Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.1

A Curious Bijection on Natural Numbers

B. J. Venkatachala
MO Cell, HBCSE(TIFR)
Department of Mathematics
Indian Institute of Science
Bangalore-560012
India
jana@math.iisc.ernet.in

Abstract

We give a greedy algorithm for describing an enumeration of the set of all natural numbers such that the sum of the first n terms of the sequence is divisible by n for each natural number n. We show that this leads to a bijection f of the set of all natural numbers onto itself that has some nice properties. We also show that the average function of the first n terms of the sequence satisfies a functional equation which completely describes all the properties of the function f. In particular, f turns out to be an involution on the set of all natural numbers.

1 Introduction

The following problem was posed by A. Shapovalov [1]:
Does there exist a sequence of positive integers containing each positive integer exactly once such that the sum of the first k terms is divisible by k for each $k=1,2,3, \ldots$?

The published solution, though ingenious, is not intuitive. Shapovalov inductively defines a sequence $\left\langle a_{n}\right\rangle$, which appears as a sequence A019444 in Sloane's Encyclopedia of Integer Sequences [3], as follows. Put $a_{1}=1$ and having defined $a_{1}, a_{2}, \ldots, a_{k}$, first compute $n_{k}=$ $\left(a_{1}+a_{2}+\cdots+a_{k}\right) / k$. Now define

$$
a_{k+1}= \begin{cases}n_{k}, & \text { if } n_{k} \text { is not already in the set }\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \\ n_{k}+k+1, & \text { if } n_{k} \text { is in the set }\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\end{cases}
$$

It is not clear, a priori, that n_{k} is an integer - which is necessary to conclude that k divides $a_{1}+a_{2}+\cdots+a_{k}$. The proposer first proves this by induction and then proceeds to prove that such a sequence indeed has the required property.

Equivalently one has to find a bijection f on \mathbb{N}, the set of all natural numbers, such that n divides $f(1)+f(2)+\cdots+f(n)$ for each n. A natural approach is the so called the greedy algorithm. One can start with $f(1)=1$ and having defined $f(j)$ for $1 \leq j \leq n$, the choice for $f(n+1)$ is the least positive integer l, not in the set $\{f(1), f(2), \ldots, f(n)\}$, such that $(n+1)$ divides $f(1)+f(2)+\cdots+f(n)+l$. Since $f(1)=1$, the value of $f(2)$ cannot be equal to 1 although $f(1)+1$ is divisible by 2 . The natural choice is $f(2)=3$, for then 3 is not yet assumed by the function f and $1+3=4$ is divisible by 2 . Since $f(1)+f(2)+2=6$ is divisible by 3 and 2 is not in the set $\{f(1), f(2)\}$, the algorithm proposes $f(3)=2$. Now, although $f(1)+f(2)+f(3)+2=8$ is divisible by 4 , it is not possible to choose $f(4)=2$ since 2 is already in the set $\{f(1), f(2), f(3)\}$. However if we add 4 more, then $8+4=12$ is also divisible by 4 and $2+4=6$ is not in the set $\{f(1), f(2), f(3)\}$. Thus it is natural to choose $f(4)=6$. A similar reasoning shows that $f(5)$ may be chosen 8 and $f(6)$ may be chosen 4. This process can be continued to compute $f(n)$ for at least small values of n. The following table gives an idea how the greedy algorithm works and the nature of $f(n)$ for small n. The table also includes the average function $h(n)=\frac{f(1)+f(2)+\cdots+f(n)}{n}$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$f(n)$	1	3	2	6	8	4	11	5	14	16	7	19	21	9	24	10	27	29	12
$h(n)$	1	2	2	3	4	4	5	5	6	7	7	8	9	9	10	10	11	12	12

There are some interesting properties of the functions $f(n)$ and $h(n)$ as evident from the table, some are simple and some are more deep. In fact we have the following results.

Lemma 1. Let f and h be functions defined on \mathbb{N} as above. Then
(I) h is a nondecreasing function on \mathbb{N} and $h(n) \leq n$;
(II) $h(n+1)=h(n)$ or $h(n)+1$, for all $n \in \mathbb{N}$;
(III) $h(n+1)=h(n) \Longleftrightarrow f(n+1)=h(n)$, for all $n \in \mathbb{N}$;
$(\mathbf{I V}) h(n+1)=h(n)+1 \Longleftrightarrow f(n+1)=h(n)+n+1$, for all $n \in \mathbb{N}$.
Much deeper properties of the functions f and h are given by Theorem 1.
Theorem 1. The functions f and h also satisfy, for all $n \in \mathbb{N}$,
$(\mathbf{V}) h(h(n))+h(n+1)=n+2$;
(VI) $f(f(n))=n$;
(VII) $h(h(n)+n)=n+1$.

A close look at this way of defining f and Shapovalov's sequence $\left\langle a_{n}\right\rangle$ shows that $f(n)=$ a_{n}. Indeed a_{k+1} is defined using the previous average $n_{k}: a_{k+1}=n_{k}$ if n_{k} is not already a_{j} for some $j \leq k$; and $a_{k+1}=n_{k}+k+1$ if n_{k} is used up to define some a_{j}. This is precisely forced in greedy algorithm, but one need to prove it. The table also exhibits some nice properties of h and f. The most intriguing are (V), (VI) and (VII). In particular the property (VI) shows that f is indeed a bijection. We prove all these in the sequel.

The involutive property of f is mentioned in [3]. Apart from this, no other property is mentioned in the literature to the best knowledge of author.

Among several properties of the functions h and f as stated in Theorem 1, is it possible to single out a particular property which tells about the remaining ones? It turns out that (\mathbf{V}) is indeed one such property. In fact it completely describes all the rest. It is not surprising in view of the fact that the functional equation

$$
h(h(n))+h(n+1)=n+2,
$$

for all $n \in \mathbb{N}$, uniquely determines the function h. The surprising fact is that this function is related to the Golden Ratio α, given by $\alpha=(1+\sqrt{5}) / 2$. In fact, one can show that $h(n)=\lfloor n \alpha\rfloor-n+1$, where $\lfloor x\rfloor$ denotes the greatest integer not exceeding x; [2]. However, without actually computing $h(n)$ explicitly, it is possible to show that the above relation directly leads to a bijection of the desired type. The following theorem elucidates these facts.

Theorem 2. Suppose $h: \mathbb{N} \rightarrow \mathbb{N}$ is a function such that

$$
\begin{equation*}
h(h(n))+h(n+1)=n+2, \tag{1}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$. Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(1)=1$ and

$$
f(n+1)= \begin{cases}h(n), & \text { if } h(n+1)=h(n) ; \\ h(n)+n+1, & \text { if } h(n+1)=h(n)+1 .\end{cases}
$$

Then f is a bijection on \mathbb{N} such that for each $n \in \mathbb{N}$, the sum $f(1)+f(2)+\cdots+f(n)$ is divisible by n.

Thus the functional equation (1) on \mathbb{N} uniquely determines a function h on \mathbb{N} and this leads to a bijection f on \mathbb{N} such that for every natural number n the sum $f(1)+f(2)+\cdots+$ $f(n)$ is divisible by n, which was sought by Shapovalov.

2 Proof of Lemma 1

We prove some simple properties of f and h in this section, as stated in Lemma 1 .
Proof. We use induction on n. These are easy to verify for $n=1,2$ using the table of values of f and h given earlier. Suppose these hold for all j, where $1 \leq j \leq n$. Thus we have $h(j) \leq j$, for $1 \leq j \leq n$; $h(j+1)=h(j)$ or $h(j)+1$, for $1 \leq j \leq n-1$. This in particular implies that $h(1) \leq h(2) \leq \cdots \leq h(n)$. Moreover $f(j+1)=h(j) \Longleftrightarrow h(j+1)=h(j)$, for
$1 \leq j \leq n-1$ and $f(j+1)=h(j)+j+1 \Longleftrightarrow h(j+1)=h(j)+1$, for $1 \leq j \leq n-1$. Let l be the least positive integer such that $(n+1)$ divides $f(1)+f(2)+\cdots+f(n)+l$. Thus

$$
(n+1) k=f(1)+f(2)+\cdots+f(n)+l=n h(n)+l,
$$

for some k. Since $n h(n)+h(n)$ is divisible by $(n+1)$, the definition of l implies that $l \leq h(n)$. Suppose, if possible, $l<h(n)$. Then $n h(n)+l$ and $n h(n)+h(n)$ are both divisible by $(n+1)$, and

$$
n h(n)<n h(n)+l<n h(n)+h(n) .
$$

Thus we see that $h(n)-l$ is divisible by $n+1$. This forces $h(n)-l \geq n+1$ contradicting the induction hypothesis $h(n) \leq n$. We conclude that $l=h(n)$. In other words, the least positive integer l such that $(n+1)$ divides $f(1)+f(2)+\cdots+f(n)+l$ is equal to $h(n)$, the average of $f(1)+f(2)+\cdots+f(n)$.

If $h(n)$ does not belong to the set $\{f(1), f(2), \ldots, f(n)\}$, then the definition of $f(n+$ 1), via the greedy algorithm, shows that $f(n+1)=h(n)$. If $h(n)$ is already in the set $\{f(1), f(2), \ldots, f(n)\}$, then we consider $h(n)+n+1$. Obviously $f(1)+f(2)+\cdots+f(n)+$ $h(n)+n+1$ is a multiple of $(n+1)$. It is our intention to prove that $h(n)+n+1$ is not in the set $\{f(1), f(2), \ldots, f(n)\}$. Suppose to the contrary that $h(n)+n+1$ lies in the set $\{f(1), f(2), \ldots, f(n)\}$. Then $h(n)+n+1=f(j)$ for some $j \leq n$. Induction hypothesis shows that $f(j)=h(j-1)$ or $h(j-1)+j$. If the first alternative holds, then

$$
h(n)+n+1=f(j)=h(j-1) \leq j-1<n,
$$

a clear contradiction. If on the other hand $f(j)=h(j-1)+j$, then

$$
h(n)+n+1=h(j-1)+j .
$$

This forces $h(n)-h(j-1)=j-n-1<0$, which is impossible since $h(j-1) \leq h(n)$ by induction hypothesis. Thus $h(n)+n+1$ is not an element of $\{f(1), f(2), \ldots, f(n)\}$. It follows that $h(n)+n+1$ is the least positive integer l not in the set $\{f(1), f(2), \ldots, f(n)\}$ such that $(n+1)$ divides $f(1)+f(2)+\cdots+f(n)+l$. By definition $f(n+1)=h(n)+n+1$.

Thus $f(n+1)=h(n)$ or $h(n)+n+1$. In the first case

$$
h(n+1)=\frac{f(1)+f(2)+\cdots+f(n)+h(n)}{n+1}=\frac{n h(n)+h(n)}{n+1}=h(n) .
$$

Similarly $h(n+1)=h(n)+1$ in the second case. On the other hand, $h(n+1)=h(n)$ forces $f(n+1)=h(n)$ and $h(n+1)=h(n)+1$ implies that $f(n+1)=h(n)+n+1$. It may also be observed that $h(n+1)=h(n)$ or $h(n)+1$ gives $h(n) \leq h(n+1)$ and $h(n+1) \leq n+1$. This proves inductive step and the properties (I)-(IV) are true for all values of n.

3 Some more consequences

Here are some more consequences of the definition and the properties proved in Lemma 1. These ar useful in completing the proof of Theorem 1.

- The function h does not assume the same value at three consecutive integers and hence it does not assme the same value at three distinct integers. Consequently $h(n+2)>h(n)$ for all $n \geq 1$.
Since h is a nondecreasing function of n, we have $h(n) \leq h(n+1) \leq h(n+2)$. If $h(n+2)=h(n+1)$, then $f(n+2)=h(n+1)$ and hence $h(n+1)$ is not in the set $\{f(1), f(2), \ldots, f(n), f(n+1)\}$, by definition. But $h(n+1)=h(n)$ implies that $f(n+1)=h(n)=h(n+1)$ showing that $h(n+1)$ is an element of the set $\{f(1), f(2), \ldots, f(n), f(n+1)\}$. (In fact equal to $f(n+1)$.) This contradiction proves the statement.
- The function h is surjective.

This follows from the fact that h is nondecreasing, it increases in steps of 0 or 1 and $h(n+2)>h(n)$ for all $n \geq 1$.

- The function f is surjective.

Take any $m \in \mathbb{N}$, and let $m=h(k)$. Such a k exists because h is surjective. Then either $h(k)$ belongs to the set $\{f(1), f(2) \ldots, f(k)\}$ or $f(k+1)=h(k)$. Thus m is in the range of f.

- The function f is one-one.

Suppose $f(m)=f(k)$ for some $m<k$. The property (IV) of f shows that $f(k)=$ $h(k-1)$ or $h(k-1)+k$. If $f(k)=h(k-1)$, then $f(m)=h(k-1)$ belongs to the set $\{f(1), f(2), \ldots, f(m)\}$ which itself is a subset of $\{f(1), f(2), \ldots, f(k-1)\}$, as $m \leq k-1$. By definition of f, it follows $f(k)=h(k-1)+k$ contradicting $f(k)=h(k-1)$.
Suppose on the other hand $f(k)=h(k-1)+k$. Now $f(m)=h(m-1)$ or $h(m-1)+m$. Since $m-1<k-1$, we have $h(m-1) \leq h(k-1)$ and hence

$$
h(m-1)=f(m)=f(k)=h(k-1)+k
$$

is impossible. If $h(k-1)+k=h(m-1)+m$, we have

$$
h(k-1)-h(m-1)=m-k<0,
$$

which again is impossible since $h(m-1) \leq h(k-1)$. Thus $f(m) \neq f(k)$ if $m \neq k$.

- The inequality $h(n) \leq n-2$ holds for all $n \geq 6$.

This follows from the observation $h(6)=4$ and and by an easy induction using the fact that h increases in steps of 0 or 1 .

- If $f(n+1)>h(n)$, then $f(j)>h(n)$ for all $j \geq n+1$.

In fact

$$
\begin{aligned}
f(n+2) \geq h(n+1) & =\frac{f(1)+f(2)+\cdots+f(n+1)}{n+1} \\
& =\frac{n h(n)+f(n+1)}{n+1} \\
& >h(n) .
\end{aligned}
$$

An easy induction proves that $f(j)>h(n)$ for all $j \geq n+1$.

- There are no integers $k \geq 2$ and l such that $f(k-1)=l$ and $f(k)=l+1$. In other words, f does not assume consecutive values at consecutive integers.
Suppose such a pair $k \geq 2$ and l exist. We may assume $k>2$, for this result is immediate for $k=2$. Thus $f(k)=f(k-1)+1$ and hence

$$
\begin{aligned}
k h(k) & =f(1)+f(2)+\cdots+f(k) \\
& =f(1)+f(2)+\cdots+f(k-2)+2 f(k-1)+1 \\
& =(k-2) h(k-2)+2 f(k-1)+1 .
\end{aligned}
$$

This implies that

$$
k(h(k)-h(k-2))=-2 h(k-2)+2 f(k-1)+1 .
$$

Now $h(k)-h(k-2)=1$ or 2 , since h does no assume the same value at three consecutive integers. It cannot be equal to 2 , for then left side is even and right side is odd. Thus $h(k)=h(k-2)+1$ and hence

$$
\begin{aligned}
k & =-2 h(k-2)+2 f(k-1)+1 \\
& =2(f(k-1)-h(k-2))+1
\end{aligned}
$$

But $f(k-1)=h(k-2)$ or $h(k-2)+k-1$. In both the cases $k=1$ contradicting $k>2$.

4 Proof of Theorem 1

We prove the deeper properties of h and f as stated in Theorem 1. The following properties hold for all values of $n \in \mathbb{N}$:
(V) $h(h(n))+h(n+1)=n+2$;
(VI) $f(f(n))=n$;
$(\mathbf{V I I}) h(h(n)+n)=n+1$.
We use induction to prove these statements. For $n=1$, it is a routine verification:

$$
f(1)=1, h(1)=1, h(2)=2, h(1)+1=2 ;
$$

hence

$$
\begin{gathered}
h(h(n))+h(n+1)=h(h(1))+h(2)=h(1)+h(2)=3=n+2 ; \\
f(f(n))=f(f(1))=f(1)=1=n ; \\
h(h(n)+n)=h(h(1)+1)=h(2)=2=n+1 .
\end{gathered}
$$

These may also be verified for $n=2,3,4,5,6$. So we assume that $m>6$ and (V)-(VII) are true for all $n \leq m$. We prove them for $n=m+1$. We have to prove three statements:
(a) $h(h(m+1))+h(m+2)=m+3$;
(b) $f(f(m+1))=m+1$;
(c) $h(h(m+1)+m+1)=m+2$.

Proof of (a): We have either $h(m+1)=h(m)$ or $h(m+1)=h(m)+1$. If $h(m+1)=$ $h(m)+1$, we have two possibilities: $h(m+2)=h(m+1)$ or $h(m+2)=h(m+1)+1$. We consider these three cases separately.

Case (i). Suppose $h(m+1)=h(m)$. Since h does not take the same value at three consecutive integers, it follows that $h(m+2)$ cannot be equal to $h(m+1)$. Hence $h(m+2)=$ $h(m+1)+1$. Induction hypothesis gives

$$
\begin{aligned}
h(h(m+1))+h(m+2) & =h(h(m))+h(m+1)+1 \\
& =(m+2)+1=m+3
\end{aligned}
$$

Case (ii). Suppose on the other hand $h(m+1)=h(m)+1$, but $h(m+2)=h(m+1)$. Here we have either $h(h(m)+1)=h(h(m))$ or $h(h(m)+1)=h(h(m))+1$. If $h(h(m)+1)=$ $h(h(m))$, then it must be the case that $h(h(m)+2)=h(h(m)+1)+1$; otherwise h assumes the same value at three consecutive integers $h(m), h(m)+1$ and $h(m)+2$. Thus using the property (IV), we obtain

$$
\begin{aligned}
f(h(m)+2) & =h(h(m)+1)+h(m)+2 \\
& =h(h(m)+1)+h(m+1)+1 \\
& =h(h(m))+h(m+1)+1 \\
& =(m+2)+1 \\
& =m+3
\end{aligned}
$$

where induction hypothesis is invoked. But $h(m)+2 \leq m$ for $m \geq 6$. Again by induction hypothesis, we get

$$
f(f(h(m)+2))=h(m)+2 .
$$

It follows that

$$
\begin{aligned}
f(m+3) & =h(m)+2 \\
& =h(m+1)+1=h(m+2)+1
\end{aligned}
$$

But this is impossible, since either $f(m+3)=h(m+2)$ or $h(m+2)+m+3$. We conclude that $h(h(m)+1)=h(h(m))$ is not possible.

Thus we must have $h(h(m)+1)=h(h(m))+1$. In this case

$$
\begin{aligned}
h(h(m+1))+h(m+2) & =h(h(m)+1)+h(m+1) \\
& =h(h(m))+1+h(m+1) \\
& =(m+2)+1=m+3,
\end{aligned}
$$

where again induction hypothesis that $h(h(m))+h(m+1)=m+2$ is used.
Case (iii). Suppose $h(m+1)=h(m)+1$ and $h(m+2)=h(m+1)+1$. Here again we have two possibilities: $h(h(m)+1)=h(h(m))$ or $h(h(m)+1)=h(h(m))+1$.

If $h(h(m)+1)=h(h(m))$ holds, we have

$$
\begin{aligned}
h(h(m+1))+h(m+2) & =h(h(m)+1)+h(m+1)+1 \\
& =h(h(m))+h(m+1)+1 \\
& =(m+2)+1=m+3,
\end{aligned}
$$

using $h(h(m))+h(m+1)=m+2$.
If on the other hand $h(h(m)+1)=h(h(m))+1$, then the property (IV) shows that

$$
\begin{aligned}
f(h(m)+1) & =h(h(m))+h(m)+1 \\
& =h(h(m))+h(m+1) \\
& =m+2 .
\end{aligned}
$$

Since $h(m+1) \leq m$, induction hypothesis gives

$$
h(m+1)=f(f(h(m+1)))=f(m+2) .
$$

But then (III) implies that $h(m+2)=h(m+1)$ contradicting $h(m+2)=h(m+1)+1$. Thus the case $h(h(m)+1)=h(h(m))+1$ cannot occur when $h(m+1)=h(m)+1$ and $h(m+2)=h(m+1)+1$.

This completes the proof of (\mathbf{V}) for $n=m+1$.
Proof of (b): Here again there are two cases: $f(m+1)=h(m)$ or $f(m+1)=h(m)+m+1$.
Case (i). Suppose $f(m+1)=h(m)$. By the property (III), we have $h(m+1)=h(m)$. Put $j=h(m)-1$. Since $h(m+1)=h(m)$ and h does not assume the same value at three consecutive integers, we must have $h(m)=h(m-1)+1$. Thus $j+1=h(m)=f(m+1)$ and

$$
\begin{aligned}
h(j+1)+j & =h(h(m))+h(m)-1 \\
& =h(h(m))+h(m+1)-1 \\
& =m+1
\end{aligned}
$$

we have used induction hypothesis that $h(h(m))+h(m+1)=m+2$.
Suppose, if possible, $h(j+1)=h(j)$. Then $h(j)+j=h(j+1)+j=m+1$ and hence

$$
h(h(m)-1)+h(m)-1=m+1 .
$$

Now $h(m)-1=h(m-1)$ and hence

$$
h(h(m)-1)+h(m)-1=h(h(m-1))+h(m)-1=(m+1)-1=m
$$

by induction hypothesis. Thus we obtain an absurd conclusion that $m+1=m$. It follows that $h(j+1)=h(j)+1$ and hence one obtains from (IV)

$$
f(j+1)=h(j)+j+1=h(j+1)+j=m+1 .
$$

It follows that $f(f(m+1))=m+1$.
Case (ii). Suppose $f(m+1)=h(m)+m+1$, so that $h(m+1)=h(m)+1$. Here put $j=h(m)+m$. Thus $j+1=h(m)+m+1=f(m+1)$, and using induction hypothesis one obtains

$$
h(j)=h(h(m)+m)=m+1 .
$$

We show that $h(j+1)=h(j)$ in this case. Suppose the contrary that $h(j+1)=h(j)+1$. Then (IV) shows that

$$
f(j+1)=h(j)+j+1>h(j) .
$$

The property of f shows that (section $\mathbf{3}$), $f(l)>h(j)$ for all $l \geq j+1$. Since f is surjective, it must be the case that

$$
h(j) \in\{f(1), f(2), \ldots, f(j)\} .
$$

Thus $h(j)=f(r)$ for some $r \leq j$. If $m+1<r<j$, then $f(r)=h(j)=m+1<r$. However $f(r)=h(r-1)$ or $h(r-1)+r$. The bound $f(r)<r$ implies that $f(r)=h(r-1)$ which corresponds to $h(r)=h(r-1)$. Thus it follows $h(r-1)=h(r)=f(r)=h(j)$, where $r-1<r<j$. However this contradicts the property of h that it does not assume the same value at three integers. If $r=m+1$, then again $h(j)=f(r)=f(m+1)=j+1$ contradicting $h(j) \leq j$. If $r<m+1$, then $f(r)=h(j)=m+1$ and hence $f(m+1)=f(f(r))=r$ by induction hypothesis. This implies that $f(m+1)=r \leq m$. However $f(m+1)=h(m)$ or $h(m)+m+1$. Using $f(m+1) \leq m$, it may be concluded that $f(m+1)=h(m)$. But then $h(m+1)=h(m)$, contradicting $h(m+1)=h(m)+1$. The only choice left is $r=j$. Thus $h(j)=f(r)=f(j)$ and this gives

$$
f(j)=h(j)=h(h(m)+m)=m+1 \leq j .
$$

Using $f(j)=h(j-1)$ or $h(j-1)+j$, it may be concluded that $f(j)=h(j-1)$. Using (III), $h(j)=h(j-1)=f(j)$ and

$$
f(j)=h(j-1)=h(j)=h(h(m)+m)=m+1 .
$$

Using induction hypothesis,

$$
h(h(m-1)+m-1)=m .
$$

Comparing this with $h(h(m)+m-1)=h(j-1)=h(j)=m+1$, it follows that $h(m)=$ $h(m-1)+1$. Thus, we obtain

$$
f(m)=h(m-1)+m=h(m)-1+m=j-1 .
$$

Using induction hypothesis, we also have $f(f(m))=m$. Thus two relations $f(j-1)=m$ and $f(j)=m+1$ are obtained. But this is impossible since f does not assume consecutive values at consecutive integers. We conclude that $h(j+1)=h(j)$. In this case

$$
f(j+1)=h(j)=m+1,
$$

and hence $f(f(m+1))=m+1$.

Proof of (\mathbf{c}) : Here again there are two possibilities: $h(m+1)=h(m)$ or $h(m)+1$.
Case (i). Suppose $h(m+1)=h(m)+1$. Then

$$
\begin{aligned}
h(h(m+1)+m+1) & =h(h(m)+m+2) \\
& =h(h(m)+m)+1 \text { or } h(h(m)+m)+2 .
\end{aligned}
$$

Suppose $h(h(m)+m+2)=h(h(m)+m)+2$ holds. Then induction hypothesis gives $h(h(m)+m)=m+1$ and

$$
h(h(m+1)+m+1)=h(h(m)+m)+2=m+1+2=m+3 .
$$

We observe that

$$
h(m)+m \leq h(m)+m+1 \leq h(m+1)+m+1 .
$$

Since h is surjective, we conclude $h(h(m)+m+1)=m+2$.
If $h(h(m)+m)=h(h(m)+m-1)+1$, then $h(h(m)+m-1)=m$. Moreover the condition $h(h(m)+m+1)=m+2=h(h(m)+m)+1$ implies that $h(h(m)+m)$ lies in the set $\{f(1), f(2), \ldots, f(h(m)+m)\}$. Thus $h(h(m)+m)=f(r)$ for some $r \leq h(m)+m$. Therefore

$$
f(r)=h(h(m)+m)=m+1=f(f(m+1)),
$$

from (b). Since f is one-one, it follows that $r=f(m+1)$. Thus the bound $f(m+1)=$ $r \leq h(m)+m$ is obtained. However $f(m+1)=h(m)$ or $h(m)+m+1$. The bound $f(m+1) \leq h(m)+m$ shows that $f(m+1)=h(m)$. But then $h(m+1)=h(m)$ contradicting $h(m+1)=h(m)+1$. Thus the relation $h(h(m)+m)=h(h(m)+m-1)$ must be true.

We have therefore $h(h(m)+m-1)=h(h(m)+m)=m+1$ and $h(h(m-1)+m-1)=$ m. Comparing these two, it may be concluded that $h(m)=h(m-1)+1$. However this corresponds to $f(m)=h(m-1)+m$ and hence by induction hypothesis

$$
m=f(f(m))=f(h(m-1)+m) .
$$

Now we have

$$
h(h(m-1)+m)=h(h(m)+m-1)=m+1 .
$$

The properties (III) and (IV) show that

$$
\begin{aligned}
f(h(m-1)+m)= & h(h(m-1)+m-1) \\
& \text { or } h(h(m-1)+m-1)+h(m-1)+m .
\end{aligned}
$$

If the first alternative holds, then $h(h(m-1)+m)=h(h(m-1)+m-1)$ and hence

$$
m+1=h(h(m-1)+m)=h(h(m-1)+m-1)=m
$$

where we have used induction hypothesis in the last equality. This absurdity implies that the first alternative cannot be true.

If the second alternative holds, then again

$$
m=f(h(m-1)+m)=h(h(m-1)+m-1)+h(m-1)+m>m
$$

which is impossible.
We may thus conclude that $h(h(m)+m+2)=h(h(m)+m)+2$ is not valid. But then

$$
h(h(m)+m+2)=h(h(m)+m)+1=(m+1)+1=m+2 .
$$

Case (ii). Suppose $h(m+1)=h(m)$. Then

$$
h(h(m+1)+m+1)=h(h(m)+m+1)=h(h(m)+m) \text { or } h(h(m)+m)+1 .
$$

In the first case

$$
f(h(m)+m+1)=h(h(m)+m)=m+1=f(f(m+1)),
$$

by (b). Since f is one-one, it follows that $f(m+1)=h(m)+m+1$. But then $h(m+1)=$ $h(m)+1$ contradicting $h(m+1)=h(m)$. Thus the second alternative holds and we obtain

$$
h(h(m+1)+m+1)=h(h(m)+m+1)=h(h(m)+m)+1=m+2 .
$$

This completes the proofs of (a), (b) and (c). We conclude that (V), (VI) and (VII) hold for all values of n, thus completing the proof of Theorem 1 .

5 Proof of Theorem 2

We prove several properties of the function h satisfying the equations (1), which are useful in the proof of Theorem 1. First of all, it is necessary to check that the definition of f makes sense. In other words, it is part of the result that $h(n+1)=h(n)$ or $h(n)+1$ and these are the only possibilities for the growth of h. This is proved as a consequence of the relation (1).

Lemma 2. Suppose $h: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the functional equation (1):

$$
h(h(n))+h(n+1)=n+2 .
$$

Then h is a nondecreasing function on \mathbb{N} and $h(n+1)=h(n)$ or $h(n)+1$ for all $n \in \mathbb{N}$. Moreover $h(n) \leq n$ for all $n \in \mathbb{N}$ and $h(n) \leq n-2$ for all $n \geq 6$.

Proof. We first show that $h(1)=1, h(2)=2, h(3)=2, h(4)=3, h(5)=4$ and $h(6)=4$. Putting $n=1$ in (1), we obtain

$$
h(h(1))+h(2)=3 .
$$

Since all the numbers involved are natural numbers, $h(2) \leq 2$. Thus $h(2)=1$ or 2 . Suppose $h(2)=1$. Taking $h(1)=k$, the above relation gives $h(k)=2$. Taking $n=2$ in (1), we also get

$$
h(h(2))+h(3)=4 .
$$

Thus $h(3)=4-h(1)=4-k$. Since $h(3) \geq 1$, it follows that $k \leq 3$. Thus $k=1,2$ or 3 . If $k=1$, then

$$
2=h(h(1))=h(k)=h(1)=k=1,
$$

a contradiction. If $k=2$, then again

$$
2=h(h(1))=h(k)=h(2)=1
$$

giving a contradiction. Finally $k=3$ gives

$$
2=h(h(1))=h(k)=h(3)=4-k=4-3=1,
$$

which again is absurd. Thus $h(2)=1$ is not feasible. It follows $h(2)=2$ and $h(k)=1$. Now taking $n=2$ in (1), we obtain

$$
h(h(2))+h(3)=4 .
$$

This leads to

$$
h(3)=4-h(h(2))=4-h(2)=4-2=2 .
$$

Recursively, we get

$$
\begin{aligned}
& h(4)=5-h(h(3))=5-h(2)=5-2=3, \\
& h(5)=6-h(h(4))=6-h(3)=6-2=4, \\
& h(6)=7-h(h(5))=7-h(4)=7-3=4 .
\end{aligned}
$$

Now an easy induction shows that $h(n) \geq 2$ for all $n \geq 2$. Suppose $h(1)=k \geq 2$. Then

$$
3=h(h(1))+h(2)=h(k)+h(2) \geq 2+2=4,
$$

which is impossible. Thus $h(1)=1$ and the the first few values of h are obtained.
The values of $h(n)$ for $n=1,2,3$ show that

$$
\begin{aligned}
& h(2)=2=h(1)+1, \\
& h(3)=2=h(2) .
\end{aligned}
$$

Suppose $h(j)=h(j-1)$ or $h(j-1)+1$ for all $j \leq n$. Now (1) gives

$$
\begin{aligned}
& h(h(n))+h(n+1)=n+2, \\
& h(h(n-1))+h(n)=n+1
\end{aligned}
$$

Subtraction gives

$$
h(h(n))-h(h(n-1))+h(n+1)-h(n)=1 .
$$

If $h(n)=h(n-1)$, then the above relation gives $h(n+1)-h(n)=1$. If $h(n)=h(n-1)+1$, then

$$
h(h(n))=h(h(n-1)+1)=h(h(n-1)) \text { or } h(h(n-1))+1,
$$

since $h(n-1) \leq n-1$ and the induction hypothesis is applicable. In the first case, $h(n+1)=$ $h(n)+1$; in the second case, $h(n+1)=h(n)$. Thus it follows that $h(n+1)=h(n)$ or $h(n)+1$. Hence h increases in steps of 0 or 1 .

It also follows that $h(j) \leq h(k)$ for $j \leq k$. Moreover the proof also reveals that whenever $h(n)=h(n-1)+1$ and $h(h(n-1)+1)=h(h(n-1))+1$, then $h(n+1)=h(n)$.

Equation (1) shows that $h(n+1) \leq n+1$. Since $h(1)=1$, it follows that $h(n) \leq n$ for all n. If $n \geq 6$, then $h(n) \geq h(6)=4$. This implies that $h(h(n)) \geq h(4)=3$. Thus

$$
h(n+1)=n+2-h(h(n)) \leq n+2-3=n-1,
$$

for all $n \geq 6$. Since $h(6)=4$, it follows that $h(n) \leq n-2$ for all $n \geq 6$.

Lemma 3. Let h be a function satisfying the equation (1). Then h cannot take the same value at three consecutive integers. Moreover, h cannot take four distinct values at four consecutive integers.

Proof. Suppose, if possible, $h(n)=h(n+1)=h(n+2)$, for some n. Now (1) gives

$$
\begin{aligned}
h(h(n))+h(n+1) & =n+2 \\
h(h(n+1))+h(n+2) & =n+3
\end{aligned}
$$

Using $h(n+2)=h(n+1)$, the above relations give $h(h(n+1))=h(h(n))+1$. However $h(n+1)=h(n)$ forces $h(h(n+1))=h(h(n))$. These two are incompatible and hence $h(n)=h(n+1)=h(n+2)$ cannot happen.

Suppose h assumes four distinct values at four consecutive integers. Since h increases in steps of 0 or 1 , we may assume say $h(n+1)=h(n)+1, h(n+2)=h(n+1)+1=h(n)+2$, and $h(n+3)=h(n+2)+1=h(n)+3$. Using (1),

$$
\begin{aligned}
h(h(n))+h(n+1) & =n+2, \\
h(h(n+1))+h(n+2) & =n+3, \\
h(h(n+2))+h(n+3) & =n+4 .
\end{aligned}
$$

It follows that

$$
h(h(n))=h(h(n+1))=h(h(n+2)),
$$

which reduces to

$$
h(h(n))=h(h(n)+1)=h(h(n)+2) .
$$

But this contradicts the property of h that it cannot assume the same value at three consecutive integers. Thus it follows that h cannot take four distinct values at four consecutive integers.

Lemma 4. For each $n \in \mathbb{N}$,

$$
h(n)=\frac{(f(1)+f(2)+\cdots+f(n))}{n} .
$$

Thus the sum $f(1)+f(2)+\cdots+f(n)$ is divisible by n, for each $n \in \mathbb{N}$.
Proof. We use induction on n. For $n=1,2$, this may be verified using $h(1)=1, h(2)=2$, $f(1)=1$ and $f(2)=3$. Suppose the relation holds for all $j \leq n$. If $h(n+1)=h(n)$, then $f(n+1)=h(n)$ and hence

$$
\frac{f(1)+f(2)+\cdots+f(n)+f(n+1)}{n+1}=\frac{n h(n)+h(n)}{n+1}=h(n)=h(n+1) .
$$

If, on the other hand, $h(n+1)=h(n)+1$, then $f(n+1)=h(n)+n+1$ and hence

$$
\frac{f(1)+f(2)+\cdots+f(n)+f(n+1)}{n+1}=\frac{n h(n)+h(n)+n+1}{n+1}=h(n)+1=h(n+1) .
$$

This proves inductive step and hence proves the assertion.

Lemma 5. The function h, satisfying the equation (1) further satisfies the relation

$$
h(h(n)+n)=n+1,
$$

for all $n \in \mathbb{N}$.
Proof. For $n=1,2$ this may be verified using the values $h(1)=1$ and $h(2)=2$. Suppose it holds for all $j \leq n$; i.e., $h(h(j)+j)=j+1$, for all $j \leq n$. Consider $h(h(n+1)+n+1)$. If $h(n+1)=h(n)$, then

$$
h(h(n+1)+n+1)=h(h(n)+n+1)=h(h(n)+n) \text { or } h(h(n)+n)+1 .
$$

Suppose $h(h(n)+n+1)=h(h(n)+n)$. Then replacing n in (1) by $h(n)+n$, it takes the form

$$
h(h(h(n)+n))+h(h(n)+n+1)=h(n)+n+2 .
$$

If we use induction hypothesis, it reduces to

$$
h(n+1)+h(h(n)+n)=h(n)+n+2,
$$

or to $h(n+1)=h(n)+1$. This contradicts $h(n+1)=h(n)$. We conclude that $h(h(n)+n+1)=$ $h(h(n)+n)+1$. Thus

$$
h(h(n+1)+n+1)=h(h(n)+n)+1=(n+1)+1=n+2 .
$$

Suppose on the other hand $h(n+1)=h(n)+1$. In this case

$$
h(h(n+1)+n+1)=h(h(n)+n+2)=h(h(n)+n)+1 \text { or } h(h(n)+n)+2 .
$$

If $h(h(n)+n+2)=h(h(n)+n)+2$, then this implies that $h(h(n)+n+2)=h(h(n)+n+1)+1$ and $h(h(n)+n+1)=h(h(n)+n)+1$, because h increases in steps of 0 or 1 . Using (1),

$$
h(h(h(n)+n+1))+h(h(n)+n+2)=h(n)+n+3 .
$$

This may be written in the form

$$
h(h(h(n)+n)+1)+h(h(n)+n)+2=h(n)+n+3 .
$$

The induction hypothesis reduces it to

$$
h(n+2)+n+3=h(n)+n+3 .
$$

Thus $h(n+2)=h(n)$. This forces $h(n+2)=h(n+1)=h(n)$, contradicting Lemma 3. We conclude that $h(h(n)+n+2)=h(h(n)+n)+1$. But then

$$
h(h(n+1)+n+1)=h(h(n)+n+2)=h(h(n)+n)+1=(n+1)+1=n+2 .
$$

This proves the result for $j=n+1$ and completes the induction.

We now complete the proof of Theorem 2 . We show that f is, in fact, an involution on \mathbb{N}, i.e., $f(f(n))=n$, for each n.

Proof of Theorem 2. Since $f(1)=1, f(2)=3$ and $f(3)=2$, the result is true for $n=1,2,3$. Suppose $n>3$ and $f(f(j))=j$, for all $j \leq n$. We show that $f(f(n+1))=n+1$. We consider two cases: $h(n+1)=h(n)$ and $h(n+1)=h(n)+1$.

Case 1. Suppose $h(n+1)=h(n)$. Then $f(n+1)=h(n)$. Put $j=h(n)-1$, and observe that $j>0$ since $n>3$. Since $h(n+1)=h(n)$, Lemma 3 shows that $h(n)=h(n-1)+1$. Hence $j=h(n)-1=h(n-1)$, and $j+1=h(n)=f(n+1)$. Observe that

$$
\begin{aligned}
h(j+1)+j & =h(h(n))+h(n)-1 \\
& =h(h(n))+h(n+1)-1 \\
& =(n+2)-1=n+1 .
\end{aligned}
$$

We show that $h(j+1)=h(j)+1$. Suppose the contrary that $h(j+1)=h(j)$. Then $h(j)+j=h(j+1)+j=n+1$. Thus

$$
n+1=h(j)+j=h(h(n-1))+h(n)-1=(n+1)-1=n,
$$

which is absurd. It follows that $h(j+1)=h(j)+1$ and hence

$$
f(j+1)=h(j)+j+1=h(j+1)+j=n+1 .
$$

Thus we obtain $f(f(n+1))=n+1$.
Case 2. Suppose on the other hand $h(n+1)=h(n)+1$ and hence $f(n+1)=h(n)+n+1$. Put $j=h(n)+n$. Then $h(j)=h(h(n)+n)=n+1$, by Lemma 5 and $j+1=h(n)+n+1=$ $f(n+1)$. We show that $h(j+1)=h(j)$ in this case. If not, we must have $h(j+1)=h(j)+1$ and hence

$$
h(h(n)+n+1)=h(h(n)+n)+1=n+2 .
$$

Now (1) gives

$$
h(h(h(n)+n))+h(h(n)+n+1)=h(n)+n+2 .
$$

This reduces to

$$
h(n+1)+n+2=h(n)+n+2 .
$$

Thus $h(n+1)=h(n)$, contradicting $h(n+1)=h(n)+1$. It follows that $h(j+1)=h(j)$ and using the definition of f, we obtain

$$
f(j+1)=h(j)=n+1
$$

We obtain $f(f(n+1))=n+1$.
Thus we see that $f(f(n))=n$ for all $n \in \mathbb{N}$. This implies that f is a bijection on \mathbb{N}. Lemma 4 shows that n divides $f(1)+f(2)+\cdots+f(n)$ for all $n \in \mathbb{N}$.

6 Acknowledgements

The author thanks referee for invaluable comments which helped in improving the presentation of the results in the paper.

References

[1] A. Shapovalov, Problem M 185, Quantum, 7 (1), (September/October 1996), pp. 22, 59.
[2] B. J. Venkatachala, Functional Equations, A Problem Solving Approach, Prism Books Pvt. Ltd., Bangalore, India, 2002.
[3] N. J. A. Sloane, The On-Line Encylopedia of Integer Sequences.

2000 Mathematics Subject Classification: Primary 11B13.
Keywords: Shapovalov, curious bijection, greedy algorithm.
(Concerned with sequence A019444.)

Received revised version received Published in Journal of Integer Sequences,

Return to Journal of Integer Sequences home page.

