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Abstract

Let Bn,k and An =
∑n

j=1 Bn,j with A0 = 1 be, respectively, the (n, k)th partial and

the nth complete Bell polynomials with indeterminate arguments x1, x2, . . .. Congru-
ences for An and Bn,k with respect to a prime number have been studied by several
authors. In the present paper, we propose some results involving congruences for Bn,k

when the arguments are integers. We give a relation between Bell polynomials and we
apply it to several congruences. The obtained congruences are connected to binomial
coefficients.

1 Introduction

Let x1, x2, . . . denote indeterminates. Recall that the partial Bell polynomials Bn,k (x1, x2, . . .)
are given by

Bn,k (x1, x2, . . .) =
∑ n!

k1!k2! · · ·

(x1

1!

)k1
(x2

2!

)k2

. . .

(

xn−k+1

(n − k + 1)!

)kn−k+1

, (1)

where the summation takes place over all integers k1, k2, . . . ≥ 0 such that

k1 + 2k2 + · · · + (n − k + 1) kn−k+1 = n and k1 + k2 + · · · + kn−k+1 = k.
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For references, see Bell [1], Comtet [4] and Riordan [7].
Congruences for Bell polynomials have been studied by several authors. Bell [1] and

Carlitz [3] give some congruences for complete Bell polynomials. In this paper, we propose
some congruences for partial Bell polynomials when the arguments are integers. Indeed,
we give a relation between Bell polynomials, given by Theorem 1 below, and we use it in
the first part of the paper, and with connection of the results of Carlitz [3] in the second
part, to deduce some congruences for partial Bell polynomials. Some applications to Stirling
numbers of the first and second kind and to the binomial coefficients are given.

2 Main results

The next theorem gives an interesting relation between Bell polynomials. We use it to
establish some congruences for partial Bell polynomials.

Theorem 1. Let {xn} be a real sequence. Then for n, r, k integers with n, r, k ≥ 1, we have

xk
1

n
∑

j=1

Bn,j (y1, y2, . . .) (k − nr)j−1 = xnr
1

Bn+k,k (x1, x2, x3, . . .)

k
(

n+k

k

) (2)

with yn =
B(r+1)n,nr (x1, x2, x3, . . .)

nr
(

(r+1)n
nr

) .

For k = nr + s, Identity (2) becomes

Remark 2. Let {xn} be a real sequence. Then for n, r, s integers with n, r ≥ 1, we get

xs
1An (sy1, sy2, . . .) =

s

nr + s

B(r+1)n+s,nr+s (x1, x2, x3, . . .)
(

(r+1)n+s

nr+s

) , s ≥ −nr + 1. (3)

For s ≥ 0, we obtain Proposition 8 in [5], (see also [6]).

Theorem 3. Let k, s be a nonnegative integers and p be a prime number. Then for any

sequence {xj} of integers we have

(k + s + 1) Bsp,k+s+1 (x1, x2, . . .) ≡ 0 (mod p).

Application 4. If we denote by s (n, k) and S (n, k) for Stirling numbers of first and
second kind respectively, then from the well-known identities

Bn,k (0!,−1!, 2!, . . .) = s (n, k) and Bn,k (1, 1, 1, . . .) = S (n, k)

when xn = 1 or xn = (−1)n−1 (n − 1)! in Theorem 3 we obtain

(k + s + 1) S (sp, k + s + 1) ≡ (k + s + 1) s (sp, k + s + 1) ≡ 0 (mod p).
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Theorem 5. Let n, k, s be integers with n ≥ k ≥ 1, s ≥ 1 and p be a prime number. Then

for any sequence {xj} of integers with x1 not a multiple of p we have

Bn+sp,k+sp (x1, x2, x3, . . .)

(k + sp)
(

n+sp

k+sp

) ≡ xs
1

Bn,k (x1, x2, x3, . . .)

k
(

n

k

) (mod p) if p > n − k + 1

xn
1

Bn+sp,sp (x1, x2, x3, . . .)

s
(

n+sp

sp

) ≡ xs
1

B(p+1)n,np (x1, x2, x3, . . .)

n
(

(p+1)n
np

) (mod p2) if p > n + 1.

(4)

Application 6. If we consider the cases k = 1 and k = 2 in Theorem 5 we obtain

Bn+sp,1+sp (x1, x2, x3, . . .) ≡ xs
1xn (mod p) for p > n,

Bn+sp,2+sp (x1, x2, x3, . . .) ≡
xs

1

2

n−1
∑

j=1

(

n

j

)

xjxn−j (mod p) for p > n − 1.

Then, when xn = 1 or xn = (−1)n−1 (n − 1)! we obtain

S (n + sp, 1 + sp) ≡ 1 (mod p) for p > n,

s (n + sp, 1 + sp) ≡ (−1)n−1 (n − 1)! (mod p) for p > n,

S (n + sp, 2 + sp) ≡ 2n−1 − 1 (mod p) for p > n − 1 and

s (n + sp, 2 + sp) ≡ (−1)n−1 n(n+1)2

2
(mod p) for p > n − 1,

Theorem 7. Let n, k, s, p be integers with n ≥ k ≥ 1, s ≥ 1, p ≥ 1. Then for any sequence

{xj} of integers with x1 not a multiple of p we have

B(s+1)n,sn (x1, 2x2, 3x3, . . .)
(

(s+1)n
sn

) ≡ sx
n(s−1)
1

B2n,n (x1, 2x2, 3x3, . . .)
(

2n

n

) (mod n2),

Bn+sp,k+sp (x1, 2x2, 3x3, . . .)

(k + sp)
(

n+sp

k+sp

) ≡ xs
1

Bn,k (x1, 2x2, 3x3, . . .)

k
(

n

k

) (mod p),

xn
1

Bn+sp,sp (x1, 2x2, 3x3, . . .)

s
(

n+sp

sp

) ≡ xs
1

B(p+1)n,np (x1, 2x2, 3x3, . . .)

n
(

(p+1)n
np

) (mod n2).

(5)

Application 8. Belbachir et al. [2] have proved that

Bn,k (1!, 2!, . . . , (q + 1)!, 0, . . .) =
n!

k!

(

k

n − k

)

q

, (6)

then, for s ≥ 1 and p ∤ j, the two last congruences of (5) and Identity (6) prove that

(

k + sp

j

)

q

≡

(

k

j

)

q

(mod p) and j

(

sp

j

)

q

≡ s

(

jp

j

)

q

(mod p2).
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Corollary 9. Let n, k, s be integers with n ≥ k ≥ 1 and p be a prime number. Then for any

sequence {xj} of integers with x1 not a multiple of p we have

B(p+1)n,np (x1, x2, . . .)

n
(

(p+1)n
np

) ≡ xn−1
1

Bn+p,p (x1, x2, x3, . . .)
(

n+p

p

) (mod p2) if p > n + 1,

B(p+1)n,np (x1, 2x2, 3x3, . . .)

n
(

(p+1)n
np

) ≡ xn−1
1

Bn+p,p (x1, 2x2, 3x3, . . .)
(

n+p

p

) (mod p2).

Application 10. As in Application 8, we have
(

jp

j

)

q

≡ j

(

p

j

)

q

(mod p2).

Theorem 11. Let k ≥ 2, j ≥ 1 be integers and p be an odd prime number. Then for any

sequence of integers {xj} we have

Bpj+k,k (x1, 2x2, 3x3, . . .)

k
(

pj+k

k

)
≡ xk−1

1 xpj+1 (mod p) if p ∤ kx1,

B(r+1)pj ,pjr (x1, 2x2, 3x3, . . .)

pjr
(

(r+1)pj

pjr

)
≡ xr−1

1

(

xpj+1 − xpj−1+1

)

(mod p) if p ∤ x1.

(7)

Application 12. As in Application (8), let j = 1 in the second congruence of Theorem
11. Then

(p − 1)!

r

(

pr

p

)

q

≡ −1 (mod p).

Theorem 13. Let k ≥ 2, j ≥ 1 be integers and p be an odd prime number. Then for any

sequence of integers {xj} we have

B2pj+k,k (x1, 2x2, 3x3, . . .)

k
(

2pj+k

k

)
≡ xk−2

1

(

(k − 1) x2
pj+1 + x1x2pj+1

)

(mod p) if p ∤ kx1

B2(r+1)pj ,2pjr (x1, 2x2, 3x3, . . .)

2pjr
(

2(r+1)pj

2pjr

)
≡ x2r−2

1

(

x1x2pj+1 − x2
pj+1

)

(mod p) if p ∤ x1.

Remark 14. Similarly to the last proofs, one can exploit the results of Carlitz [3] with
connection to Theorem 1 to obtain more congruences for partial Bell polynomials.

3 Proof of the main results

Proof of Theorem 1. Let {xn} be a sequence of real numbers with x1 := 1 and let {fn (x)}
be a sequence of polynomials defined by

fn (x) =
n
∑

j=1

Bn,j

(x2

2
,
x3

3
,
x4

4
. . .
)

(x)j ,
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with f0 (x) = 1, (x)j := x (x − 1) · · · (x − j + 1) for j ≥ 1 and (x)0 := 1.

We have nfn−1 (1) = n

n−1
∑

j=1

Bn−1,j

(x2

2
,
x3

3
, . . .

)

(1)j = xn and Dx=0f1 (0) = 1 6= 0.

It is well known that {fn (x)} presents a sequence of binomial type, see [4]. Then, from
Proposition 1 in [5] we have

yn =
1

nr
(

(r+1)n
nr

)B(r+1)n,nr (1, x2, x3, . . .) =
fn (nr)

nr
= Dx=0fn (x; r) , (8)

where {fn (x; a)} is a sequence of binomial type defined by

fn (x; a) :=
x

an + x
fn (an + x) (9)

with a is a real number, see [5]. From Proposition 1 in [5] we have also

Bn+k,k (1, x2, x3, . . .)

k
(

n+k

k

) =
fn (k)

k
=

fn (k − nr; r)

k − nr
, (10)

but from [8] we can write fn (k − nr; r) as

fn (k − nr; r) =
n
∑

j=1

Bn,j (Dx=0f1 (x; r) , Dx=0f2 (x; r) , . . .) (k − nr)j
. (11)

Then, by substitution (11) in (10) and by using (8) we obtain

Bn+k,k (1, x2, x3, . . .)

k
(

n+k

k

) =
n
∑

j=1

Bn,j (y1, y2, . . .) (k − nr)j−1
. (12)

We can verify that Identity (2) is true for x1 = 0, and, for x1 6= 0 it can be derived from

(12) by replacing xn by
xn

x1

and by using the well known identities

Bn,k (xa1, xa2, xa3, . . .) = xkBn,k (a1, a2, a3, . . .) and

Bn,k (xa1, x
2a2, x

3a3, . . .) = xnBn,k (a1, a2, a3, . . .) ,
(13)

where {an} is any real sequence.

Proof of Theorem 3. We prove that kBsp,k ≡ 0 (mod p), k ≥ s + 1. From the identities

(

sp

j

)

≡ 0 (mod p), for p ∤ j and

(

sp

pj

)

≡

(

s

j

)

(mod p), (14)

and from the recurrence relation given by

kBn,k =
∑

j

(

n

j

)

xjBn−j,k−1
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with Bn,k := Bn,k (x1, x2, . . .) and xj = 0 for j ≤ 0, we obtain

(k + 1) Bsp,k+1 =
∑

j

(

sp

j

)

xjBsp−j,k ≡
s
∑

j=1

(

s

j

)

xjpB(s−j)p,k (mod p).

Then, for s = 0, we get kB0,k ≡ 0 (mod p), k ≥ 0.

For s = 1, we get (k + 1) Bp,k+1 ≡ xpB0,k ≡ 0 (mod p), k ≥ 1.

For s = 2, the last congruences imply that

(k + 1) B2p,k+1 ≡ 2xpBp,k + x2pB0,k = 0 (mod p), k ≥ 2 and p ∤ k.

The induction on s proves that kBsp,k ≡ 0 (mod p) when k ≥ s + 1.

Proof of Theorem 5. From [4] we have

Bn,k (x1, x2, . . .) =
n!

(n − k)!

k
∑

j=0

Bn−k,k−j

(x2

2
,
x3

3
,
x4

4
, . . .

) x
j
1

j!
, n ≥ k ≥ 1. (15)

Then, for i ∈ {1, . . . , n} , the last identity and Identities (13) imply

ti = ((n + 1)!)i
yi =

((n + 1)!)i

ir
(

(r+1)i
ir

) B(r+1)i,ir (x1, x2, . . . , xi−j+1) =

i
∑

j=1

(ir − 1)!

(ir − j)!
x

ir−j
1 Bi,j

(

(n + 1)!

2
x2,

((n + 1)!)2

3
x3, . . . ,

((n + 1)!)i−j

i − j + 1
xi−j+1

)

,

from which we deduce that t1, . . . , tn are integers, and then Bn,1 (t1, t2, . . .) , . . . , Bn,n (t1, t2, . . .)
are also integers. Therefore, by using the second identity of (13), Identity (2) becomes

xk
1

n
∑

j=1

Bn,j (t1, t2, . . .) (k − nr)j−1 = xnr
1

((n + 1)!)n
Bn+k,k (x1, x2, x3, . . .)

k
(

n+k

k

) .

Hence, when we replace k by α + sp in the last identity we obtain

x
α+sp
1

n
∑

j=1

Bn,j (t1, t2, . . .) (α + sp − nr)j−1 = xnr
1

((n + 1)!)n
Bn+α+sp,α+sp (x1, x2, x3, . . .)

(α + sp)
(

n+α+sp

α+sp

) ,

and when we reduce modulo p in the last identity we obtain

xnr
1

((n + 1)!)n
Bn+α+sp,α+sp (x1, x2, x3, . . .)

(α + sp)
(

n+α+sp

α+sp

) ≡ xα+s
1

n
∑

j=1

Bn,j (t1, t2, . . .) (α − nr)j−1 (mod p).

But from (2) we have
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xα
1

n
∑

j=1

Bn,j (t1, t2, . . .) (α − nr)j−1 = ((n + 1)!)n
xα

1

n
∑

j=1

Bn,j (y1, y2, . . .) (α − nr)j−1

= ((n + 1)!)n
xnr

1

Bn+α,α (x1, x2, x3, . . .)

α
(

n+α

α

) ,

from which the last congruence becomes

((n + 1)!)n
Bn+α+sp,α+sp (x1, x2, x3, . . .)

(α + sp)
(

n+α+sp

α+sp

) ≡ xs
1 ((n + 1)!)n Bn+α,α (x1, x2, x3, . . .)

α
(

n+α

α

) (mod p).

Now, when we replace n by n − α, the last congruence becomes

((n − α + 1)!)n
Bn+sp,α+sp (x1, x2, x3, . . .)

(α + sp)
(

n+sp

α+sp

) ≡ xs
1 ((n − α + 1)!)n Bn,α (x1, x2, x3, . . .)

α
(

n

α

) (mod p).

Then, if p > n − α + 1 we obtain

Bn+sp,α+sp (x1, x2, . . .)

(α + sp)
(

n+sp

α+sp

) ≡ xs
1

Bn,α (x1, x2, x3, . . .)

α
(

n

α

) (mod p).

For the second part of theorem, when we replace k by sr in (2) we get

xsr
1

n
∑

j=1

Bn,j (t1, t2, . . .) rj−1 (s − n)j−1 = xnr
1

((n + 1)!)n
Bn+sr,sr (x1, x2, x3, . . .)

sr
(

n+sr

sr

) ,

and, because Bn,j (t1, t2, . . .) (1 ≤ j ≤ n) are integers, the last identity proves that

xnr
1

((n + 1)!)nr
Bn+sr,sr (x1, x2, x3, . . .)

sr
(

n+sr

sr

) ≡ xsr
1 zn

≡ xsr
1

((n + 1)!)nr
B(r+1)n,nr (x1, x2, x3, . . .)

nr
(

(r+1)n
nr

) (mod r).

Let r = p > n + 1 be a prime number. Now, because the expressions

((n + 1)!)np
Bn+sp,sp (x1, x2, x3, . . .)

sp
(

n+sp

sp

) and
((n + 1)!)np

B(p+1)n,np (x1, x2, x3, . . .)

np
(

(p+1)n
np

)

are integers, we obtain

xn
1

Bn+sp,sp (x1, x2, x3, . . .)

s
(

n+sp

sp

) ≡ xs
1

B(p+1)n,np (x1, x2, x3, . . .)

n
(

(p+1)n
np

) (mod p2).

Proof of Theorem 7. From Identity (15) we get

Bn+k,k (x1, 2x2, 3x3, . . .)

k
(

n+k

k

) =
k
∑

j=1

(k − 1)!

(k − j)!
Bn,j (x2, x3, x4, . . .) x

k−j
1 , n, k ≥ 1 (16)
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and this implies that the numbers

zn =
B(r+1)n,nr (x1, 2x2, 3x3, . . .)

nr
(

(r+1)n
nr

) , n ≥ 1 (17)

are integers, and then, the numbers Bn,j (z1, z2, . . .) (1 ≤ j ≤ n) are also integers. From
Identity (3), when we replace r by 1 and s by n (s − 1) we obtain

B(s+1)n,sn (x1, 2x2, 3x3, . . .) = x
n(s−1)
1 ns

(

(s + 1) n

sn

) n
∑

j=1

Bn,j (z1, z2, . . .) ((s − 1) n)j−1
, (18)

with zn := 1

n(2n

n )
B2n,n (x1, 2x2, . . .) .

Furthermore, from (18), we have

B(s+1)n,sn (x1, 2x2, 3x3, . . .)
(

(s+1)n
sn

) = nx
n(s−1)
1 s

n
∑

j=1

Bn,j (z1, z2, . . .) ((s − 1) n)j−1

≡ n
{

x
n(s−1)
1 szn

}

≡ n

{

x
n(s−1)
1 s 1

n(2n

n )
B2n,n (x1, 2x2, . . .)

}

≡ x
n(s−1)
1 s 1

(2n

n )
B2n,n (x1, 2x2, . . .) (mod n2), i.e.,

B(s+1)n,sn (x1, 2x2, 3x3, . . .)
(

(s+1)n
sn

) ≡ sx
n(s−1)
1

B2n,n (x1, 2x2, 3x3, . . .)
(

2n

n

) (mod n2).

For the second part of (5), when we replace k by α + sp in (2), we obtain

x
α+sp
1

n
∑

j=1

Bn,j (z1, z2, . . .) (α + sp − nr)j−1 = xnr
1

Bn+α+sp,α+sp (x1, 2x2, 3x3, . . .)

(α + sp)
(

n+α+sp

α+sp

)

with zn is given by (17). Because the numbers Bn,j (z1, z2, . . .) , 1 ≤ j ≤ n, are integers, then
when we reduce modulo p in the last identity we get

xnr
1

Bn+α+sp,α+sp (x1, 2x2, 3x3, . . .)

(α + sp)
(

n+α+sp

α+sp

) ≡ xα+s
1

n
∑

j=1

Bn,j (z1, z2, . . .) (α − nr)j−1 (mod p)

and by (2) the last congruence becomes

Bn+α+sp,α+sp (x1, 2x2, 3x3, . . .)

(α + sp)
(

n+α+sp

α+sp

) ≡ xs
1

Bn+α,α (x1, 2x2, 3x3, . . .)

α
(

n+α

α

) (mod p).

To terminate, it suffices to replace n by n − α in the last congruence.

For the third part of (5), when we replace k by kr in (2), we obtain

xkr
1

n
∑

j=1

Bn,j (z1, z2, . . .) (kr − nr)j−1 = xnr
1

Bn+kr,kr (x1, 2x2, 3x3, . . .)

rk
(

n+kr

kr

)

8



and because the numbers Bn,j (z1, z2, . . .) , 1 ≤ j ≤ n, are integers, then when we reduce
modulo r in the last identity we get

xnr
1

Bn+kr,kr (x1, 2x2, 3x3, . . .)

rk
(

n+kr

kr

) ≡ xkr
1 zn ≡

xkr
1 B(r+1)n,nr (x1, 2x2, 3x3, . . .)

nr
(

(r+1)n
nr

) (mod p).

Now, because

Bn+kr,kr (x1, 2x2, 3x3, . . .)

rk
(

n+kr

kr

) and
xkr

1 B(r+1)n,nr (x1, 2x2, 3x3, . . .)

nr
(

(r+1)n
nr

)

are integers and x
p
1 ≡ x1 (mod p) for any prime number p, then when we put r = p, the last

congruence becomes

xn
1

Bn+kp,kp (x1, 2x2, 3x3, . . .)

kp
(

n+kp

kp

) ≡ xk
1

B(p+1)n,np (x1, 2x2, 3x3, . . .)

np
(

(p+1)n
np

) (mod p).

To complete this proof, it suffices to multiply the two sides of the last congruence by p.

Proof of Corollary 9. From the first congruence of (4) when we replace s by s−1, n by n+p

and k by p we get

Bn+sp,sp (x1, x2, x3, . . .)

s
(

n+sp

sp

) ≡ xs−1
1

Bn+p,p (x1, x2, x3, . . .)
(

n+p

p

) (mod p2), p > n + 1, s ≥ 1,

and by combining the last congruence and the second congruence of (4) we obtain

B(p+1)n,np (x1, x2, x3, . . .)

n
(

(p+1)n
np

) ≡ xn−1
1

Bn+p,p (x1, x2, x3, . . .)
(

n+p

p

) (mod p2), p > n + 1.

Similarly, we use the second and the third congruences of (5) to get the second part of the
corollary.

Proof of Theorem 11. Identity (2) can be written as

x
pr
1 (k − p)

Bp+k,k (x1, 2x2, 3x3, . . .)

k
(

p+k

k

) = xk
1Ap ((k − p) z1, (k − p) z2, . . .) ,

with zn =
B(r+1)n,nr (x1, 2x2, 3x3, . . .)

nr
(

(r+1)n
nr

) , k ≥ 1.
(19)

Bell [1] showed, for any indeterminates x1, x2, . . . , that

Ap (x1, x2, x3, . . .) ≡ x
p
1 + xp (mod p). (20)

Therefore, from (20) and (19), we obtain

x
pr
1 (k − p)

Bp+k,k (x1, 2x2, 3x3, . . .)

k
(

p+k

k

) ≡ xk
1 {(k − p)p

z
p
1 + (k − p) zp} (mod p),

9



and Identity (16) shows that
Bp+k,k (x1, 2x2, 3x3, . . .)

k
(

p+k

k

) and the terms of the sequence {zn; n ≥ 1}

are integers. Now, because z1 = xr−1
1 x2, then, when k is not a multiple of p, the last congru-

ence and Fermat little Theorem prove that

xr
1

Bp+k,k (x1, 2x2, 3x3, . . .)

k
(

p+k

k

) ≡ xk−1
1 {xr

1x2 + x1yp} (mod p).

For k = 1 in the last congruence we have

yp ≡ xr−1
1 xp+1 − xr−1

1 x2 (mod p).

The proof for j = 1 results from the two last congruences.
Assume now that the congruences given by (7) are true for the index j.
Carlitz [1] showed, for any indeterminates x1, x2, . . . , that

Apj ≡ x
pj

1 + xpj−1

p + x
pj−2

p2 + · · · + xpj (mod p).

For x1, x2, . . . integers we obtain

Apj ≡ x1 + xp + xp2 + · · · + xpj (mod p).

Then, when we use Identity (19) and the fact that the sequence {zn; n ≥ 1} is a sequence of
integers, we obtain when p ∤ kx1

xr
1

Bpj+1+k,k (x1, 2x2, 3x3, . . .)

k
(

pj+1+k

k

)
≡ xk

1

(

z1 + zp + zp2 + · · · + zpj+1

)

≡ xk
1

(

z1 + zp + zp2 + · · · + zpj

)

+ xk
1zpj+1

≡ xr
1

Bpj+k,k (x1, 2x2, 3x3, . . .)

k
(

pj+k

k

)
+ xk

1zpj+1

≡ xk−1
1 xpj+1 + xk

1zpj+1 (mod p).

For k = 1 in the last congruence we have

xr
1xpj+1+1 ≡ xpj+1 + x1zpj+1 (mod p).

From the two last congruences we deduce that

Bpj+1+k,k (x1, 2x2, 3x3, . . .)

k
(

pj+k

k

)
≡ xk−1

1 xpj+1+1 (mod p) if p ∤ kx1,

B(r+1)pj+1,pj+1r (x1, 2x2, 3x3, . . .)

pj+1r
(

(r+1)pj+1

pj+1r

)
≡ xr−1

1

(

xpj+1+1 − xpj+1

)

(mod p) if p ∤ x1,

which completes the proof.
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Proof of Theorem 13. Carlitz [1] showed, for any indeterminates x1, x2, . . . , that

A2pj ≡ A2
pj + x2pj (mod p).

Then, for x1, x2, . . . integers we get

A2pj ≡
(

x
pj

1 + xpj−1

p + · · · + xpj

)2

+ x2pj ≡
(

x1 + xp + · · · + xpj

)2
+ x2pj (mod p),

and, when we use Identity (19), we obtain

x
2pjr
1

(

k − 2pjr
) B2pj+k,k (x1, 2x2, 3x3, . . .)

k
(

2pj+k

k

)
= xk

1A2pj

((

k − 2pjr
)

z1,
(

k − 2pjr
)

z2, . . .
)

,

and because {zn; n ≥ 1} is a sequence of integers, the last identity gives

x
2pjr
1 (k − 2pjr)

B2pj+k,k (x1, 2x2, 3x3, . . .)

k
(

2pj+k

k

)
≡

xk
1

(

(k − 2pjr)
2 (

z1 + zp + zp2 + · · · + zpj

)2
+ (k − 2pjr) z2pj

)

(mod p).

From the proof of Theorem 11, the last congruence gives when p ∤ kx1

xk
1

(

x2r
1

B2pj+k,k (x1, 2x2, 3x3, . . .)

k
(

2pj+k

k

)

)

≡ kx2k
1

(

z1 + zp + zp2 + · · · + zpj

)2
+ x2k

1 z2pj

≡ k

(

xr
1

Bpj+k,k (x1, 2x2, 3x3, . . .)

k
(

pj+k

k

)

)2

+ x2k
1 z2pj

≡ k
(

xr+k−1
1 xpj+1

)2
+ x2k

1 z2pj (mod p), i.e.,

x2r
1

B2pj+k,k (x1, 2x2, 3x3, . . .)

k
(

2pj+k

k

)
≡ xk

1

(

kx2r−2
1 x2

pj+1 + z2pj

)

(mod p).

For k = 1 in the last congruence we get x2r−1
1 x2pj+1 ≡ x2r−2

1 x2
pj+1 + z2pj , i.e.,

z2pj ≡ x2r−2
1

(

x1x2pj+1 − x2
pj+1

)

(mod p).

Then

x2
1

B2pj+k,k (x1, 2x2, 3x3, . . .)

k
(

2pj+k

k

)
≡ xk

1

(

(k − 1) x2
pj+1 + x1x2pj+1

)

(mod p).
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