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Abstract

This paper is concerned with a family of k-ary meta-Fibonacci sequences described
by the recurrence relation

a(n) =
k∑

i=1

a(n−i − (s−1) − a(n−i)),

where s may be any integer, positive or negative. If s ≥ 0, then the initial conditions are
a(n) = 1 for 1 ≤ n ≤ s+1 and a(n) = n−s for s+1 < n ≤ s+k. If s ≤ 0, then the initial
conditions are a(n) = n for 1 ≤ n ≤ k(−s + 1). We show that these sequences arise
as the solutions of two natural counting problems: The number of leaves at the largest
level in certain infinite k-ary trees, and (for s ≥ 0) certain restricted compositions of
an integer. For this family of generalized meta-Fibonacci sequences and two families
of related sequences we derive combinatorial bijections, ordinary generating functions,
recurrence relations, and asymptotics (a(n) ∼ n(k − 1)/k). We also show that these
sequences are related to a “self-describing” sequence of Cloitre and Sloane.

1 Introduction

A meta-Fibonacci recurrence relation is one of the form

a(n) = a( x(n) − a(n− 1) ) + a( y(n) − a(n− 2) ),

where x(n) and y(n) are linear functions of n, typically of the form n − s. They are a
particular type of nested recurrence relation, which are recurrence relations in which the

1

mailto:ruskey@cs.uvic.ca
mailto:chrisde@gmail.com


right-hand side has a substring of the form a(a()). These recurrence relations have been
investigated by several authors in recent years, but their general behavior remains rather
mysterious (e.g., Guy [12](Problem E31), Pinn [18]). The most famous of these sequences
is most likely that of Hofstadter [14], in which x(n) = y(n) = n. The Hofstadter sequence
exhibits a markedly chaotic behavior for some choices of the initial values, and virtually
nothing has been proven about it when Hofstadter’s original initial conditions are used,
including the question of whether is defined for all values of n. Perhaps the most well-
behaved sequences in the family occur when x(n) = n and y(n) = n − 1 with the initial
conditions a(1) = a(2) = 1. For a given parameter s ≥ 0, Jackson and Ruskey [15] showed
that the sequences with x(n) = y(n) + 1 = n − s for s ≥ 0 are almost as well-behaved, so
long as they have the appropriate initial conditions. The case of s = 1 was studied before
by Tanny [21]. The case of s = 0 was considered before by Conolly [9].

Prior to the paper [15], no combinatorial interpretation was known for these sequences
(i.e., they were not known to be the solution to some natural counting problem), nor were
their generating functions known. The combinatorial interpretation given in [15] was based
on binary trees. This paper, among several other things, extends the results of [15] to k-ary
trees and to negative values of s.

We will refer to the sequences (a(1), a(2), . . .) that are solutions to the recurrence relation

a(n) =
k∑

i=1

a( n−i− (s−1) − a(n−i) ) (1)

as k-ary meta-Fibonacci sequences. This is a natural name for them because, as we shall
see, they are related to k-ary trees and to k-ary numbers. The integer s is called the shift
parameter ; the reason that we use s−1 instead of s will become clear in the following section.
These sequences were studied recently by Callaghan, Chew, and Tanny [5], building on the
earlier work of Higham and Tanny [13]. It is known that k-ary meta-Fibonacci sequences
are quite sensitive to their initial conditions. For example, consider Figures 1 and 2. These
both show sequences generated by (1) for s = 0, but with different initial conditions. In
Figure 1, a(1) = a(2) = a(3) = 1; in Figure 2, a(1) = 1, a(2) = 2, and a(3) = 1. Other
initial conditions can give yet other behaviors. Our sequence, with s = 0 and k = 3, is the
same as the sequence T0,3(n + 2) of [5] for n ≥ 1 (e.g., Figure 1.5, p. 797). The paper [5]
was mainly concerned with the recurrence relation (1) when the initial conditions are all 1’s.
Because of the very different behavior of the two sequences, we are unable to use any of the
results of [5], nor do the results overlap in any significant way.

The initial conditions used in this paper for a(n) when s ≥ 0 are

a(n) = 1 for 1 ≤ n ≤ s+ 1 and a(n) = n− s for s+ 1 < n ≤ s+ k. (2)

When s ≤ 0, the initial conditions are

a(n) = n for 1 ≤ n ≤ k(−s+ 1). (3)

We will show that, with the initial conditions (2) and (3), these sequences also occur in
natural combinatorial settings, that they have a fairly elegant ordinary generating function,
and determine their asymptotics. In particular, for any fixed s and k ≥ 2, we give three
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Figure 1: For 1 ≤ n ≤ 3400, the graph of a(n) − 2n/3, where a(n) =
a(n−a(n−1))+a(n−1−a(n−2))+a(n−2−a(n−3)), with a(1) = a(2) = a(3) = 1. The lighter
curve shows a(n) at even values of n, the darker curve shows a(n) at odd values of n.
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Figure 2: For 1 ≤ n ≤ 3400, the graph of a(n) − 2n/3, where a(n) =
a(n−a(n−1))+a(n−1−a(n−2))+a(n−2−a(n−3)), with a(1) = 1, a(2) = 2, and a(3) = 3.

new ways of interpreting the sequences; our interpretations are based on certain subtrees of
unusually labeled infinite k-ary trees, on certain restricted compositions of an integer, and on
certain self-referential sequences. From the first combinatorial interpretation, we can easily
see that a(n) is monotone, that its consecutive terms increase by 0 or 1, and that therefore,
the sequence hits every positive integer.

In general, it is difficult to obtain asymptotics of meta-Fibonacci sequences. The asymp-
totic suggested by Figure 1, was proven in [5] (Corollary 4.16 and Corollary 5.14), namely
T (n) ∼ (k − 1)n/k. In Theorem 28 we show that the sequences with our initial conditions
also are asymptotic to (k − 1)n/k.

Since our meta-Fibonacci sequences have the property that successive values are the
same or increase by one, it is natural to investigate the sequence of positions where the
values increase. We will show that those positions are intimately tied with such classic
topics as the ruler function and certain morphisms.

Informally, we say that an integer sequence is self-referential if it is defined by a recurrence
relation with cases that depend on the inclusion or not of previous values in the sequence.
Examples may be found in Cloitre, Sloane, Vandermast [7] and Hofstadter [14]. Recently,
Cloitre and Sloane [8] observed experimentally that the self-referential sequence (OEIS1

1The OEIS is Neil Sloane’s online encyclopedia of integer sequences [19].
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A045412) defined by

b(n) =







3, if n = 1;

1 + b(n− 1), if n ∈ {b(1), . . . , b(n− 1)};

3 + b(n− 1), if n 6∈ {b(1), . . . , b(n− 1)};

(4)

is related to a meta-Fibonacci recurrence relation, and asked for a proof. In Section 7, we
will provide a proof, based on our tree interpretation of meta-Fibonacci sequences, for a
generalized version of (4) where 3 is replaced by k + 1.

1.1 Organization

This paper is organized as follows. The first section is the introduction. Section 2 presents
the basic correspondence between k-ary meta-Fibonacci sequences and the number of leaves
at the lowest level in a certain infinite family of k-ary trees. In Section 3 we develop recursive
descriptions of the differences, either 0 or 1, of successive numbers in k-ary meta-Fibonacci
sequences. These recursive descriptions are used to derive generating functions for k-ary
meta-Fibonacci sequences. In Section 4 we introduce another k-ary tree correspondence,
this one based on postorder traversals. In Section 5 we analyze the positions of the 1’s in
the sequences from Section 3, and generating functions are derived for these sequences. In
Section 6 these generating functions are used to prove a correspondence with certain integer
compositions (and partitions). A direct combinatorial proof is also provided. In Section
7 we prove the Cloitre-Sloane observation. In Section 8 we prove that the sequences also
satisfy some non-nested recurrence relations. Finally, in Section 9 we conclude with some
open problems.

A preliminary version of some portions of this paper appeared in Deugau and Ruskey
[10].

2 Meta-Fibonacci Sequences and Complete k-ary Trees

Figure 3 shows part of an infinite ordered ternary tree F0,3. For all k ≥ 2, a k-ary version of
this tree, F0,k, is defined in the natural way, with every non-leaf having k children. Hereafter,
we call a node that is not a leaf, an internal node. In this tree all leaves are at the same
level, level 0. The level of any internal node is defined to be one greater than the level of its
children.

The forest of labeled trees in F0,k consists of a succession of complete k-ary trees of sizes

1, 1, 1, . . . , 1
︸ ︷︷ ︸

k−1

, 1+k, . . . , 1+k
︸ ︷︷ ︸

k−1

, . . . , 1+k+ · · ·+kh, . . . , 1+k+ · · ·+kh

︸ ︷︷ ︸

k−1

, . . . (5)

The nodes of these subtrees are labeled in preorder. In F0,k there is a one-way infinite
path of unlabeled nodes (drawn with rectangles in Figure 3), which we refer to as the delay
path. The nodes along the delay path are called super-nodes and we think of them as being
indexed starting at zero. The rightmost (k − 1) subtrees of supernode h are referred to as
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Figure 3: The tree F0,3.
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Figure 4: The tree F1,3.
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Figure 5: The tree F2,3.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

a−1,2(n) 1 2 3 4 4 5 6 6 7 8 8 8 9 10 10 11 12 12 12
a0,2(n) 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11
a1,2(n) 1 1 2 2 2 3 4 4 4 4 5 6 6 7 8 8 8 8 8
a2,2(n) 1 1 1 2 2 2 2 3 4 4 4 4 4 5 6 6 7 8 8

d−1,2(n) 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
d0,2(n) 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1
d1,2(n) 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0
d2,2(n) 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0

p−1,2(n) 1 2 3 4 6 7 9 10 13 14 16 17 20 21 23 24 28 29 31
p0,2(n) 1 2 4 5 8 9 11 12 16 17 19 20 23 24 26 27 32 33 35
p1,2(n) 1 3 6 7 11 12 14 15 20 21 23 24 27 28 30 31 37 38 40
p2,2(n) 1 4 8 9 14 15 17 18 24 25 27 28 31 32 34 35 42 43 45

a−1,3(n) 1 2 3 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15
a0,3(n) 1 2 3 3 4 5 6 6 7 8 9 9 9 10 11 12 12 13 14
a1,3(n) 1 1 2 3 3 3 4 5 6 6 7 8 9 9 9 9 10 11 12
a2,3(n) 1 1 1 2 3 3 3 3 4 5 6 6 7 8 9 9 9 9 9

d−1,3(n) 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
d0,3(n) 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1
d1,3(n) 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1
d2,3(n) 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0

p−1,3(n) 1 2 3 4 5 6 8 9 10 12 13 14 16 17 18 20 21 22 25
p0,3(n) 1 2 3 5 6 7 9 10 11 14 15 16 18 19 20 22 23 24 27
p1,3(n) 1 3 4 7 8 9 11 12 13 17 18 19 21 22 23 25 26 27 30
p2,3(n) 1 4 5 9 10 11 13 14 15 20 21 22 24 25 26 28 29 30 33

Table 1: The values of as,k(n), ds,k(n), and ps,k(n) for k = 2, 3, s = −1, 0, 1, 2, and 1 ≤ n ≤
19.

subforest h, where the natural number h is the common height of the trees in the subforest.
For instance, the first super-node is the parent of subforest 1, the second super-node is the
parent of subforest 2, and so on. We will now generalize to Fs,k first for s > 0 and then for
s < 0.

For s ≥ 0, the unlabeled structure of the tree is the same as for F0,k; it is mainly the
labeling of the supernodes that changes. The trees F1,3 and F2,3 are shown in Figures 4 and
5. Except along the delay path, each subtree is again labeled in preorder. The delay path
is parameterized by a value s that gives the delay between the preorder counts of successive
trees, where the delay is applied after the leftmost subtree of a given size, and only along the
delay path. Alternatively, we can think of each super-node as containing s ordinary nodes;
this is illustrated in the figures. Note that, conceptually, the nodes of the delay path occur
in between the underbraces in (5), with the leftmost super-node occurring to the left of the
first brace.

We now generalize the trees for s ≤ 0 and k ≥ 2. The idea here is that only certain nodes
get labels, and, as before, those that get labels are labeled in preorder. Every leaf is labeled.
For all levels ℓ > 0, the leftmost −s + 1 nodes at level ℓ are unlabeled, and all other nodes
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are labeled. We sometimes say that an unlabeled node is empty. The trees F−1,2, F−2,2, and
F−1,3, are shown in Figures 6, 7, and 8, respectively.

Denote by Ts,k(n) the tree induced from Fs,k by the nodes with labels 1, 2, . . . , n. The
actual number of nodes in Ts,k(n) could be more or less than n depending on the values of
s and n. When we use the term “n-th node” or “node n”, we mean the node whose label
includes n. Define as,k(n) to be the number of nodes at the bottom level (i.e., level 0) in
Ts,k(n). Also define ds,k(n) to be 1 if the n-th node is a leaf and to be 0 if the n-th node is
an internal node. Finally, define ps,k(n) to be the positions occupied by the 1’s in the ds,k(n)
sequence. Since Ts,k(0) is an empty tree, it has no nodes at the bottom level. Therefore,
it makes sense to define as,k(0) = ds,k(0) = ps,k(0) = 0. Table 1 gives the values of as,k(n),
ds,k(n), and ps,k(n) for k = 2, 3, s = −1, 0, 1, 2 and 1 ≤ n ≤ 19. The values of all of these
table entries for s ≥ 0, as well as values for k = 4, are in the OEIS (as sequences A006949,
A046699, A079559, A101925, and A120501–A120532). For fixed s these numbers are related
as follows,

as,k(n) =
n∑

j=0

ds,k(j) and ps,k(n) = min{j : as,k(j) = n}. (6)

In the sequel we will often drop the s, k subscripts or only the k subscript, since our discussion
will be for fixed values of these parameters, and it will make the notation less cumbersome;
for example, we do so in the next lemma.

Lemma 1. Let 1 ≤ i ≤ k. The quantity

a(n−i− (s−1) − a(n−i))

is the number of leaves in Ts,k(n) that are the i-th child of their parent, if

• s ≥ 0 and n > s+ k, or

• s ≤ 0 and n > k(−s+ 1).

Proof. Let f(i) denote the number of leaves that are the i-th child of their parent in Ts,k(n),
and define a(n) = a(n− (s−1) − a(n)). We will show that f(i) = a(n− i) for 1 ≤ i ≤ k.

First, observe that if all the leaves at the last level are removed from the infinite tree
Fs,k, then the same unlabeled infinite tree structure remains. We now define a process,
called chopping, that takes Ts,k(n) and returns the tree chop(Ts,k(n)) obtained by removing
all the a(n) leaves at the last level, and then relabeling so that chop(Ts,k(n)) = Ts,k(n

′) for
some n′. If s > 0 and n > s + k, the leftmost super-node is made into an ordinary node
by subtracting by s − 1 from the number of labels in the tree; if s ≤ 0 and n > k(−s + 1),
the bottom −(s− 1) empty nodes are made into labeled leaves, again by subtracting s− 1
from the number of nodes in the tree. Recall that Ts,k(n) contains n labels, although the
number of nodes that it contains will be different unless s = 1. By our discussion above, in
chop(Ts,k(n)) = Ts,k(n

′)

• the number of labels is n′ = n− (s− 1) − a(n), and

• the number of nodes is n− a(n).
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It therefore follows that at the penultimate level in Ts,k(n)

• the number of labels is a(n) + (s− 1), and

• the number of nodes is a(n) = a(n− (s−1) − a(n)).

The latter statement is used below.
We now break the proof into two cases, depending on whether the n-th node is a leaf or

not. If the n-th node is not a leaf, then

f(1) = f(2) = · · · = f(k) = a(n− 1),

because every leaf has all k siblings and the number of parents of those leaves is a(n − 1),
the number of penultimate nodes in Ts,k(n− 1). We must use a(n−1) and not a(n) because
n could be a penultimate node, but then it has no children in Ts,k(n); however, every other
penultimate node has k leaves. On the other hand,

a(n− 1) = a(n− 2) = · · · = a(n− k)

because none of the nodes n− 1, n− 2, . . . , n− k can be penultimate nodes (note that every
penultimate node is followed by k leaves). Thus f(i) = a(n− i) for 1 ≤ i ≤ k in this case.

In the other case, node n is a leaf. Assume that n is the r-th child of its parent. Then

f(1) = · · · = f(r) and f(r+1) = · · · = f(k),

where f(r) = 1+f(r+1). Since n is the last leaf, its parent is the last penultimate node; thus
f(r) = a(n) = a(n− 1). Note that a(n− 1) = · · · = a(n− r) because nodes n, . . . , n− r+ 1
are all leaves, and so their removal does not change the number of penultimate nodes. Also,
a(n − r − 1) = · · · = a(n − k), because node n − r is at the penultimate level and nodes
n − r − 1, . . . , n − k + 1 are not. Since, a(n − r) = 1 + a(n − r − 1), we have shown that
f(i) = a(n− i) for 1 ≤ i ≤ k, which finishes the proof.

Theorem 2. If (s ≥ 0 and n > s+k) or (s ≤ 0 and n > k(−s+ 1)), then

a(n) =
k∑

i=1

a(n− i− (s−1) − a(n−i)). (7)

If s ≥ 0, then the base cases are a(n) = 1 for 1 ≤ n ≤ s + 1, and a(n) = n − s for
s+ 1 < n ≤ s+ k. If s ≤ 0, then the base cases are a(n) = n for 1 ≤ n ≤ k(−s+ 1).

Proof. The base cases are easy to check. Equation (7) follows immediately from Lemma 1,
since every leaf is the i-th child of its parent for some unique i, where 1 ≤ i ≤ k.
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3 Binary strings, morphisms, and Ds,k

Define Ds,k to be the infinite string ds,k(1)ds,k(2)ds,k(3) · · · . In this section we will uncover
the recursive structure of this sequence.

Let Dn,k be the finite string defined by D0,k = 1 and Dn+1,k = 0(Dn,k)
k, the string with

0 at the start, followed by k repetitions of Dn,k. Let En,k be the finite string defined by
E0,k = 1 and En+1,k = (En,k)

k0, the string starting with k repetitions of En,k followed by 0.
As before, we will often drop the subscripts s and/or k when no confusion can arise.

Lemma 3. For all n ≥ 0, we have 0nEn = Dn 0n.

Proof. Our proof is by induction on n. The statement is true if n = 0 since D0 = E0 = 1.
Assuming that it is true for n, for n+ 1 we have

0n+1En+1 = 0 0n(En)k0 = 0 0nEn(En)k−10 = 0 Dn0n(En)k−10 = · · ·

· · · = 0 (Dn)k 0n 0 = Dn+1 0n+1.

Lemma 4. For n ≥ 0 and k ≥ 2,

D0(D0)
k−1(D1)

k−1 · · · (Dn)k−1 = (En)k−1(En−1)
k−1 · · · (E1)

k−1(E0)
k−1E0. (8)

Proof. Our proof is by induction on n. If n = 0, then (D0)
k = (E0)

k = 1k. For the general
case we will first prove, also by induction on n, that

(Dn)k−1 = 0n (En)k−2 (En−1)
k−1 · · · (E1)

k−1 (E0)
k−1E0 (9)

Equation (9) is true if n = 0. For n+ 1 we have

(Dn+1)
k−1 = (Dn+1)

k−2 Dn+1

= (Dn+1)
k−2 0 (Dn)k

= (Dn+1)
k−2 0 Dn (Dn)k−1

= (Dn+1)
k−2 0 Dn 0n (En)k−2 (En−1)

k−1 · · · (E1)
k−1 (E0)

k−1E0

= (Dn+1)
k−2 0n+1En (En)k−2 (En−1)

k−1 · · · (E1)
k−1 (E0)

k−1E0

= 0n+1(En+1)
k−2 (En)k−1 (En−1)

k−1 · · · (E1)
k−1 (E0)

k−1E0.

In a somewhat similar fashion we may also prove by induction on n that

(En)k−1 (En−1)
k−1 · · · (E1)

k−1 (E0)
k−1 E0 0n+1 = En+1. (10)

Now back to the proof of the lemma. Assuming that it is true for n, then for n+ 1,

D0(D0)
k−1(D1)

k−1 · · · (Dn)k−1(Dn+1)
k−1

= (En)k−1(En−1)
k−1 · · · (E1)

k−1(E0)
k (Dn+1)

k−1

= (En)k−1(En−1)
k−1 · · · (E1)

k−1(E0)
k 0n+1 (En+1)

k−2(En)k−1 · · · (E1)
k−1(E0)

k−1E0

= En+1 (En+1)
k−2(En)k−1 · · · (E1)

k−1(E0)
k−1E0

= (En+1)
k−1(En)k−1 · · · (E1)

k−1(E0)
k−1E0.
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The first equality follows from the inductive assumption; the second follows from (9); the
third follows from (10).

The following Theorem gives explicit expressions for Ds in terms of Dn. In a sense, it
provides string representations of the tree structures Fs,k introduced earlier.

Theorem 5. For all k ≥ 2 and s ≥ 0,

Ds,k = D00
s(D0)

k−10s(D1)
k−10s(D2)

k−1 · · · (11)

If s = 0, then

D0,k = D0(D0)
k−1(D1)

k−1(D2)
k−1(D3)

k−1 · · · = E∞. (12)

For all k ≥ 2 and s ≤ 0,

Ds,k = D−s+1
0 (D0)

r(D1)
r(D2)

r(D3)
r · · · , (13)

where r = (−s+ 1)(k − 1).

Proof. Equation (11) comes from the definition of Fs,k. The 0s factors represent the place-
ment of the super-nodes.

The first equality in (12) is implied by (13). The second equality in (12) comes from
Lemma 4. Since En is a prefix of En+1, the expression E∞ is well-defined. Hence D0,k = E∞.

Define a node in Fs,k to be a root if it is not empty but its parent is empty. At level 0
there are (−s + 1)k roots (i.e., the (−s + 1)k leaves have no parents). At level ℓ > 0 there
are (−s+ 1)k− (−s+ 1) = (−s+ 1)(k− 1) = r roots. Note that in a preorder traversal, we
encounter all subtrees with roots at level ℓ before encountering any with roots at level ℓ+ 1.
Furthermore, each subtree with a root at level ℓ produces the sequence Dℓ. Thus overall, we
get the sequence on the righthand side of the equality (13).

3.1 Using morphisms to describe Ds

Let ε denote the empty string. A morphism is a function f : Σ → Σ∗, where Σ is an
alphabet and Σ∗ is the set of all strings over that alphabet. The function f is extended to
a mapping over Σ∗ by application to each symbol of the string: if a1a2 · · · an ∈ Σ∗, then
f(a1a2 · · · an) = f(a1)f(a2) · · · f(an). Also, f(ε) = ε.

It is worth observing that Dn is the n-th iterate of the morphism 0 7→ 0 and 1 7→ 01k,
with D0 = 1; let us call this morphism σ. Similarly, En is the n-th iterate of the morphism
0 7→ 0 and 1 7→ 1k0, with E0 = 1; let us call this morphism τ . Various properties of this
morphism, particularly in the case where k = 2, are explored in Allouche, Betrema, and
Shallit [2]. Here’s the induction proof of the crucial property, En = τn(1), of τ .

En+1 = (En)k0 = (τn(1))k0 = τn(1k0) = τn(τ(1)) = τn+1(1).

Note that En+1 = τ(En).
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For a binary string u, define

ξs,k(u) =

{

0s1k−1, ·σ(u) if s ≥ 0;

1(−s+1)(k−1), ·σ(u) if s ≤ 0.
(14)

As usual, the k will be dropped from the subscript if no confusion can arise. Consider the
calculation of ξ4

−2,2(ε) shown below.

ξ4
−2(ε) = ξ3

−2(111 · σ(ε) ) = ξ3
−2(111 )

= ξ2
−2(111 · σ(111) ) = ξ2

−2(111 011 011 011 )

= ξ1
−2(111 011011011 0011011 0011011 0011011 )

= 111 011011011 001101100110110011011

000110110011011 000110110011011 000110110011011.

This is a prefix of D−2,2, except for a missing 111 at the front. Below we show that this
holds in general.

Theorem 6. For all k ≥ 2

Ds,k =

{

1, ·ξ∞s (ε) if s ≥ 0;

1−s+1 · ξ∞s (ε), if s ≤ 0.
(15)

Proof. For this proof we employ the tree interpretation of Ds in a new way. Imagine that
instead of chopping the last level, we are instead grafting on a new level of leaves by trans-
forming each existing leaf into an internal node and k leaves. In general, this process is
described by σ; a 1 is transformed into a 01k. However, it does not describe what happens
at the very leftmost part of the tree; we must be careful about supernodes (for s > 0) and
empty nodes (for s ≤ 0).

If s > 0 and we are grafting a new level, then the leftmost leaf becomes a supernode with
s labels and k children, all of whom are leaves. By the way supernodes are labeled, that
initial 1 becomes 10s1k−1. Since the initial 1 is expanded in a special way, we do the overall
expansion by prepending 0s1k−1 before applying σ in (14), and then tacking on the initial 1
as a final step in (15).

If s ≤ 0 and we are grafting a new level, then the leftmost −s+ 1 leaves become empty
nodes, each with k children, all of whom are leaves. The remaining (−s+ 1)k − (−s+ 1) =
(−s+ 1)(k− 1) leaves that are children of empty nodes before the graft can be expanded in
the normal manner on the next grafting. Thus (14) holds. Those initial −s + 1 leaves are
accounted for in (15) by the 1−s+1.

3.2 Generating functions for Ds

Generally, if S = s(1)s(2)s(3) · · · is a string then we use S(z) to denote the ordinary gener-
ating function S(z) =

∑

i≥1 s(i)z
i. However, for the polynomials Dn(z) and En(z) we think

12



of the sequence as being indexed starting at 0. Let As(z) and Ds(z) denote the ordinary
generating functions of the as,k(n) and ds,k(n) sequences, respectively. Directly from the
definitions we get the equation shown below:

As(z) =
Ds(z)

1 − z
.

In the notation for the q-binomial coefficients [6], we have [h1 ]k = 1 + k + · · · + kh−1 =
(kh − 1)/(k − 1). In this paper, the bottom term will always be one, so we will use the
notation [h]k to represent [h1 ]k. When no confusion can arise the subscript k will be dropped.
Since As(z) is determined by Ds(z) and Ds(z) is easier to treat, we first concentrate our
attention on Ds(z). If S is a string, then |S| denotes the number of characters in S.

Lemma 7. For n ≥ 0, we have |Dn| = |En| = [n+ 1] = 1 + k + · · · + kn.

Proof. From their definitions, it is obvious that |Dn| = |En|. We know that D0 = 1, so
|D0| = 1 = [0 + 1]. Since Dn+1 = 0(Dn)k, inductively, |Dn+1| = 1 + |(Dn)k| = 1 + k[n+ 1] =
1 + k(1 + k + · · · + kn) = [n+ 2].

Lemma 8.

Dn(z) = zn+1(1+z[1]+z2[1]+ · · ·+z(k−1)[1]) · · · (1+z[n]+ · · ·+z(k−1)[n])

= zn+1

n∏

i=1

k−1∑

j=0

zj[i] = zn+1

n∏

i=1

1 − zk[i]

1 − z[i]
,

En(z) = z(1+z[1]+z2[1]+ · · ·+z(k−1)[1]) · · · (1+z[n]+ · · ·+z(k−1)[n])

= z
n∏

i=1

k−1∑

j=0

zj[i] = z
n∏

i=1

1 − zk[i]

1 − z[i]
.

Proof. From the recurrence relation D0 = 1 and Dn+1 = 0(Dn)k we obtain D0(z) = z and

Dn+1(z) = zDn(z) + z|0Dn|Dn(z) + z|0(Dn)2|Dn(z) + · · · + z|0(Dn)k−1|Dn(z)

= zDn(z) + z[n+1]+1Dn(z) + z2[n+1]+1Dn(z) + · · · + z(k−1)[n+1]+1Dn(z)

= z(1 + z[n+1] + z2[n+1] + · · · + z(k−1)[n+1])Dn(z).

Similarly, E0(z) = z and En+1(z) = (1 + z[n+1] + z2[n+1] + · · · + z(k−1)[n+1])En(z). The
results now follow by induction.

Observe that Lemma 8 implies that Dn is a shifted version of En (move trailing 0’s from
front to back). This observation gives another proof of Lemma 3.

Corollary 9.

D0(z) = z
∏

i≥1

k−1∑

j=0

zj[i] = z
∏

i≥1

1 − zk[i]

1 − z[i]
.

13



Proof. Follows from Lemma 8 and the equation D0 = E∞ from Lemma 5.

Theorem 10. The generating function Ds,k(z), for s ≥ 0, is equal to

z

(

1 + zs+k0

(
1 − z(k−1)[1]

1 − z[1]
+ zs+k1 1 − zk[1]

1 − z[1]

(
1 − z(k−1)[2]

1 − z[2]
+ zs+k2 1 − zk[2]

1 − z[2]

(
1 − z(k−1)[3]

1 − z[3]
· · ·

(16)

Proof. We translate the string D00
s(D0)

k−10s(D1)
k−10s(D2)

k−10s · · · from Lemma 21 into
its generating function. Since

|D00
s(D0)

k−10s · · · (Dn−1)
k−10s| = s+ 1 +

n−1∑

i=0

((k − 1)[i+ 1] + s) = s+ n(s− 1) + [n+ 1],

we can write

Ds(z) = z +
∑

n≥0

zs+n(s−1)+[n+1]Dn(z)(1 + z|Dn| + · · · + z(k−2)|Dn|)

= z +
∑

n≥0

k−1∑

i=1

zs+n(s−1)+i[n+1]Dn(z) (17)

= z +
∑

n≥0

k−1∑

i=1

zs+n(s−1)+i[n+1]+1x1x2 · · ·xn,

where xi = z(1 + z[i] + · · · + z(k−1)[i]) = z[k]. Recall that Dn(z) = zx1x2 · · ·xn and expand
the summation to obtain

Ds(z) = z + (z(zs+[1]+ · · ·+zs+(k−1)[1])) + (zx1(z
2s−1+[2]+ · · ·+z2s−1+(k−1)[2])) + · · ·

= z(1 + (zs+[1]+ · · ·+zs+(k−1)[1]) + (x1(z
2s−1+[2]+ · · ·+z2s−1+(k−1)[2])) + · · ·

= z(1 + zs+[1]((1+ · · ·+z(k−2)[1]) + (x1(z
s−1+k[1]+ · · ·+zs−1+(k−2)[2]+k[1])) + · · ·

= z(1 + zs+k0

((1+ · · ·+z(k−2)[1]) + zs−1+k[1]x1((1+ · · ·+z(k−2)[2]) + · · ·

= z

(

1 + zs+k0

(
1 − z(k−1)[1]

1 − z[1]
+ zs+k1 1 − zk[1]

1 − z[1]

(
1 − z(k−1)[2]

1 − z[2]
+ zs+k2 1 − zk[2]

1 − z[2]
· · ·

Theorem 11. For all s ≥ 0 and k ≥ 2,

As,k(z) =







z

1 − z

∏

i≥1

1 − zk[i]

1 − z[i]
, if s = 0;

z
1 − zs

1 − z

∑

n≥0

n∏

i=1

zs 1 − zk[i]

1 − z[i]
; if s > 0.
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Proof. The case for s = 0 is simply obtained by dividing D0(z) from Corollary 9 by (1− z).
For the case s > 0, call the right side of the equation R(z), and multiply it by (1 − z). We
get

(1 − z)R(z) = z(1 − zs)
∑

n≥0

n∏

i=1

zs 1 − zk[i]

1 − z[i]

= z + z
∑

n≥1

zsn

n∏

i=1

1 − zk[i]

1 − z[i]
− zs+1

∑

n≥0

n∏

i=1

zs 1 − zk[i]

1 − z[i]

= z + z
∑

n≥1

zsn

n∏

i=1

1 − zk[i]

1 − z[i]
− zs+1

∑

n≥1

n−1∏

i=1

zs 1 − zk[i]

1 − z[i]

= z + z
∑

n≥1

zsn

(
n∏

i=1

1 − zk[i]

1 − z[i]
−

n−1∏

i=1

1 − zk[i]

1 − z[i]

)

= z + z
∑

n≥1

zsn

(
1 − zn[i]

1 − z[i]
− 1

)(n−1∏

i=1

1 − zk[i]

1 − z[i]

)

= z +
∑

n≥1

zsn+1

k−1∑

j=1

zj[n]

n−1∏

i=1

1 − zk[i]

1 − z[i]

= z +
∑

n≥0

zsn+s+1

k−1∑

j=1

zj[n+1]

n∏

i=1

1 − zk[i]

1 − z[i]
,

where the third equality comes from taking the n = 0 term out of the first summation,
the fourth equality comes from substituting n − 1 for n, the seventh equality comes from
collecting like terms, the eighth comes from factoring, the ninth comes from the fact that
kh−1
k−1

= 1 + k + · · · + kh−1, and the final equality comes from substituting n + 1 for n. The
remaining equation after the last step is equal to Ds(z) by (17), and therefore we have the
generating function for As(z) as determined above.

We have not managed to find a particularly nice form of Ds(z) for s < 0. However, it is
possible to derive that, for s < 0,

Ds(z)/z =
1 − z−s+1

1 − z
+ z−s+1

∑

n≥0

zr([1]+[2]+···+[n]) 1 − zr[n+1]

1 − z[n+1]

n∏

i=1

1 − zk[i]

1 − z[i]
,

by using (13), the expression for Dn(z) in Lemma 8, and the fact that |Dn| = [n + 1]. As
before, r = (−s+ 1)(k − 1). It would be nice to simplify this generating function.
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4 Compositions (and partitions) of an integer

Jon Perry [17] has observed experimentally that a1,2(n) counts the number of compositions
of n such that, for some m,

n0 + n1 + · · · + nm = n where ni ∈ {1, 2i} for i = 0, 1, . . . ,m.

He uses a notation similar to 〈1〉 + 〈1, 2〉 + 〈1, 4〉 + 〈1, 8〉 + · · · to denote the set of such
compositions and notes that many other combinatorial objects are in one-to-one correspon-
dence with similar composition rules [17]. We call these rules specifications. Jackson and
Ruskey [15] showed that if s > 0, then as,2(n) counted the number of compositions of n with
specification

〈1, 2, . . . , s〉 + 〈s, 2 + s− 1〉 + 〈s, 4 + s− 1〉 + 〈s, 8 + s− 1〉 + · · · .

We extend this result to any k > 1 and to s = 0. So far, we have been unable to find a
composition interpretation for s < 0.

Corollary 12. If s = 0, then the number of compositions of n with specification

Z
+ + 〈0, [1], . . . , (k − 1)[1]〉 + 〈0, [2], . . . , (k − 1)[2]〉 + · · ·

is a0,k(n). For s ≥ 1, the number of compositions of n with specification

〈1, 2, . . . , s〉 + 〈s, s+ [1], . . . , s+ (k − 1)[1]〉 + 〈s, s+ [2], . . . , s+ (k − 1)[2]〉 + · · ·

is as,k(n).

Proof. This is clear from the generating function of As,k(z) given in Theorem 11 by observing
that z(1 − zs)/(1 − z) = (z + z2 + · · · + zs). Substituting into our summation gives

(z+z2+ · · ·+zs)(1 + zs(1+z[1]+ · · ·+zk[1]) + zs(1+ · · ·+zk[1])zs(1+ · · ·+zk[2]) + · · ·

As an example, a2,3(20) = 10, and the 10 corresponding compositions are given below:

1+2+2+15, 1+3+2+2+2+2+2+2+2+2, 1+3+6+2+2+2+2+2, 1+3+10+2+2+2, 1+4+15,
2+2+2+2+2+2+2+2+2+2, 2+2+6+2+2+2+2+2, 2+2+10+2+2+2,
2+4+6+2+2+2+2, 2+4+2+2+2+2+2+2+2.

Since a2,3(n) counts both the number of bottom level nodes of the tree T2,3(n) and these
compositions, there should be a direct one-to-one correspondence between the bottom level
nodes and the compositions. This is the subject of the subsection to follow.
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4.1 A result of Allouche, Betrema, and Shallit

The generating function for D0(z)/z given in Corollary 9 can be written as

∏

i≥1

1 − zk[i]

1 − z[i]
=
∏

i≥1

(1 + z[i] + z2[i] + · · · + z(k−1)[i]).

This is the generating function for the number of partitions of n of the form

n = ε1[1] + ε2[2] + ε3[3] + · · · , (18)

where εi ∈ {0, 1, . . . , k − 1}. Since (k − 1)[1] + (k − 1)[2] + · · · + (k − 1)[m] < [m + 1], if
there is a partition of the form (18), then it is unique (of course, we already know this since
Ds is a 0-1 sequence). The values of n expressible as in (18) are exactly the numbers of the
form p0(m) − 1. This relation between partitions of the form (18) and the D0 sequence (as
generated by the morphism ρ) was noted in [2] for general k and proven in the case k = 2
(see the “Remarque” on page 241). Suppose that n can be written as (18). Then

(k − 1)n =
∑

i≥1

εi(k
i − 1)

=
∑

i≥1

εik
i −
∑

i≥1

εi

= m− νk(m),

where m is the integer
∑

k≥1 εik
i; note that m is divisible by k. Conversely, given the k-ary

representation of an integer m divisible by k, we can recover an n expressible as in (18).

4.2 A one-to-one correspondence

This correspondence was discovered in collaboration with Carla Savage.
In the tree Ts,k(n) a path from a leaf to the root can be considered as a k-ary number

m = (bd · · · b1b0)k, so that

m =
d∑

j=0

bjk
j,

where bj ∈ {0, 1, . . . , k − 1} and d + 1 is the length of the path. At the j-th edge of the
path the child is the bj-th child of its parent — counting from 0 and from left-to-right. For
example, the leftmost path corresponds to (0 · · · 00)k, and the right-most path to the k-ary
representation of n− 1.

Define the mapping ψ that takes this k-ary number and returns the composition

ψ(m) =
d∑

j=0

(s+ bj(1 + k + · · · + kj)) =
d∑

j=0

(s+ bj[j]).

If s = 0, then transforming ψ(m) into a composition of n is simple:

n = (n− ψ(m)) + ψ(m).
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This composition has the required specification.
Otherwise, assume that s > 0. We can now transform ψ(m) into a composition of n as

follows:

n = (1 + ((n− ψ(m)) mod s)) + ψ(m) + s

⌊
n− ψ(m)

s

⌋

; (19)

that is, take ψ(m), add ⌊(n−ψ(m))/s⌋ parts s, and an initial part (1+((n−ψ(m)) mod s)).
Note that the resulting composition is of specification

〈1, 2, . . . , s〉 + 〈s, s+ [1], . . . , s+ (k − 1)[1]〉 + 〈s, s+ [2], . . . , s+ (k − 1)[2]〉 + · · · . (20)

Below we continue the example that follows Corollary 12.
m (b2b1b0)3 ψ(m) n = 20
0 000 2 + 2 + 2 2+2+2+2+2+2+2+2+2+2
1 001 3 + 2 + 2 1+3+2+2+2+2+2+2+2+2
2 002 4 + 2 + 2 2+4+2+2+2+2+2+2+2
3 010 2 + 6 + 2 2+2+6+2+2+2+2+2
4 011 3 + 6 + 2 1+3+6+2+2+2+2+2
5 012 4 + 6 + 2 2+4+6+2+2+2+2
6 020 2 + 10 + 2 2+2+10+2+2+2
7 021 3 + 10 + 2 1+3+10+2+2+2
8 022 4 + 10 + 2 2+4+10+2+2+2
9 100 2 + 2 + 15 1+2+2+15

In order to prove that this is a one-to-one correspondence we need the following lemma.

Lemma 13. If m corresponds to a root-to-leaf path in Ts,k(n) then n > ψ(m).

Proof. Let n′ be the rightmost leaf in Ts,k(n); thus n′ ≤ n. We count the number of nodes
in the subtrees to the left of this path and then add in the 1 + s+ d nodes on the path. The
subtrees to the left of the path are the subtrees that remain when the path is removed. The
number of extra nodes in the supernodes along the leftmost path (not counting the root) is
d(s− 1); taking these nodes into account, each supernode now counts 1. Let (bd · · · b1b0)k be
the k-ary representation of n′. The number of nodes in the trees with roots at level j is

(1 + k + · · · + kj)bj.

Thus the number of nodes to the left of the path is

d(s− 1) +
d∑

j=0

(1 + k + · · · + kj)bj.

Therefore,

n′ = 1 + s+ d+ d(s− 1) +
d∑

j=0

(1 + k + · · · + kj)bj = 1 +
d∑

j=0

s+ (1 + k + · · · + kj)bj.

Thus 1 + ψ(m) = n′ ≤ n, which implies that n > ψ(m).
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Lemma 13 shows that (19) is always well-defined; every leaf corresponds to some unique
composition of the correct specification. To go from a composition to a leaf we reverse the
process. Given a composition x−1 + x0 + · · · + xt of specification (20) consider the sub-
composition x0 + · · ·+ xd where d+ 1 is the height of Ts,k(n); that is, d is the largest integer
such that

n ≤ (s− 1)d+ (1 + k + · · · + kd).

For i = 0, 1, . . . , d we have xi ∈ {s, s + [i + 1], . . . , s + (k − 1)[i + 1]}. If xi = s + j[i + 1],
then set bi = j. This gives a k-ary number (bd · · · b1b0)k, which will correspond to a leaf in
Ts,k(n) if n is large enough, which it will be, because of the way that d was chosen.

5 A Postorder Labeling

In Section 2, we described the labeling of the infinite ordered k-ary trees Fs,k, and the
relationship between these trees and the sequences as,k(n), ds,k(n), and ps,k(n). In this section
we will describe an alternate labeling of these trees, one based on postorder rather than
preorder, and show how this alternate labeling gives rise to the meta-Fibonacci sequences
described earlier. The main difference is that the value of s is shifted by 1, in a sense to be
made precise later.

We will use the notation F ′
s,k to represent our postorder labeling. The tree F ′

s,k has
exactly the same shape as Fs,k; that is, it is a k-ary tree with all leaves at the same level
and the number of labels assigned to each node is the same in both types of trees. However,
the way that the labels are assigned is different. As before, the labels are the non-negative
integers.

For s ≤ 0, the change is very simple; each subtree is labeled in postorder, not preorder.
For s ≥ 0, each subtree that is not along the delay path is labeled in postorder. Let

v be a super-node along the delay path. We first label the left-most subtree of v. After
the left-most subtree of v is labeled, v is labeled an additional s − 1 times (as opposed to
previously, when we would label the super-node s times), increasing the label by one each
time. Now we label the k − 1 remaining k-trees with a postorder traversal. After labeling
the subtrees, we then finish labeling v by giving it 1 more label (so we have now labeled the
super-node s−1+1 = s times). Figures 9 and 10 show the start of F ′

1,3 and F ′
2,3 respectively.

Define a′s,k(n) to be the number of nodes at the bottom level of the tree T ′
s,k(n), where

T ′
s,k(n) is the forest induced by the first n labeled nodes of F ′

s,k. For example, referring to
Figure 9, we see that a′1,3(n) is

1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 18, . . . ,

which is equal to the sequence a0,3(n) (See Table 1). Similarly, observe that a′2,3(n) = a1,3(n).
The remainder of this section is devoted to proving that a′s,k = as−1,k in general.

Let D′
s,k be the infinite string d′s,k(1)d′s,k(2)d′s,k(3) · · · , where d′s,k(n) is 0 if node n in F ′

s,k

is an internal node, and is 1 if node n is a leaf node.
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Figure 9: The tree F ′
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Figure 10: The tree F ′
2,3.

Theorem 14. For s ≥ 1,

D′
s,k = E00

s−1(E0)
k−10s(E1)

k−10s(E2)
k−10s(E3)

k−10s · · ·

= D00
s−1(D0)

k−10s−1(D1)
k−10s−1(D2)

k−1 · · · (21)

For s ≤ 0, with r′ = (−s+ 1)(k − 1) and r = (−s+ 2)(k − 1),

D′
s,k = (E0)

−s+1(E0)
r′(E1)

r′(E2)
r′(E3)

r′ · · ·

= (D0)
−s+2(D0)

r(D1)
r(D2)

r(D3)
r · · · (22)

Proof. We first deal with the case where s ≥ 1 and then the case where s ≤ 0.
Assume that s ≥ 1. The first equality comes from the definition of F ′

s,k. First, notice
that the En we defined at the beginning of Section 3 is equivalent to a postorder traversal
of a k-tree of height n, with 1 representing the leaf nodes and 0 representing the internal
nodes. For example, if k = 3, then E2 = 1110111011100 is obtained from the first 13 nodes
of the tree in Figure 9, with the 0’s occuring in positions 4, 8, 12, 13.
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We start with a single leaf node.
Then, we label the super-node s − 1 times, followed by labeling k − 1 k-trees of height

1, followed by labeling the super-node one last time. After labeling the first super-node we
move on to the second one, where we again label the super-node s − 1 times, but now we
have to label k − 1 k-trees of height 2 before labeling the super-node one last time. We
continue in this manner, labeling every node in F ′

s,k.

We now prove (21). It is easily seen that E0 0s−1 (E0)
k−1 = D0 0s−1 (D0)

k−1 since
E0 = D0. Now, using Lemma 3, we have

E0 0s−1 (E0)
k−1 0s (E1)

k−1 0s (E2)
k−1 0s (E3)

k−1 · · ·

= D0 0s−1 (D0)
k−1 0s (E1)

k−1 0s (E2)
k−1 0s (E3)

k−1 · · ·

= D0 0s−1 (D0)
k−1 0s−1 (D1)

k−1 0s+1 (E2)
k−1 0s (E3)

k−1 · · ·

= D0 0s−1 (D0)
k−1 0s−1 (D1)

k−1 0s−1 (D2)
k−1 0s+2 (E3)

k−1 · · ·

= D0 0s−1 (D0)
k−1 0s−1 (D1)

k−1 0s−1 (D2)
k−1 0s−1 (D3)

k−1 · · · .

We now assume that s ≤ 0. The first equality follows from the definition of F ′
s,k. Note

that by Lemma 3,
(Dn)k0n+1 = 0n(En)k0 = 0nEn+1. (23)

We will use (23) to prove by induction on n that

(D0)
−s(D0)

r(D1)
r(D2)

r · · · (Dn)r0n+1 = (E0)
−s+1(E0)

r′(E1)
r′(E2)

r′ · · · (En)r′En+1.

When n = 0 then it is easy to check that D−s+2
0 Dr

00 = E−s+1
0 Er′

0 E1. So assume that the
equation above is true (for n). Note that r′ = r − k + 1. Then

(D0)
−s+2(D0)

r(D1)
r(D2)

r · · · (Dn)r(Dn+1)
r0n+2

= (D0)
−s+2(D0)

r(D1)
r(D2)

r · · · (Dn)r(Dn+1)
r−k0n+1(En+2)

= (D0)
−s+2(D0)

r(D1)
r(D2)

r · · · (Dn)r0n+1(En+1)
r−k(En+2)

= (E0)
−s+1(E0)

r′(E1)
r′(E2)

r′ · · · (En)r′En+1(En+1)
r−k(En+2)

= (E0)
−s+1(E0)

r′(E1)
r′(E2)

r′ · · · (En)r′(En+1)
r′(En+2)

Thus it is true for n+ 1 and the proof is completed.

Corollary 15. Let a′s,k(n) be the number of nodes at the bottom level of the tree T ′
s,k(n) and

let as,k(n) be the number of nodes at the bottom level of the tree Ts,k(n). Then, for all integers
s,

a′s,k(n) = as−1,k(n).

Proof. This follows from the above theorem. Notice that the second equality is the same as
the sequence for Ds−1,k given in Lemma 21. It follows that the d(n) sequence for a′s,k and
as−1,k are the same, and therefore, the sequences are the same.
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6 Analysis of labels on the leaves

The labels on the leaves of Ts,k are given by the sequences ps,k (some examples are given
in Table 1). In this section we determine an exact expression for these numbers and also a
generating function for them. Using this exact expression we can determine their asymptotic
value, and hence the asymptotic value of the as,k numbers. A number of connections with
previous results in the literature are noted. Central to our results is the generalized ruler
function.

6.1 The ruler function and its generalizations

Let r1, r2, r3, r4, · · · be the transition sequence of the k-ary reflected Gray code; in the case
of k = 2 this sequence is also known as the “ruler function” (A001511). The generalized
ruler sequence is R∞ where R1 = 1k−1 and Rn+1 = (Rn, n+ 1)k−1, Rn.

Lemma 16. The ordinary generating function, R(z), of the generalized ruler function is

∑

j≥1

rjz
j =

∑

n≥0

zkn

1 − zkn
. (24)

Proof. Observe that if all the 0’s are removed from the sequence r1−1, r2−1, r3−1, r4−1, . . .
then the ruler function is again obtained. The non-zero values occur in the positions that
are divisible by k. Thus the ruler function satisfies

R(z) =
z

1 − z
+R(zk). (25)

Equation (24) is obtained by iterating (25).

For further generating functions of this type, see the paper of Stephan [20].

6.2 A “morphism” related to the run lengths of the 0’s

We will now try to determine the sequence of integers, call it Zs, of the lengths of runs
of 0’s that occur in Ds. This sequence will effectively provide another characterization of
Ds since the lengths of the runs of 1’s is k, except at the very beginning. We will employ
Theorem 6. Let ρ denote the “morphism” that maps the integer t to the sequence of k
integers t+ 1, 1, . . . , 1, and let ρ′ map t to the sequence of k integers 1, . . . , 1, t+ 1. Let ξ̄ be
the following mapping of strings of integers to strings of integers.

ξ̄s(u) =

{

(s+ 1) · 1k−2 · ρ(u), if s ≥ 0;

1(−s+1)(k−1) · ρ(u), if s ≤ 0.
(26)

The infinite sequence ξ̄∞s (ε) is often used so we give it a name: X̄s := ξ̄∞s (ε). For example,

X̄−1,2 = 1121213121312141213121 · · · . (27)
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Theorem 17. The sequence of run lengths of 0’s in Ds,k is

Zs =

{

s · X̄s, if s ≥ 0;

X̄s, if s ≤ 0.

Proof. We again think of growing the tree by repeatedly grafting on a new level. We first
explain (26) and then the expression for Zs(n).

Consider a penultimate node x which is the leftmost child of its parent, and suppose that
t internal nodes are between it and the previous leaf; i.e., it corresponds to the final 0 in
a maximal run of t 0’s. After the graft x is replaced with an internal node and k internal
nodes y1, y2, . . . , yk. There are now t + 1 internal nodes between y1 and the previous leaf,
and each of y2, . . . , yk have leaves following and preceding them; i.e., they correspond to runs
consisting of a single 0. The previous discussion explains the occurrence of ρ(u) in (26). In
the case where s ≥ 0, when we graft it is only the leftmost penultimate node that does not
follow the pattern, but its parent and siblings do follow the pattern, and the length of their
runs of 0’s are s+ 1 followed by k − 2 1’s. In the case where s ≤ 0, when we graft the first
(−s+1)(k−1) internal nodes do not follow the pattern since they are the only ones without
internal nodes as parents. Clearly their corresponding run lengths are one.

In our discussion above, when s ≥ 0 we ignored the leftmost internal node. Clearly, it
contributes a run of s 0’s. This accounts for the extra s in the expression for Zs(n).

Corollary 18. The sequence of lengths of successive maximal runs of the form 10 · · · 0 in
Ds,k is

Zs =

{

X̄s, if s ≥ 0;

1−s · X̄s, if s ≤ 0.

Proof. This can be proven using the same sort of reasoning used in Theorem 17.

In the corollary below we state the relationship between X̄s(n) and ps(n).

Corollary 19. For n ≥ 1,

ps(n) =







1 +
∑n−1

j=1 X̄s(j), if s ≥ 0 and n ≥ 1;

n, if s ≤ 0 and n ≤ (−s+ 1);

(−s+ 1) +
∑n−(−s+1)

j=1 X̄s(j), if s ≤ 0 and n ≥ (−s+ 1).

Proof. The key observation is that ps(n) is one plus the sum the lengths of the first n − 1
maximal substrings of the form 10 · · · 0. Thus the result follows by an application of Corollary
18.

Lemma 20. For all k ≥ 2,

D0 = 1k0r11k0r21k0r31k0r4 · · · (28)

= 10r1−110r2−110r3−110r4−1 · · · (29)
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Proof. Equation (29) is true by the observation made in the proof of Lemma 16. Since
|Rn| = kn − 1, we have rkn+i = ri for 1 ≤ i ≤ kn+1 − kn − 1 and rkn = n+ 1. We will show
that

En = 1k0r11k0r2 · · · 1k0r
kn−1 , (30)

which will finish the proof of (28) since D0 = E∞ by Lemma 5. Since we know for n = 0
that E1 = Ek

00, we can proceed by induction and find

En+1 = (En)k0

= 1k0r11k0r2 · · · 1k0r
kn−11k0r11k0r2 · · · 1k0r

kn−10

= 1k0r11k0r2 · · · 1k0r
kn−11k0r

kn−1+11k0r
kn−1+2 · · · 1k0rkn

−11k0r
kn−10

= 1k0r11k0r2 · · · 1k0r
kn−11k0r

kn−1+11k0r
kn−1+2 · · · 1k0rkn

−11k0n+1.

We can extend some of the previous results about D0 to Ds. For proposition P the
notation [[P ]] means 1 if P is true and 0 if P is false.

Lemma 21. Let sj = rj + s[[j is a power of k]]}. Then for any s ≥ 0,

Ds = 10s1−110s2−110s3−110s4−1 · · · (31)

Proof. Equation (31) comes from the second equality (29) in Lemma 20, and the fact that
a new super-node will be added after we have seen a complete left subtree, which will have
ki leaf nodes, for some integer i. Therefore, we need to add s 0’s after every ki-th leaf node,
for each integer i. This gives us

Ds = 10s0r1−110r2−1 · · · 10s0rk−11 · · · 10s0r
k2−1 · · ·

= 10s+r1−110r2−1 · · · 10s+rk−11 · · · 10s+r
k2−1 · · ·

= 10s1−110s2−110s3−110s4−110s5−110s6−110s7−110s8−110s9−1 · · ·

6.3 An exact expression for ps(n) for s ≥ 0.

Since the ps,k(n) numbers give the positions of the 1’s in Ds the following corollary is true.
The s = 1 case of this corollary is implicit in Proposition 4.1 of [13]. They use the notation
#S(N) for the number of occurrences of N in the infinite sequence a(1), a(2), . . .. Clearly,
#S(N) = p1(n+ 1) − p1(n).

Corollary 22. For all n ≥ 1 and s ≥ 0,

ps(n+ 1) − ps(n) = rn + s[[n is a power of k]].
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Let ǫk(q) denote the largest power of k that divides q (see [11], pg. 114). In [11] it is
shown for k prime that

ǫk(n!) =
∑

j≥1

⌊ n

kj

⌋

, (32)

but it is easy to see that the expression is correct for any positive integer k. Let νk(n) denote
the sum of the base k digits of n. The following result is due to Legendre [11, 16]. A different
proof also appears in Boros and Moll [4], but the one below is particularly nice.

Lemma 23. Let n = (b0b1 · · · bm)k, so that νk(n) =
∑m

i=0 bi. Then,

∑

j≥0

⌊ n

kj

⌋

=
kn− νk(n)

k − 1
. (33)

Proof. Multiply the left-hand side of the equation by k − 1 and simplify:

(k − 1)
∑

j≥0

⌊ n

kj

⌋

= (k − 1)
m∑

j=0

(b0b1 · · · bj)k

= kn+
m−1∑

j=0

(b0b1 · · · bj0)k −

m−1∑

j=0

(b0b1 · · · bjbj+1)k − (b0)k

= kn− (b0 + b1 + · · · + bm)

= kn− νk(n).

Lemma 24. For all n ≥ 1,
n∑

j=1

rj = n+ ǫk(n!).

Proof. This follows by the same sort of reasoning used in [11] in the case k = 2.

Theorem 25. For all n ≥ 1 and s ≥ 0,

ps(n) = s⌈logk n⌉ + n+ ǫk((n− 1)!)

= s⌈logk n⌉ + 1 +
∑

j≥0

⌊
n− 1

kj

⌋

= s⌈logk n⌉ +
kn− νk(n−1) − 1

k − 1
.
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Proof. By summing the equation in Corollary 22 and applying Lemma 24 we obtain

ps(n+ 1) = 1 +
n∑

j=0

rj + s

n∑

j=0

[[n is a power of k]]

= 1 + n+ ǫk(n!) + s(1 + ⌊logk(n)⌋).

Observing that 1 + ⌊logk(n)⌋ = ⌈logk(n+ 1)⌉ and substituting n− 1 for n gives us the first
equation of the theorem. The other equations follow from Lemma 23 and (32).

For s = 1, this result is closely related to Proposition 4.1 of [13]. In Proposition 4.1,
Higham and Tanny consider the quantity max{m : a(m) = n}, call it M(n). Clearly,
p1(n) = 1 +M(n− 1).

6.4 An exact expression for ps(n) for s ≤ 0.

It is also possible to derive an exact expression for ps(n) for s < 0, but it is less elegant
than the expression given in Theorem 25. However, is does rely on a nice decomposition of
the sequence ps(n). Decompose the k-ruler function as P1P2P3 · · · where |Pi| = ki−1. For
example, with k = 2,

1
︸︷︷︸

P1

21
︸︷︷︸

P2

3121
︸︷︷︸

P3

41213121
︸ ︷︷ ︸

P4

5121312141213121
︸ ︷︷ ︸

P5

· · · .

Lemma 26. For all s ≤ 0,

X̄s = 1−s+1P−s+1
1 P−s+1

2 P−s+1
3 · · · . (34)

Proof. Note in (26) that only difference between the s = 0 cases and the s < 0 cases is the
number of blocks of 1k−1 that are prepended to the string before ρ is applied. Since the
s = 0 case gives the k-ruler function and each successive generation is k times as large as
the previous, we get the type of interleaving stated in the lemma.

Theorem 27. Let m = ⌈logk(1 + n/(−s+ 1))⌉ and n′ = (n−s) mod km−1. Then, for n ≥ 1
and s < 0, we have

ps(n+ (−s+ 1)) = sm+ [m]

⌊
n− s

km−1

⌋

+
kn′ + νk(n

′)

k − 1
. (35)

Proof. We omit the details, but outline some of the basic ideas. We will show that ps(n +
(−s+ 1)) = (−s+ 1) + A+B + C, where the values of A, B, and C are given below.

A = (−s+ 1)([m] −m), B = [m]

(⌊
n− s

km−1

⌋

− (−s+ 1)

)

,

and C = m+
kn′ − νk(n

′)

k − 1
.

First note that m is such that n (as an index) lies somewhere in R−s+1
m . Then A accounts for

the sum of all the integers in R−s+1
0 R−s+1

1 · · ·R−s+1
m−1 . Within R−s+1

m , the index n lies within
the

⌊
n−s

km−1

⌋
-th Rm. Finally, within that Rm the additional sum to get to the index n is given

by C.
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The table below shows some of the quantities discussed in the proof above for the case
where s = −2 and k = 2.

R1 R2
1 R3

1 R2 R2
2 R3

2 R3

A 0 0 0 3 3 3 3 3 3 12 12 12 12
B 0 1 2 0 0 3 3 6 6 0 0 0 0
C 1 1 1 2 3 2 3 2 3 3 4 6 7

Theorem 28. Asymptotically, given constants k ≥ 2 and integer s, for increasing n,

ps(n) ∼
k

k − 1
n and as(n) ∼

k − 1

k
n.

Proof. We first consider the case where s ≥ 0. Since d is the sum of base k digits of n, we
have d = O(logk n). Thus by Theorem 25,

ps(n) = s⌈logk n⌉ +
kn− d− 1

k − 1
=

kn

k − 1
+O(log n) ∼

kn

k − 1
.

Let n = km/(k − 1). Since as is a well-behaved function and as(ps(m)) = m, we have
as(km/(k − 1)) ∼ m. In other words as(n) ∼ (k − 1)n/k.

For the case where s < 0 we use (35). The three terms there for large n are O(log n) +
(n+ O(1))k/(k − 1) + O(1). Thus, ps(n) ∼ nk/(k − 1), and as before we can conclude also
that as(n) ∼ (k − 1)n/k.

6.5 Generating Functions

In this subsection we determine the generating function of X̄s, which we denote X̄s(z), and
use it to determine the ordinary generating function of the ps sequence.

Consider again (26). Observe that subtracting 1 from each element of (s+ 1) · 1k−2 · ρ(u)
results in an s in position 1, the sequence u in positions k, 2k, 3k, . . ., and 0’s elsewhere.
Thus, for s ≥ 0 we get that X̄s(z) satisfies the equation

X̄s(z) = sz +
z

1 − z
+ X̄s(z

k),

which can be iterated to obtain

X̄s(z) =
∑

m≥0

(

szkm

+
zkm

1 − zkm

)

. (36)

For s ≤ 0, similar reasoning reveals that, with r′ = (−s)(k − 1),

X̄s(z) =
z

1 − z
+ zr′X̄s(z

k),
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which can be iterated to obtain

X̄s(z) =
∑

m≥0

zr′(1+k+···+km−1)+km

1 − zkm

=
∑

m≥0

z(−s+1)km+s

1 − zkm
. (37)

Note that the two generating functions (36) and (37) coincide when s = 0.

Theorem 29. For all s ≥ 0 and k ≥ 2,

∑

n≥0

ps(n)zn =
z

1 − z

(

1 +
∑

m≥0

zkm

(

s+
1

1 − zkm

))

.

For all s ≤ 0 and k ≥ 2,

∑

n≥0

ps(n)zn =
z

1 − z

(

1

1 − z
+
∑

m≥1

z(−s+1)km

1 − zkm

)

. (38)

Proof. Assume first that s ≥ 0. From Corollary 19 we obtain the first equality below.

∑

n≥0

ps(n)zn =
z

1 − z
+

z

1 − z
X̄ (z)

=
z

1 − z

(

1 +
∑

m≥0

(

szkm

+
zkm

1 − zkm

))

.

Now assume that s ≤ 0. From Corollary 19 we obtain the first equality below. The
second follows by simplifying the first two terms and using (37).

∑

n≥0

ps(n)zn = (z + 2z2 + · · · + (−s+1)z−s+1) +
(−s+1)z−s+2

1 − z
+
z−s+1

1 − z
X̄ (z)

=
z(1 − z−s+1)

(1 − z)2
+
z−s+1

1 − z

∑

m≥0

z(−s+1)km+s

1 − zkm

=
z

1 − z

(

1 − z−s+1

1 − z
+
∑

m≥0

z(−s+1)km

1 − zkm

)

,

which is equal to the sum in the statement of the theorem (note that sum is over m ≥ 1).

6.6 Some comments on the difference p(n+ 1) − p(n)

The sequence p(n+ 1) − p(n) for s = −1 and k = 2 is

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, . . .
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and is describing in the OEIS entry A091090 as “in binary representation: number of editing
steps (delete, insert, or substitute) to transform n into n + 1”. It is characterized by the
recurrence relation a(2n) = 1, a(2n + 1) = a(n) + 1 with a(0) = a(1) = 1. I.e., if a number
is even then it can be transformed into its successor by changing the final 0 to a 1; but if
it is odd, then the final bit changes from 1 to 0, and the remaining bits need to change to
their successor. The initial condition is very important, since it is only the change from 1
to 2 where the “insert” operation is used; i.e., in taking (1)2 to (10)2. The delete operation
need never be used. The ordinary generating function thus satisfies the recurrence relation

A(z) =
z

1 − z
+ zA(z2),

Iterating, we obtain

A(z) =
∑

m≥0

z1+2+···+2m

1 − z2m
=
∑

m≥0

z2m+1−1

1 − z2m
.

This later expression is attributed to Vladeta Jovovic (2004) in OEIS A091090. The sequence
itself was submitted by Reinhard Zumkeller in 2003. A comparison of A(z) with (38) reveals
that A(z) is indeed (a shifted version of) the generating function of p(n+ 1)− p(n), or that
is exactly X̄−1(z) (see (37)).

We can generalize this example as follows to larger values of k, but again with s = −1. In
k-ary representation, transform n into n+ 1 where the allowed editing steps are substitute,
delete, and change (k − 1)k to (10)k. The recurrence relation becomes a(kn) = a(kn +
1) = · · · = a(kn + k − 2) = 1 and a(kn + k − 1) = a(n) + 1, with initial conditions
a(0) = a(1) = · · · = a(k−1) = 1.

We do not know how to generalize to other values of s the “edit” interpretation; however,
the recurrence relation can be generalized for X̄ (n) as follows.

X̄ (n) =







1, if 1 ≤ n ≤ (−s+ 1)(k − 1);

1, if n− (−s+ 1)(k − 1) − 1 6≡ 0 (mod k);

1 + X̄ (1 + (n− (−s+ 1)(k − 1) − 1)/k), otherwise.

The proof follows from the definition of X̄ (n) in (26).

7 Cloitre/Sloane Self-referential Sequence

In this section we consider the recurrence relation

bk(n) =







k+1, if n = 1;

1 + bk(n− 1), if n ∈ {bk(1), . . . , bk(n− 1)};

k+1 + bk(n− 1), if n 6∈ {bk(1), . . . , bk(n− 1)}.

(39)

Note that (4) is obtained when k = 2.
Let Ck be the tree F0,k after the bottom level is removed, but the remaining labels are left

intact (the leftmost leaf is also made into an ordinary node). We identify nodes with their

29

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A091090
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A091090


labels. Figure 11 shows C3 (compare with F0,3 in Figure 3). Let φk = φk(1), φk(2), φk(3), . . .
be the sequence of labels of nodes of Ck when read off in preorder. Thus φ3 is the sequence
that starts

4, 8, 12, 13, 17, 21, 25, 26, 30, 34, 38, 39, 40, 44, 48, 52, 53, 57, 61, . . .

Observe that φ3 appears to be the same as b3; we prove this below for general k. It is
interesting to note that the sequences p0,k(n) and φk(n) partition the positive integers, since
each positive integer occurs uniquely as the label of a node in F0,k.

Lemma 30.

φk(n) =







k+1, if k = 1;

1 + φk(n− 1), if φk(n) is a leftmost child in Ck;

k+1 + φk(n− 1), if φk(n) is not a leftmost child in Ck.

Proof. Clearly φk(1) = k + 1.
Consider the node x labeled φk(n) in Ck. We consider two cases depending on whether x

is the leftmost child of its parent, or not.
Since the tree is labeled in preorder, the predecessor of a leftmost child is its parent in

F0,k, namely φk(n− 1). Thus φk(n) = 1 + φk(n− 1).
The predecessor of a non-leftmost child in F0,k is a leaf (this is a general property of trees

labeled in preorder). The predecessor of a non-leftmost child in Ck is thus also a leaf. Hence
if x is a non-leftmost child of its parent, then in F0,k the k predecessors of φk(n) are the
(bottom level) leaves φk(n)− k, . . . , φk(n)− 2, φk(n)− 1, from left to right. The predecessor
of (the leftmost-child) φk(n) − k is the node φk(n) − k − 1, which is a leaf in Ck. In Ck the
nodes φk(n)−1, φk(n)−2, . . . , φk(n)−k have been removed from F0,k, and k+1+φk(n−1)
is a leaf; thus φk(n) = k + 1 + φk(n− 1).

We now show that (φk(n) − n)/k satisfies a meta-Fibonacci recurrence relation.

Theorem 31. For all n ≥ 1, bk(n) = φk(n) = n+ ka0,k(n).

Proof. Define the infinite tree Sk obtained by taking F0,k and labeling node n with φk(n).
Another way of obtaining Sk is by shifting all the labels in the nodes in Ck one position earlier
in preorder, maintaining the requirement that the super-nodes receive no labels. That is,
the empty leaf gets the label k + 1 = φ(1), and in general φk(n) in Ck becomes φk(n + 1)
in Sk. The tree S3 is shown in Figure 12. Observe that a node is not a leftmost child in
Ck if and only if that node is a leaf in Sk. This is true because the preorder predecessor of
a leftmost child is its parent, and the preorder predecessor of a non-leftmost child x is the
rightmost leaf in the subtree rooted at the left sibling of x.

Now consider node n in F0,k. In Sk the corresponding node is φk(n). By definition, the
value n occurs in φk exactly when φk(n) is not a leaf in Sk.

Combining our two observations: A node φk(n) is not a leftmost child in Ck if and only
if n does not occur in φk.
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Figure 12: The tree S3.

It follows, by Lemma 30, that

φk(n) =







k+1, if n = 1;

1 + φk(n− 1), if n ∈ {φk(1), . . . , φk(n− 1)};

k+1 + φk(n− 1), if n 6∈ {φk(1), . . . , φk(n− 1)}.

(40)

Since it satisfies the same recurrence relation, φk(n) is the same as the self-referential
sequence bk(n) defined in (39).

We know that d0,k(n) = a0,k(n)− a0,k(n− 1) is 1 or 0 according to whether n is a leaf or
not in F0,k. Similarly φk(n) − φk(n− 1) is k or 1 according to whether n is a leaf or not in
Ck. Thus

φk(n) = φk(n− 1) + 1 + k(a0,k(n) − a0,k(n− 1)).

Iterating, we obtain φk(n) = n+ ka0,k(n) as claimed.
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8 More Recurrence Relations

In this section we develop recurrence relations for as(n) that are not nested. This shows that
nesting is not crucial, but the resulting recurrence relations are not nearly as elegant.

Corollary 32. The numbers a0,k(n) satisfy the following recurrence relation for 0 ≤ m < kh,

a0,k([h] +m) = kh−1 + a0,k(m).

Proof. Since D0 = EhEh · · · = (Eh−1)
k0(Eh−1)

k0 · · · and |Eh−1| = [h], the equality d([h] +
m) = d(m) holds for 1 ≤ m ≤ kh − 1. The range for m comes from the fact that |(Eh−1)

k| =
[h] + (k − 1)[h] = [h] + kh − 1. Since we defined d(0) = 0 the range can be extended to
include m = 0. The number of 1’s in Eh−1 is #1(Eh−1) = kh−1. Thus

a0,k([h] +m) =

[h]
∑

p=0

d(p) +
m∑

p=0

d([h] + p) = #1(Eh−1) +
m∑

p=0

d(p) = kh−1 + a0,k(m). (41)

Lemma 33. For s ≥ 0 and k ≥ 2,

as,k(n) =

{

a0,k(n− sh), if [h] + (s−1)h+ 2 ≤ n ≤ [h+1] + (s−1)h;

kh−1, if [h] + (s−1)h− s+ 2 ≤ n ≤ [h] + (s−1)h+ 1.

Proof. The labels on the nodes in subforest h in Fs,k are exactly the values of n lying in the
first range above. This is true because the number of ordinary nodes to the left of h can be
found by adding the number of nodes in all of the subtrees. The first subtree is simply one
node. The remaining subtrees are k-ary trees of height j = 1, 2, . . . , h−1. These k-ary trees
each have 1 + k + · · · + kj−1 = [j] nodes. By the construction of Fs,k, we have k−1 of each
subtree of height j (except, as previously mentioned, the extra tree of height 1). Summing
the number of nodes in all of the subtrees gives us

1 +
h−1∑

j=1

(k − 1)[j] = 1 +
h−1∑

j=1

(kj − 1) = −h+ 2 +
h−1∑

j=1

kj = [h] − h+ 1.

The number of super-nodes is sh. Thus, the lowest label of a node in subforest h of our
tree is [h] + (s−1)h + 1 + 1 = [h] + (s−1)h + 2 and the highest label is [h] + (s−1)h + 1 +
(k−1)[h] = (s−1)h+ 1 + k(1 + k + · · · + kh−1) = [h+1] + (s−1)h.

Corollary 34. a1,k(n) = a(n− ⌊logk((n−1)(k−1) + 1)⌋)

Proof. If s = 1, the super-nodes of F1,k are numbered [h] + 1. Hence node n is contained in
subforest h = ⌊logk((n−1)(k−1) + 1)⌋.

Taking s = 1 in Lemma 33 we obtain a1,k(n) = a0,k(n− h) in the range [h] + 2 ≤ n ≤
[h+1]. In that range h = ⌊logk((n−1)(k−1) + 1)⌋. We need to check what happens when n
is a super-node, in other words, when n = [h]+1. By the Lemma 33 a1,k([h] + 1) = kh−1. In
F0,k, the node [h]+1−h is the rightmost node in subforest h−1, and thus a0,k([h]+1−h) =
kh−1.
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Theorem 35. If 1 ≤ n ≤ s+1, then a(n) = 1. If n = s+i and 2 ≤ i ≤ k then a(n) = i. If
n > s+k, then there are four cases, listed below.

If [h] + (s−1)h− s+ 2 ≤ n ≤ [h] + (s−1)h+ 2, then

a(n) = kh−1.

If 1 ≤ m ≤ [h−1], then

a([h] + (s−1)h+ 2 +m) = kh−2 + a([h] + 1 + (s−1)h+m− [h−1] − s).

If 1 ≤ m ≤ kh−1 − 1, then

a([h] + [h−1] + (s−1)h+ 2 +m) = kh−2 + a([h] + (s−1)h+ 2 +m).

If 1 ≤ m ≤ (k−2)[h], then

a(2[h] + (s−1)h+ 1 +m) = kh−1 + a([h] + (s−1)h+ 1 +m).

Proof. Let the node n be in the subforest h or in the super-node, call it y, that is the parent
of the subforest h. Let x1, . . . , xk−1 be the k−1 children of y which are not the left-most
child of y, and denote the k subtrees of some xi to be Ti,1, Ti,2, . . . , Ti,k. We will establish
the following recurrence relation.

a(n) =







kh−1, if n = x1 or n ∈ y;

kh−2 + a(n− [h−1] − s− 1), if n ∈ T1,1;

kh−2 + a(n− [h−1]), if n ∈ T1,i where i = 2, 3, . . . , k;

kh−1 + a(n− [h]); otherwise.

(42)

Clearly, if n = x1 or n ∈ y, a(n) = kh−1. Let T be the subtree whose root is the rightmost
child of the leftmost child of y. In the second case above, we are relating the subtree T1,1 to
T . In this case we skip over kh−2 leaves and [h−1]+ s+1 nodes. In the third case above, we
are relating the remaining subtree of T1,i to T1,i−1. In this case we skip over kh−2 leaves and
[h−1] nodes. The final case relates the subtree rooted at xi to the subtree rooted at xi−1.
In this case we are skipping over kh−1 leaves and [h] nodes.

From the proof Lemma 33 we know that the labels in the super-node y are the labels in
the range [h] + (s − 1)h − s + 2 to [h] + (s − 1)h + 1. Therefore, since x1 is the next node
that is labeled, x1 = [h] + (s− 1)h + 2. Thus, the leftmost child of x1, which is the root of
TL, is x1 + 1 = [h] + (s− 1)h+ 3. The second child of x1 would be [h] + [h−1] + (s− 1)h+ 3,
and x2 would be 2[h] + (s− 1)h+ 2. Thus, we know the range of values for each of the cases
in (42), and we can see that the theorem statement is another way of writing (42).

It should be clear from Theorem 35 that there are fs,k(n) and gs,k(n) such that a(n) =
fs,k(n) + a(n − gs,k(n)); such an expression for s = 1 is given in Corollary 34. However,
there does not seem to be any nice way of expressing them in general. As an example of the
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challenges involved, one of the breaks in the cases above occurs when n = [h]+(s−1)(h−1)+1.
This can be solved for h to yield

h =
1

(s−1)k′ ln k

(

(k′(n−2+s)+1) ln k − (s−1)k′W

(
k(k′(n−2+s)+1)/((s−1)k′) ln k

(s− 1)k′

))

,

where W is the Lambert W-function (solution of z = W (z)eW (z)), and k′ = k − 1.

9 Conclusions and Open Problems

In this paper, we showed three combinatorial interpretations for the sequence as,k(n). The
first two are based on our generation of the infinite ordered trees Fs,k and F ′

s+1,k, and the
third is based on integer compositions. We also proved several equations which relate the
as,k(n) sequences to one another. We also provided generating functions for as,k(n), as well
as the related sequences ds,k(n) and ps,k(n).

Listed below are a few open problems related to these sequences.

• If A(z) is the generating function of an increasing sequence an, is there any general
way to determine the generating function B(z) of the 0,1 sequence where bm = 1 if
and only if there is some n for which an = m. Conversely, is there a general way to
determine A(z) from B(z).

• It is interesting that φ3(n) − 1 appears to be OEIS sequence A096346, which is the
complement of the sequence A004128(n) =

∑

j≥0⌊n/3
j⌋, the 3-adic valuation of 3n!.

We conjecture that this is true.

• Find a composition interpretation of as,k for s < 0.

• Are there any nice generalizations of the Cloitre-Sloane style self-referential recurrence
relations that are related to as,k for s 6= 0?
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