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Abstract

We establish an explicit formula for the number of chord diagrams on 2n points with

k short chords and compute the expected number of short chords in a chord diagram.

1 Introduction

The chord diagrams made of n non-intersecting chords joining 2n points on a circle are among
better known of some 170 combinatorial representations of Catalan numbers: they appear,
as entry (n), in the fourteenth place in the famous Exercise 6.19 of Stanley’s Enumerative

Combinatorics 2 [2]. In popular literature they are often described as handshakes of 2n
people seated around a circular table. The fact that extending one’s hand for a handshake
does not really mean extending it, i.e., increasing its length, is usually quietly ignored. Hence,
the description is highly unrealistic for all but the smallest values of n, and even for those
there is a serious danger of dipping your cravat in a soup-bowl while bending over the table
to shake hands with the diametrally opposite person. We all know from experience that the
most sensible thing to do in such situation is to shake hands with your neighbors, and to
politely nod to the rest. It is immediately clear that there are exactly two ways to have n
handshakes involving only the nearest neighbors. Moreover, in any possible arrangement of n
handshakes there are always at least two (lucky) pairs who do it in the most comfortable way,
and a moment’s reflection will suffice to convince you that there are exactly n configurations
in which exactly 2 pairs of neighbors are involved. It is, therefore, legitimate to look at
how many ways there are to have n (non-crossing) handshakes so that k of them are among
neighbors. Further, if we assume that only the handshakes among neighbors are feasible, it
would be interesting to know how many feasible handshakes there are in a randomly chosen
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arrangement. In other words, how many out of Cn chord diagrams have exactly k short
chords for a given 2 ≤ k ≤ n, and how many short chords should we expect in an average
chord diagram? (A chord is short if it connects two neighboring points on the cycle.)

2 Explicit formulas

We answer the above questions by revisiting a classical bijection among chord diagrams and
Dyck paths. A Dyck path is a lattice path from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1)
never falling below the x-axis. It is well known that Dyck paths on 2n steps are counted
by the Catalan numbers (A000108 of [1]); indeed, they appear as incarnation (j) in the
above-mentioned exercise in [2]. It is also well known that the number of Dyck paths on 2n
steps with exactly k peaks is given by the Narayana number N(n, k) = 1

n

(

n

k

) (

n

k−1

)

. (See
Exercise 6.36 of [2] for more on Narayana numbers, as well as the references and links in [1],
A001263.)

Let us denote the number of all chord diagrams with n chords with exactly k short chords
by K(n, k). From the introductory section we know that K(n, 2) = n and K(n, n) = 2.

Proposition 2.1.

K(n, k) = N(n, k) − N(n − 1, k) + N(n − 1, k − 1).

Proof. We consider the bijection between the chord diagrams and Dyck paths implicit in the
solution of Exercise 6.19 (n) [2, p. 261]. It has been rediscovered several times, the earliest
reference being from 1931. The bijection in the case n = 3 is illustrated in Fig. 1.
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Figure 1: Bijection between chord diagrams and Dyck paths.

Let us consider a chord diagram of n chords connecting 2n points on a circle. The
points are labelled by numbers 1, 2, . . . , 2n so that the labels increase by one in the clockwise
direction. Hence each short chord either connects points m and m + 1 for some 1 ≤ m ≤

2n − 1, or connects the points labelled by 2n and 1. We start from point 1, and travel
along the circle in the clockwise direction. Along the way we construct a Dyck path by
starting from the empty path and adding a step whenever we encounter a chord. For the
first encounter with a given chord we add a (1, 1) step, for the second encounter we add a
(1,−1) step to the already constructed path. It is clear that so constructed path is indeed
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a Dyck path. Furthermore, each short chord connecting two consecutively labelled points
gives rise to a consecutive pair of (1, 1) and (1,−1) steps, thus yielding a peak in the Dyck
path. On the other hand, between the two steps corresponding to a short chord connecting
2n and 1 there are 2n−2 steps. Those steps form a valid Dyck path, and hence the resulting
Dyck path is elevated. The number of such paths with k−1 peaks is given by N(n−1, k−1).
Hence, the number of chord diagrams with k short cords that contain the chord (2n, 1) is
given by N(n − 1, k − 1). The number of chord diagrams with k short chords that do not
contain the chord (2n, 1) is equal to the number of non-elevated Dyck paths on 2n steps with
k peaks, and there are N(n, k) − N(n − 1, k) such paths. Since each chord diagram either
contains the chord (2n, 1) or not, our result follows by adding the two expressions above.

By a straightforward manipulation we obtain the following compact explicit formula for
the number of chord diagrams with exactly k short chords.

Theorem 2.1.
K(n, k) = 2

n

k
N(n − 1, k − 1).

The number triangle K(n, k) appears as sequence A108838 in [1], along with a couple
of combinatorial interpretations in terms of Dyck paths and parallelogram polyominoes.
Besides providing another combinatorial meaning of A108838, the present note allows one
to easily compute the expected number of short chords in a chord diagram (and hence the
expected number of the refining parameters in Dyck paths and parallelogram polyominoes).
Let E(K(n)) denote the expected number of short chords in a chord diagram on n chords.
By substituting our explicit formula for K(n, k) into

∑

n

k=2
kK(n, k) we obtain the total

number of short chords as
∑

n

k=2
N(n − 1, k − 1) = 2nCn−1, and the expected number of

short chords is obtained by dividing the result by the total number of diagrams.

Corollary 2.1.

E(K(n)) = 2n
Cn−1

Cn

.

Proof.

E(K(n)) =

∑

n

k=2
kK(n, k)

∑

n

k=2
K(n, k)

= 2n

∑

n

k=2
N(n − 1, k − 1)

Cn

= 2n
Cn−1

Cn

.

By taking into account the asymptotic behavior of the quotient Cn−1/Cn −→
1

4
, one

obtains E(K(n)) −→ n

2
. Hence, for large n, one can expect that about half of all chords in

a chord diagram will be short. In other words, about half of all non-crossing handshakes of
2n people are feasible.
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