^{j}, 2 p^{j} r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{2 p^{j} r\binom{2\left(r+1 p^{j}\right.}{2 p^{j} r}} \equiv x_{1}^{2 r-2}\left(x_{1} x_{2 p^{j}+1}-x_{p^{j}+1}^{2}\right) \quad(\bmod p) \quad \text { if } p \nmid x_{1} .
\end{aligned}
$$

Remark 14. Similarly to the last proofs, one can exploit the results of Carlitz [3] with connection to Theorem 1 to obtain more congruences for partial Bell polynomials.

3 Proof of the main results

Proof of Theorem 1. Let $\left\{x_{n}\right\}$ be a sequence of real numbers with $x_{1}:=1$ and let $\left\{f_{n}(x)\right\}$ be a sequence of polynomials defined by

$$
f_{n}(x)=\sum_{j=1}^{n} B_{n, j}\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \frac{x_{4}}{4} \ldots\right)(x)_{j}
$$

with $f_{0}(x)=1,(x)_{j}:=x(x-1) \cdots(x-j+1)$ for $j \geq 1$ and $(x)_{0}:=1$.
We have $n f_{n-1}(1)=n \sum_{j=1}^{n-1} B_{n-1, j}\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)(1)_{j}=x_{n}$ and $D_{x=0} f_{1}(0)=1 \neq 0$.
It is well known that $\left\{f_{n}(x)\right\}$ presents a sequence of binomial type, see [4]. Then, from Proposition 1 in [5] we have

$$
\begin{equation*}
y_{n}=\frac{1}{n r\binom{(r+1) n}{n r}} B_{(r+1) n, n r}\left(1, x_{2}, x_{3}, \ldots\right)=\frac{f_{n}(n r)}{n r}=D_{x=0} f_{n}(x ; r), \tag{8}
\end{equation*}
$$

where $\left\{f_{n}(x ; a)\right\}$ is a sequence of binomial type defined by

$$
\begin{equation*}
f_{n}(x ; a):=\frac{x}{a n+x} f_{n}(a n+x) \tag{9}
\end{equation*}
$$

with a is a real number, see [5]. From Proposition 1 in [5] we have also

$$
\begin{equation*}
\frac{B_{n+k, k}\left(1, x_{2}, x_{3}, \ldots\right)}{k\binom{n+k}{k}}=\frac{f_{n}(k)}{k}=\frac{f_{n}(k-n r ; r)}{k-n r} \tag{10}
\end{equation*}
$$

but from [8] we can write $f_{n}(k-n r ; r)$ as

$$
\begin{equation*}
f_{n}(k-n r ; r)=\sum_{j=1}^{n} B_{n, j}\left(D_{x=0} f_{1}(x ; r), D_{x=0} f_{2}(x ; r), \ldots\right)(k-n r)^{j} \tag{11}
\end{equation*}
$$

Then, by substitution (11) in (10) and by using (8) we obtain

$$
\begin{equation*}
\frac{B_{n+k, k}\left(1, x_{2}, x_{3}, \ldots\right)}{k\binom{n+k}{k}}=\sum_{j=1}^{n} B_{n, j}\left(y_{1}, y_{2}, \ldots\right)(k-n r)^{j-1} \tag{12}
\end{equation*}
$$

We can verify that Identity (2) is true for $x_{1}=0$, and, for $x_{1} \neq 0$ it can be derived from (12) by replacing x_{n} by $\frac{x_{n}}{x_{1}}$ and by using the well known identities

$$
\begin{align*}
& B_{n, k}\left(x a_{1}, x a_{2}, x a_{3}, \ldots\right)=x^{k} B_{n, k}\left(a_{1}, a_{2}, a_{3}, \ldots\right) \text { and } \tag{13}\\
& B_{n, k}\left(x a_{1}, x^{2} a_{2}, x^{3} a_{3}, \ldots\right)=x^{n} B_{n, k}\left(a_{1}, a_{2}, a_{3}, \ldots\right),
\end{align*}
$$

where $\left\{a_{n}\right\}$ is any real sequence.
Proof of Theorem 3. We prove that $k B_{s p, k} \equiv 0(\bmod p), k \geq s+1$. From the identities

$$
\begin{equation*}
\binom{s p}{j} \equiv 0(\bmod p), \text { for } p \nmid j \text { and }\binom{s p}{p j} \equiv\binom{s}{j}(\bmod p), \tag{14}
\end{equation*}
$$

and from the recurrence relation given by

$$
k B_{n, k}=\sum_{j}\binom{n}{j} x_{j} B_{n-j, k-1}
$$

with $B_{n, k}:=B_{n, k}\left(x_{1}, x_{2}, \ldots\right)$ and $x_{j}=0$ for $j \leq 0$, we obtain

$$
(k+1) B_{s p, k+1}=\sum_{j}\binom{s p}{j} x_{j} B_{s p-j, k} \equiv \sum_{j=1}^{s}\binom{s}{j} x_{j p} B_{(s-j) p, k}(\bmod p) .
$$

Then, for $s=0$, we get $k B_{0, k} \equiv 0(\bmod p), k \geq 0$.
For $s=1$, we get $(k+1) B_{p, k+1} \equiv x_{p} B_{0, k} \equiv 0(\bmod p), k \geq 1$.
For $s=2$, the last congruences imply that
$(k+1) B_{2 p, k+1} \equiv 2 x_{p} B_{p, k}+x_{2 p} B_{0, k}=0(\bmod p), k \geq 2$ and $p \nmid k$.
The induction on s proves that $k B_{s p, k} \equiv 0(\bmod p)$ when $k \geq s+1$.
Proof of Theorem 5. From [4] we have

$$
\begin{equation*}
B_{n, k}\left(x_{1}, x_{2}, \ldots\right)=\frac{n!}{(n-k)!} \sum_{j=0}^{k} B_{n-k, k-j}\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \frac{x_{4}}{4}, \ldots\right) \frac{x_{1}^{j}}{j!}, \quad n \geq k \geq 1 \tag{15}
\end{equation*}
$$

Then, for $i \in\{1, \ldots, n\}$, the last identity and Identities (13) imply

$$
\begin{gathered}
t_{i}=((n+1)!)^{i} y_{i}=\frac{((n+1)!)^{i}}{\operatorname{ir}\binom{(r+1) i}{i r}} B_{(r+1) i, i r}\left(x_{1}, x_{2}, \ldots, x_{i-j+1}\right)= \\
\sum_{j=1}^{i} \frac{(i r-1)!}{(i r-j)!} x_{1}^{i r-j} B_{i, j}\left(\frac{(n+1)!}{2} x_{2}, \frac{((n+1)!)^{2}}{3} x_{3}, \ldots, \frac{((n+1)!)^{i-j}}{i-j+1} x_{i-j+1}\right),
\end{gathered}
$$

from which we deduce that t_{1}, \ldots, t_{n} are integers, and then $B_{n, 1}\left(t_{1}, t_{2}, \ldots\right), \ldots, B_{n, n}\left(t_{1}, t_{2}, \ldots\right)$ are also integers. Therefore, by using the second identity of (13), Identity (2) becomes

$$
x_{1}^{k} \sum_{j=1}^{n} B_{n, j}\left(t_{1}, t_{2}, \ldots\right)(k-n r)^{j-1}=x_{1}^{n r} \frac{((n+1)!)^{n} B_{n+k, k}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{k\binom{n+k}{k}} .
$$

Hence, when we replace k by $\alpha+s p$ in the last identity we obtain

$$
x_{1}^{\alpha+s p} \sum_{j=1}^{n} B_{n, j}\left(t_{1}, t_{2}, \ldots\right)(\alpha+s p-n r)^{j-1}=x_{1}^{n r} \frac{((n+1)!)^{n} B_{n+\alpha+s p, \alpha+s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{(\alpha+s p)\binom{n+\alpha+s p}{\alpha+s p}}
$$

and when we reduce modulo p in the last identity we obtain

$$
x_{1}^{n r} \frac{((n+1)!)^{n} B_{n+\alpha+s p, \alpha+s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{(\alpha+s p)\binom{n+\alpha+s p}{\alpha+s p}} \equiv x_{1}^{\alpha+s} \sum_{j=1}^{n} B_{n, j}\left(t_{1}, t_{2}, \ldots\right)(\alpha-n r)^{j-1}(\bmod p) .
$$

But from (2) we have

$$
\begin{aligned}
x_{1}^{\alpha} \sum_{j=1}^{n} B_{n, j}\left(t_{1}, t_{2}, \ldots\right)(\alpha-n r)^{j-1} & =((n+1)!)^{n} x_{1}^{\alpha} \sum_{j=1}^{n} B_{n, j}\left(y_{1}, y_{2}, \ldots\right)(\alpha-n r)^{j-1} \\
& =((n+1)!)^{n} x_{1}^{n r} \frac{B_{n+\alpha, \alpha}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\alpha\binom{n+\alpha}{\alpha}},
\end{aligned}
$$

from which the last congruence becomes

$$
\frac{((n+1)!)^{n} B_{n+\alpha+s p, \alpha+s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{(\alpha+s p)\binom{n+\alpha+s p}{\alpha+s p}} \equiv x_{1}^{s}((n+1)!)^{n} \frac{B_{n+\alpha, \alpha}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\alpha\binom{n+\alpha}{\alpha}}(\bmod p) .
$$

Now, when we replace n by $n-\alpha$, the last congruence becomes

$$
\frac{((n-\alpha+1)!)^{n} B_{n+s p, \alpha+s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{(\alpha+s p)\binom{n+s p}{\alpha+s p}} \equiv x_{1}^{s}((n-\alpha+1)!)^{n} \frac{B_{n, \alpha}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\alpha\binom{n}{\alpha}}(\bmod p) .
$$

Then, if $p>n-\alpha+1$ we obtain

$$
\frac{B_{n+s p, \alpha+s p}\left(x_{1}, x_{2}, \ldots\right)}{(\alpha+s p)\binom{n+s p}{\alpha+s p}} \equiv x_{1}^{s} \frac{B_{n, \alpha}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\alpha\binom{n}{\alpha}}(\bmod p) .
$$

For the second part of theorem, when we replace k by $s r$ in (2) we get

$$
x_{1}^{s r} \sum_{j=1}^{n} B_{n, j}\left(t_{1}, t_{2}, \ldots\right) r^{j-1}(s-n)^{j-1}=x_{1}^{n r} \frac{((n+1)!)^{n} B_{n+s r, s r}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{s r\binom{n s r}{s r}},
$$

and, because $B_{n, j}\left(t_{1}, t_{2}, \ldots\right)(1 \leq j \leq n)$ are integers, the last identity proves that

$$
\begin{aligned}
x_{1}^{n r} \frac{((n+1)!)^{n r} B_{n+s r, s r}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{s r\binom{n+s r}{s r}} & \equiv x_{1}^{s r} z_{n} \\
& \equiv x_{1}^{s r} \frac{((n+1)!)^{n r} B_{(r+1) n, n r}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{n r\binom{(r+1) n}{n r}}(\bmod r) .
\end{aligned}
$$

Let $r=p>n+1$ be a prime number. Now, because the expressions

$$
\frac{((n+1)!)^{n p} B_{n+s p, s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{s p\binom{n+s p}{s p}} \text { and } \frac{((n+1)!)^{n p} B_{(p+1) n, n p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{n p\binom{(p+1) n}{n p}}
$$

are integers, we obtain

Proof of Theorem 7. From Identity (15) we get

$$
\begin{equation*}
\frac{B_{n+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{n+k}{k}}=\sum_{j=1}^{k} \frac{(k-1)!}{(k-j)!} B_{n, j}\left(x_{2}, x_{3}, x_{4}, \ldots\right) x_{1}^{k-j}, \quad n, k \geq 1 \tag{16}
\end{equation*}
$$

and this implies that the numbers
are integers, and then, the numbers $B_{n, j}\left(z_{1}, z_{2}, \ldots\right)(1 \leq j \leq n)$ are also integers. From Identity (3), when we replace r by 1 and s by $n(s-1)$ we obtain

$$
\begin{equation*}
B_{(s+1) n, s n}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)=x_{1}^{n(s-1)} n s\binom{(s+1) n}{s n} \sum_{j=1}^{n} B_{n, j}\left(\bar{z}_{1}, \bar{z}_{2}, \ldots\right)((s-1) n)^{j-1} \tag{18}
\end{equation*}
$$

with $\bar{z}_{n}:=\frac{1}{n\binom{2 n}{n}} B_{2 n, n}\left(x_{1}, 2 x_{2}, \ldots\right)$.
Furthermore, from (18), we have

$$
\begin{aligned}
& \frac{B_{(s+1) n, s n}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\binom{(s+1) n}{s n}}=n x_{1}^{n(s-1)} s \sum_{j=1}^{n} B_{n, j}\left(z_{1}, z_{2}, \ldots\right)((s-1) n)^{j-1} \\
& \equiv n\left\{x_{1}^{n(s-1)} s z_{n}\right\} \\
& \equiv n\left\{x_{1}^{n(s-1)} s \frac{1}{n\left(2^{2 n}\right)} B_{2 n, n}\left(x_{1}, 2 x_{2}, \ldots\right)\right\} \\
&\left.\equiv x_{1}^{n(s-1)} s \frac{1}{\left({ }_{n}^{2 n}\right.} \begin{array}{l}
B_{2 n, n} \\
n
\end{array} x_{1}, 2 x_{2}, \ldots\right)\left(\bmod n^{2}\right), \text { i.e., } \\
& \frac{B_{(s+1) n, s n}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\binom{(s+1) n}{s n}} \equiv s x_{1}^{n(s-1)} \frac{B_{2 n, n}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\binom{2 n}{n}}\left(\bmod n^{2}\right) .
\end{aligned}
$$

For the second part of (5), when we replace k by $\alpha+s p$ in (2), we obtain

$$
x_{1}^{\alpha+s p} \sum_{j=1}^{n} B_{n, j}\left(z_{1}, z_{2}, \ldots\right)(\alpha+s p-n r)^{j-1}=x_{1}^{n r} \frac{B_{n+\alpha+s p, \alpha+s p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{(\alpha+s p)\binom{n+\alpha+s p}{\alpha+s p}}
$$

with z_{n} is given by (17). Because the numbers $B_{n, j}\left(z_{1}, z_{2}, \ldots\right), 1 \leq j \leq n$, are integers, then when we reduce modulo p in the last identity we get

$$
x_{1}^{n r} \frac{B_{n+\alpha+s p, \alpha+s p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{(\alpha+s p)\binom{n+\alpha+s p}{\alpha+s p}} \equiv x_{1}^{\alpha+s} \sum_{j=1}^{n} B_{n, j}\left(z_{1}, z_{2}, \ldots\right)(\alpha-n r)^{j-1}(\bmod p)
$$

and by (2) the last congruence becomes

$$
\frac{B_{n+\alpha+s p, \alpha+s p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{(\alpha+s p)\binom{n+\alpha+s p}{\alpha+s p}} \equiv x_{1}^{s} \frac{B_{n+\alpha, \alpha}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{\alpha\binom{n+\alpha}{\alpha}}(\bmod p) .
$$

To terminate, it suffices to replace n by $n-\alpha$ in the last congruence.
For the third part of (5), when we replace k by $k r$ in (2), we obtain

$$
x_{1}^{k r} \sum_{j=1}^{n} B_{n, j}\left(z_{1}, z_{2}, \ldots\right)(k r-n r)^{j-1}=x_{1}^{n r} \frac{B_{n+k r, k r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{r k\binom{n+k r}{k r}}
$$

and because the numbers $B_{n, j}\left(z_{1}, z_{2}, \ldots\right), 1 \leq j \leq n$, are integers, then when we reduce modulo r in the last identity we get

$$
x_{1}^{n r} \frac{B_{n+k r, k r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{r k\binom{n+k r}{k r}} \equiv x_{1}^{k r} z_{n} \equiv \frac{x_{1}^{k r} B_{(r+1) n, n r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{n r\binom{(r+1) n}{n r}}(\bmod p) .
$$

Now, because

$$
\frac{B_{n+k r, k r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{r k\binom{n+k r}{k r}} \text { and } \frac{x_{1}^{k r} B_{(r+1) n, n r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{n r\binom{(r+1) n}{n r}}
$$

are integers and $x_{1}^{p} \equiv x_{1}(\bmod p)$ for any prime number p, then when we put $r=p$, the last congruence becomes

$$
x_{1}^{n} \frac{B_{n+k p, k p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k p\binom{n+k p}{k p}} \equiv x_{1}^{k} \frac{B_{(p+1) n, n p}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{n p\binom{(p+1) n}{n p}}(\bmod p) .
$$

To complete this proof, it suffices to multiply the two sides of the last congruence by p.
Proof of Corollary 9. From the first congruence of (4) when we replace s by $s-1, n$ by $n+p$ and k by p we get

$$
\frac{B_{n+s p, s p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{s\binom{n+s p}{s p}} \equiv x_{1}^{s-1} \frac{B_{n+p, p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\binom{n+p}{p}}\left(\bmod p^{2}\right), p>n+1, s \geq 1
$$

and by combining the last congruence and the second congruence of (4) we obtain

$$
\frac{B_{(p+1) n, n p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{n\binom{(p+1) n}{n p}} \equiv x_{1}^{n-1} \frac{B_{n+p, p}\left(x_{1}, x_{2}, x_{3}, \ldots\right)}{\binom{n+p}{p}}\left(\bmod p^{2}\right), p>n+1 .
$$

Similarly, we use the second and the third congruences of (5) to get the second part of the corollary.

Proof of Theorem 11. Identity (2) can be written as

$$
\begin{gather*}
x_{1}^{p r}(k-p) \frac{B_{p+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p+k}{k}}=x_{1}^{k} A_{p}\left((k-p) z_{1},(k-p) z_{2}, \ldots\right), \tag{19}\\
\text { with } z_{n}=\frac{B_{(r+1) n, n r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{n r\binom{(r+1) n}{n r}}, k \geq 1 .
\end{gather*}
$$

Bell [1] showed, for any indeterminates x_{1}, x_{2}, \ldots, that

$$
\begin{equation*}
A_{p}\left(x_{1}, x_{2}, x_{3}, \ldots\right) \equiv x_{1}^{p}+x_{p}(\bmod p) . \tag{20}
\end{equation*}
$$

Therefore, from (20) and (19), we obtain

$$
x_{1}^{p r}(k-p) \frac{B_{p+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p+k}{k}} \equiv x_{1}^{k}\left\{(k-p)^{p} z_{1}^{p}+(k-p) z_{p}\right\}(\bmod p),
$$

and Identity (16) shows that $\frac{B_{p+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p+k}{k}}$ and the terms of the sequence $\left\{z_{n} ; n \geq 1\right\}$ are integers. Now, because $z_{1}=x_{1}^{r-1} x_{2}$, then, when k is not a multiple of p, the last congruence and Fermat little Theorem prove that

$$
x_{1}^{r} \frac{B_{p+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p+k}{k}} \equiv x_{1}^{k-1}\left\{x_{1}^{r} x_{2}+x_{1} y_{p}\right\}(\bmod p) .
$$

For $k=1$ in the last congruence we have

$$
y_{p} \equiv x_{1}^{r-1} x_{p+1}-x_{1}^{r-1} x_{2}(\bmod p)
$$

The proof for $j=1$ results from the two last congruences.
Assume now that the congruences given by (7) are true for the index j.
Carlitz [1] showed, for any indeterminates x_{1}, x_{2}, \ldots, that

$$
A_{p^{j}} \equiv x_{1}^{p^{j}}+x_{p}^{p^{j-1}}+x_{p^{2}}^{p^{j-2}}+\cdots+x_{p^{j}}(\bmod p) .
$$

For x_{1}, x_{2}, \ldots integers we obtain

$$
A_{p^{j}} \equiv x_{1}+x_{p}+x_{p^{2}}+\cdots+x_{p^{j}}(\bmod p)
$$

Then, when we use Identity (19) and the fact that the sequence $\left\{z_{n} ; n \geq 1\right\}$ is a sequence of integers, we obtain when $p \nmid k x_{1}$

$$
\begin{aligned}
x_{1}^{r} \frac{B_{p^{j+1}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p^{j+1}+k}{k}} & \equiv x_{1}^{k}\left(z_{1}+z_{p}+z_{p^{2}}+\cdots+z_{p^{j+1}}\right) \\
& \equiv x_{1}^{k}\left(z_{1}+z_{p}+z_{p^{2}}+\cdots+z_{p^{j}}\right)+x_{1}^{k} z_{p^{j+1}} \\
& \equiv x_{1}^{r} \frac{B_{p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\left(p^{p^{j}+k}\right)}+x_{1}^{k} z_{p^{j+1}} \\
& \equiv x_{1}^{k-1} x_{p^{j}+1}+x_{1}^{k} z_{p^{j+1}}(\bmod p) .
\end{aligned}
$$

For $k=1$ in the last congruence we have

$$
x_{1}^{r} x_{p^{j+1}+1} \equiv x_{p^{j}+1}+x_{1} z_{p^{j+1}}(\bmod p) .
$$

From the two last congruences we deduce that

$$
\begin{aligned}
& \frac{B_{p^{j+1}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p^{j}+k}{k}} \equiv x_{1}^{k-1} x_{p^{j+1}+1}(\bmod p) \quad \text { if } p \nmid k x_{1}, \\
& \frac{B_{(r+1) p^{j+1}, p^{j+1} r}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{p^{j+1} r\binom{(r+1) p^{j+1}}{p^{j+1} r}} \equiv x_{1}^{r-1}\left(x_{p^{j+1}+1}-x_{p^{j+1}}\right)(\bmod p) \text { if } p \nmid x_{1},
\end{aligned}
$$

which completes the proof.

Proof of Theorem 13. Carlitz [1] showed, for any indeterminates x_{1}, x_{2}, \ldots, that

$$
A_{2 p^{j}} \equiv A_{p^{j}}^{2}+x_{2 p^{j}}(\bmod p) .
$$

Then, for x_{1}, x_{2}, \ldots integers we get

$$
A_{2 p^{j}} \equiv\left(x_{1}^{p^{j}}+x_{p}^{p^{j-1}}+\cdots+x_{p^{j}}\right)^{2}+x_{2 p^{j}} \equiv\left(x_{1}+x_{p}+\cdots+x_{p^{j}}\right)^{2}+x_{2 p^{j}}(\bmod p)
$$

and, when we use Identity (19), we obtain

$$
x_{1}^{2 p^{j} r}\left(k-2 p^{j} r\right) \frac{B_{2 p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{2 p^{j}+k}{k}}=x_{1}^{k} A_{2 p^{j}}\left(\left(k-2 p^{j} r\right) z_{1},\left(k-2 p^{j} r\right) z_{2}, \ldots\right),
$$

and because $\left\{z_{n} ; n \geq 1\right\}$ is a sequence of integers, the last identity gives

$$
\begin{gathered}
x_{1}^{2 p^{j} r}\left(k-2 p^{j} r\right) \frac{B_{2 p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\left(2^{2 j^{j}+k}\right)} \equiv \\
x_{1}^{k}\left(\left(k-2 p^{j} r\right)^{2}\left(z_{1}+z_{p}+z_{p^{2}}+\cdots+z_{p^{j}}\right)^{2^{2}}+\left(k-2 p^{j} r\right) z_{2 p^{j}}\right)(\bmod p) .
\end{gathered}
$$

From the proof of Theorem 11, the last congruence gives when $p \nmid k x_{1}$

$$
\begin{aligned}
& x_{1}^{k}\left(x_{1}^{2 r} \frac{B_{2 p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{2 p^{j}+k}{k}}\right) \equiv k x_{1}^{2 k}\left(z_{1}+z_{p}+z_{p^{2}}+\cdots+z_{p^{j}}\right)^{2}+x_{1}^{2 k} z_{2 p^{j}} \\
& \equiv k\left(x_{1}^{r} \frac{B_{p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{p^{j}+k}{k}}\right)^{2}+x_{1}^{2 k} z_{2 p^{j}} \\
& \equiv k\left(x_{1}^{r+k-1} x_{p^{j}+1}\right)^{2}+x_{1}^{2 k} z_{2 p^{j}}(\bmod p), \text { i.e., } \\
& x_{1}^{2 r} \frac{B_{2 p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{2 p^{j}+k}{k}} \equiv x_{1}^{k}\left(k x_{1}^{2 r-2} x_{p^{j}+1}^{2}+z_{2 p^{j}}\right)(\bmod p)
\end{aligned}
$$

For $k=1$ in the last congruence we get $x_{1}^{2 r-1} x_{2 p^{j}+1} \equiv x_{1}^{2 r-2} x_{p^{j}+1}^{2}+z_{2 p^{j}}$, i.e.,

$$
z_{2 p^{j}} \equiv x_{1}^{2 r-2}\left(x_{1} x_{2 p^{j}+1}-x_{p^{j}+1}^{2}\right) \quad(\bmod p)
$$

Then

$$
x_{1}^{2} \frac{B_{2 p^{j}+k, k}\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)}{k\binom{2 p^{j}+k}{k}} \equiv x_{1}^{k}\left((k-1) x_{p^{j}+1}^{2}+x_{1} x_{2 p^{j}+1}\right)(\bmod p) .
$$

4 Acknowledgements

The author thanks the anonymous referee for his/her careful reading and valuable comments and suggestions.

References

[1] E. T. Bell, Exponential polynomials. Ann. Math. 35 (1934), 258-277.
[2] H. Belbachir, S. Bouroubi, and A. Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution. Annales Mathematicae et Informaticae 35 (2008), 21-30.
[3] L. Carlitz, Some congruences for the Bell polynomials. Pacific J. Math. 11 (1961), 12151222.
[4] L. Comtet, Advanced Combinatorics. D. Reidel Publishing Company, Dordrecht-Holland, 1974.
[5] M. Mihoubi, Bell polynomials and binomial type sequences. Discrete Math. 308 (2008), 2450-2459.
[6] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials. To appear, Ars Combinatoria. Preprint available at http://arxiv.org/abs/0806.3468v1.
[7] J. Riordan, Combinatorial Identities. R. E. Krieger, 1979.
[8] S. Roman, The Umbral Calculus. Academic Press, 1984.

2000 Mathematics Subject Classification: Primary 05A10; Secondary 11B73, 11B75, 11P83. Keywords: Bell polynomials, congruences, Stirling numbers, binomial coefficients.

Received January 10 2009; revised version received April 29 2009. Published in Journal of Integer Sequences, May 122009.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Research research supported by LAID3 Laboratory of USTHB University.

