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Abstract

Kim and Drake used generating functions to prove that the number of 2-distant
noncrossing matchings, which are in bijection with little Schröder paths, is the same
as the weight of Dyck paths in which downsteps from even height have weight 2. This
work presents bijections from those Dyck paths to little Schröder paths, and from a
similar set of Dyck paths to big Schröder paths. We show the effect of these bijections
on the corresponding matchings, find generating functions for two new classes of lattice
paths, and demonstrate a relationship with 231-avoiding permutations.

1 Introduction and preliminaries

This work begins with the work of Kim and the present author [5] in which they studied,
among other things, 2-distant noncrossing matchings. Such matchings—which will be defined
shortly—are naturally enumerated by little Schröder paths. In the process of describing
connections between k-distant noncrossing matchings and orthogonal polynomials, Drake
and Kim used generating functions to show that little Schröder paths are equinumerous
with a certain set of labeled Dyck paths. We present here a bijective proof of that fact; the
bijection has a number of interesting properties and is a consequence of a bijection between
big Schröder paths and a similar set of labeled Dyck paths.

We begin with definitions of the combinatorial objects mentioned above. The notation
[n] refers to the set of positive integers from 1 to n. A matching of [n] is a set of vertex-
disjoint edges in the complete graph on n vertices so that every vertex is adjacent to exactly
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one edge. For our purposes, a matching can also be viewed as a permutation whose cycles
all have length 2, or a set partition whose blocks all have size 2. We will draw matchings by
arranging the vertices horizontally and drawing arcs, as in Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: A matching of [12].

Drake and Kim [5] define a k-distant crossing as a pair of arcs (i1, j1) and (i2, j2), with
i1 < i2 < j1 < j2 and j1 − i2 ≥ k. The arcs (6, 11) and (8, 12) of the matching in Figure 1
form a 3-distant crossing; the arcs (1, 4) and (3, 7) form a 1-distant crossing. A k-distant

noncrossing matching is simply a matching with no k-distant crossing. The matching in
Figure 1 is 4-distant noncrossing. (This notion of k-distant crossing is different from the
k-crossings of matchings studied by, for example, Chen et al. [3]; their work concerns sets of
k mutually crossing edges, and ignores the distance between vertices.)

In a 2-distant noncrossing matching, crossing edges are allowed as long as the right vertex
of the left edge is adjacent to the left vertex of the right edge. This fact allows us to describe
a bijection from 2-distant noncrossing matchings to a certain class of lattice paths. A lattice
path of length n is a sequence (p0, p1, . . . , pn) of points in N ×N; the kth step of the path is
the pair (pk−1, pk). A step is called an upstep if the component-wise difference of pk −pk−1 is
(1, 1), and a downstep if the difference is (1,−1). In this work, we will use paths with double

horizontal steps, which is a pair of adjacent steps whose component-wise differences are both
(1, 0). By a minor abuse of terminology, a double horizontal step will usually be called a
horizontal step. A little Schröder path is a lattice path consisting of upsteps, downsteps,
and horizontal steps, such that no horizontal step occurs at height zero. See Figure 2 for an
example of such a path.

It is not difficult to describe a bijection from 2-distant noncrossing matchings to little
Schröder paths: convert every vertex at the left end of an arc to an upstep and every vertex
at the right end of an arc to a downstep—except for adjacent vertices involved in a crossing:
convert those vertices into a horizontal step. This operation is a bijection because, given a
little Schröder path, one can recover the matching by drawing an opening half edge at every
upstep, two crossing half edges at every horizontal step, and a closing half edge at every
downstep. Then connect every closing half-edge to the nearest opening half-edge to create
a matching. See Figure 2 for an example of this correspondence.

The little Schröder numbers sn (sequence A001003 in the OEIS [8]) count 2-distant
noncrossing matchings of [2n] and also little Schröder paths of length 2n. If horizontal steps
on the x-axis are allowed, one has a big Schröder path; the number of such paths of length
2n is Sn, the big Schröder number (sequence A006318) and it is well known that Sn = 2sn

for n > 0; see the next section and also Deutsch’s bijective proof [4].
We need several more definitions related to lattice paths. The first is the step that matches

a step. For an upstep u, the matching step is the rightmost downstep to the left of u that
leaves from the same height at which the upstep ends; the definition for a downstep is similar.
For a horizontal step h not on the x-axis, the matching step is the leftmost downstep to the
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2: An example of the bijection between 2-distant noncrossing matchings and little
Schröder paths (left), and the correspondence between the edges incident to vertices of the
matching and steps in the little Schröder path (right).

right of h that leaves from the same height as h; in the corresponding 2-distant noncrossing
matching, the matching downstep corresponds to the rightmost vertex involved in the two
crossing edges. For example, the step matching the first horizontal step in Figure 2 is the
last downstep. We will write paths using “U” for upsteps, “HH” for horizontal steps, “D”
for regular downsteps, and “d” for special downsteps, which will be defined in section 2. The
path in Figure 2 is UUDHHUHHDUUDDD.

1.1 Orthogonal polynomials and weighted Motzkin paths

When one has a sequence of positive numbers, in many cases it is possible to describe that
sequence as the moments of a sequence of orthogonal polynomials. In other words, given
{µn}n≥0, define a measure (or a linear functional on polynomials; the two are equivalent
here) by

∫

xn dµ = µn and find polynomials {Pn(x)}n≥0 so that the integral

∫

Pn(x)Pm(x) dµ = 0

when n 6= m and is nonzero when n = m. Many classical combinatorial sequences produce
sequences of orthogonal polynomials: the Catalan numbers produce Chebyshev polynomials
of the second kind, matching numbers produce Hermite polynomials, factorials produce
Laguerre polynomials, and so on.

Viennot described a completely combinatorial theory of orthogonal polynomials [13, 12]
in which the moments of a sequence of orthogonal polynomials are expressed as weighted
Motzkin paths. A Motzkin path is a lattice path that consists of upsteps, downsteps and
single horizontal steps (steps that move (1, 0)); a weighted Motzkin path has a weight λn

associated with every downstep leaving from height n, a weight bn for every horizontal step at
height n, and weight 1 for all upsteps. For many orthogonal polynomial moment sequences,
the weights bn are zero, which means the corresponding moments may be described by
weighted Dyck paths; a Dyck path is just a Motzkin path with no horizontal steps.

Drake and Kim [5] showed that the number of 2-distant noncrossing matchings of [2n]—
little Schröder numbers—is the same as the total weight of weighted Dyck paths of length
2n in which downsteps leaving from odd height have weight 1, and downsteps leaving from
even height have weight 2. They proved this equality using equation (2) of Kim and Zeng [6]

3



(or equation (1) of Vauchassade de Chaumont and Viennot [2]), which in the present context
is

sn =
∑

k≥0

1

n

(

n

k

)(

n

k + 1

)

2k; (1)

in both works, the authors demonstrate that the sum above represents the generating func-
tion for the weighted Dyck paths described above. However, the sum also counts little
Schröder paths, since

(

n

k

)(

n

k+1

)

/n is a Narayana number (sequence A001263), which counts
Dyck paths of length 2n with k + 1 peaks and k ravines. A peak is an upstep immediately
followed by a downstep, and a ravine is a downstep immediately followed by an upstep.
Between two consecutive peaks, there must be exactly one ravine, so having k + 1 peaks is
equivalent to having k ravines. Any ravine can clearly be “filled in” and replaced with a
horizontal step, so a Dyck path with k ravines corresponds to 2k little Schröder paths, which
explains equation (1). On the other hand, any peak can be “flattened” into a horizontal
step, so we also have

Sn =
∑

k≥0

1

n

(

n

k

)(

n

k + 1

)

2k+1 (2)

because peaks can occur on the x-axis. This provides one explanation for why there are
twice as many big Schröder paths as little ones.

1.2 Plan of the paper

The aim of this work is to demonstrate a bijection from weighted Dyck paths whose down-
steps at even height have weight 2 to little Schröder paths. That bijection will be a minor
modification of a bijection from big Schröder paths to a similar class of Dyck paths; both
bijections will in turn be consequences of more refined bijections between classes of little and
big hybrid paths, which are described in section 2. In section 3 we show the effect of those
bijections on the corresponding matchings, and then find generating functions for little and
big hybrid paths in section 4. We finish by showing that our bijections are closely related to
231-avoiding permutations in section 5.

2 Description of the bijection

Instead of working with Dyck paths in which downsteps from even height have weight 2, we
will work with Dyck paths in which such downsteps may or may not be labeled “special”;
the two ideas are clearly equivalent. Such paths will be called even-special Dyck paths and
abbreviated “ESDPs”; odd-special Dyck paths (ODSPs) are defined similarly.

We will first describe a bijection E∞ from odd-special Dyck paths to big Schröder paths—
our desired bijection from even-special Dyck paths to little Schröder paths will follow from
a minor modification of that bijection. The bijection E∞ will be a consequence of a more
refined bijection E between two classes of what we will call big hybrid paths. Big hybrid

paths include odd-special Dyck paths and any path obtained by applying E to a big hybrid
path. To understand this recursive definition, we must define the map E.
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(a) When the special step is preceded by an upstep, E

and e simply “flatten” the two steps.

P

P

(b) When the special step is preceded by a downstep, E and e

find the matching up step and “slide” P .

Figure 3: The action of bijections E and e on the leftmost special down step in a hybrid
path.

Definition 1. Given a hybrid path, the map E does nothing to the path if the path contains
no special steps. Otherwise, given a hybrid path with k horizontal steps, E yields a hybrid
path with k + 1 horizontal steps by the following procedure. Find the leftmost special step
in the hybrid path. If that step is preceded by an upstep, flatten the upstep and special
downstep by replacing them with a horizontal step. If the special step is preceded by a
downstep d, find the upstep u that matches d and let P be the (possibly empty) subpath
between u and d. Replace u with a horizontal step, delete d, slide P so that it follows the
horizontal step, and make the original special step an ordinary downstep.

Figure 3 demonstrates the flatten and slide operations. All the paths in Figure 4 are big
hybrid paths.

The map E clearly preserves the total number of special and horizontal steps and, for
paths with at least one special step, reduces the number of special steps by one. It is also a
bijection:

Theorem 2. The map E is a bijection from the set of odd-special Dyck paths of length n
with no special steps to the set of big Schröder paths of length n with no horizontal steps.
It is also a bijection from the set of big hybrid paths of length n with j special steps and k
horizontal steps to the set of big hybrid paths with j − 1 special steps and k + 1 horizontal
steps.

We will show that E is a bijection by describing a procedure for finding the horizontal
step that was added last; the operation described in Theorem 1 and Figure 3 is obviously
reversible if we know which horizontal step was added last. Before giving the proof, let’s
see why this identification is not as simple as it may sound. The problem is that sometimes
E “moves forward” and sometimes E “moves backward”. Figure 4 shows what we mean by
this. A horizontal step may be created by E to the left, to the right, or in the middle of the
existing horizontal steps, so the left- or rightmost horizontal step need not be the last one
added.

One may think that, since horizontal steps from slides are always created at odd height
and horizontal steps from flattenings are created at even height, it might be possible to use
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1
2 1

3
2 1

(a) The horizontal steps added by E move “backwards” when doing repeated slide operations.

1 1 2 1 2 3

(b) The horizontal steps added by E move “forwards” when doing repeated flatten operations.

1 1 2 1
23

(c) Horizontal steps can also be added between existing horizontal steps.

Figure 4: The horizontal steps created by E are not necessarily added left-to-right. The
three paths on the far right look similar, but their horizontal steps were added in different
orders.

that information to identify the last-added step, but since slides change the height of parts
of the path by one, a simple examination of odd and even heights will not suffice.

Proof of Theorem 2. The first statement of the theorem is trivial, as it is saying that E acts
as the identity on the set of Dyck paths. For the second statement, we must show that
it is possible to identify which horizontal step was added last. This can be done with the
following procedure.

Partition the path into subpaths that consist of either a sequence of non-horizontal steps,
or a horizontal step, its matching step, and all steps in between. The only part of a path
altered by E when adding a horizontal step is between the horizontal step and its matching
downstep, so if a horizontal step b is to the right of the downstep matching a horizontal
step a, then b must have been added after a. (This is a special case of Lemma 10.) This
fact tells us that the last-added horizontal step must be in the rightmost such subpath that
contains a horizontal step. Call that subpath the first active subpath. Figure 5 illustrates
this partitioning process.

Figure 5: The partitioning process to find the first active subpath, which is the rightmost
subpath with a horizontal step.

If the first active subpath starts with a horizontal step on the x-axis, then, because
horizontal steps on the x-axis can only be created with a flatten operation, the rightmost
horizontal step in the subpath must be the last-added step.

Otherwise, we may assume the first active subpath starts with a horizontal step at some
positive height. If that step is at odd height, that step is the last-added horizontal step,
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because the slide operation of E creates horizontal steps at odd height, and, as seen in
Figure 4a, as one moves forward along a sequence of downsteps, some of which are special
steps, E creates horizontal steps at the beginning of the first active subpath.

If the step at the beginning of the first active subpath is at even height, we must partition
the path again. Now partition the first active subpath into sequences of horizontal steps at
the same height as the original horizontal step and subpaths that begin with an upstep and
end at the downstep matching the upstep. Call these two kinds of sequences valleys and
hills, respectively. Using the same reasoning as before, the last-added horizontal step must
be in the rightmost hill or valley that contains a horizontal step. Call that hill or valley the
second active subpath. In the subpath of Figure 6, the final hill is the second active subpath.

even height

valley hill hill valley hill

Figure 6: Partitioning the first active subpath into hills and valleys. The second active
subpath is the rightmost hill or valley with a horizontal step.

If the second active subpath is a valley, the rightmost step in the valley is the most recently
added horizontal step because steps in a valley must come from the flattening operation.

If the second active subpath is a hill, we recursively use the procedure described here to
identify the last-added step within that hill. Since the hill begins at even height, the path is
of the same form as the hybrid paths we began with.

Since the paths have finite length and the recursion step uses a shorter path than it
started with, this procedure always finishes, and since the “exit points” always identify what
must be the most recently added step, the procedure as a whole will identify the last-added
horizontal step of a hybrid path.

For example, with the second active subpath in Figure 6, we would recursively use the
procedure on the final hill. The procedure in the proof above, given that hill (UUHHDd) as
a single path would identify HHD as the first active subpath then, since the horizontal step
is at even height, partition again and identify the valley HH as the second active subpath,
and finally declare that single horizontal step as the most recently added horizontal step. In
Figure 7, step 12, starting at (14, 2), is the last-added horizontal step.

2.1 Consequences of the bijection

If we start with an odd-special Dyck path, we can use E to iteratively “evolve” the path
into a big Schröder path. (In fact, we use E to suggest the word “evolve”.) Let E∞ be the
resulting map from odd-special Dyck paths to big Schröder paths. Since E is a bijection
and preserves the total number of special steps and horizontal steps, we have the following
corollary of Theorem 2.
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Corollary 3. The map E∞ is a bijection from odd-special Dyck paths of length n with k
special steps to big Schröder paths of length n with k horizontal steps.

The operation described in Theorem 1 and Figure 3 does not refer to the parity of the
heights of the special steps, so we may use it with even-special Dyck paths. Define the map
e the same way as E, but starting with even-special Dyck paths. Little hybrid paths are
defined analogously to big hybrid paths. By simply switching “odd” and “even” in the proof
of Theorem 2 and ignoring the possibility of sequences of horizontal steps on the x-axis, we
see that e is also a bijection:

Corollary 4. The map e is a bijection from the set of even-special Dyck paths of length n
with no special steps to the set of little Schröder paths of length n with no horizontal steps.
It is also a bijection from the set of little hybrid paths of length n with j special steps and k
horizontal steps to the set of hybrid paths with j − 1 special steps and k + 1 horizontal steps.

By defining e∞ analogously to E∞, we accomplish our goal of showing bijectively that
the little Schröder numbers enumerate even-special Dyck paths of length n:

Corollary 5. The map e∞ is a bijection from even-special Dyck paths of length n with k
special steps to little Schröder paths of length n with k horizontal steps.

Figure 7 shows an example of e∞.

e∞

Figure 7: An example of the bijection e∞.

The connections between colored or labeled Dyck paths and the little Schröder numbers
have also been studied by Asinowski and Mansour [1, §4]; in their work, they colored ascents
in Dyck paths with various kinds of paths. An ascent is a maximal sequence of up steps, and
they colored ascents of length k with Fibonacci paths of length 2k, which they defined to
be Dyck paths that consist only of pyramids (a pyramid is a Dyck path of the form UnDn).
Asinowski and Mansour gave a bijection from the set of Dyck paths with ascents of length
k colored by Fibonacci paths (DF(n), in their notation) to the set of little Schröder paths.
This weighting of Dyck paths is different from the weighting of our even-special Dyck paths;
for example, the path UUDUDD corresponds to four even-special Dyck paths but only two
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paths with ascents labeled by Fibonacci paths—one can label the initial UU ascent with
UDUD or UUDD.

We can also enumerate even- and odd-special Dyck paths by number of special steps.
Using the reasoning behind equations (1) and (2), which counted Schröder paths by changing
peaks or ravines in Dyck paths into horizontal steps, the bijections above imply that the
number of even-special Dyck paths of length 2n with j special steps is, for positive n,

∑

k≥0

N(n, k)

(

k

j

)

= N(n, j) 2F1

(

j − n j − n + 1
j + 2

)

=
1

n

(

n

j

)(

2n − j

n + 1

)

, (3)

where N(n, k) is again a Narayana number and the 2F1 notation is a hypergeometric function
evaluated at one, which we can sum with the Chu-Vandermonde identity. The above triangle
of numbers is sequence A126216. Similarly, the number of odd-special Dyck paths of length
2n with j special steps is, for positive n,

∑

k≥0

N(n, k)

(

k + 1

j

)

= N(n, j−1) 2F1

(

j − n j − n − 1
j

)

=
1

n − j + 1

(

n

j

)(

2n − j

n

)

; (4)

the middle expression is not defined when j = 0, but in that case, the sum on the left is
just the sum of the Narayana numbers—a Catalan number—so the rightmost expression is
correct for all nonnegative j. The triangle in equation (4) is sequence A060693.

3 Hybrid paths as matchings

This work began with an investigation of certain matchings, and since little hybrid paths
were developed to describe our bijection, it is fitting that we examine the connection between
little hybrid paths and matchings. We already know that little Schröder paths correspond
to 2-distant noncrossing matchings, so first we will describe an interpretation of even-special
Dyck paths. Using the bijection from Schröder paths to matchings, a Dyck path with no spe-
cial steps corresponds to a noncrossing matching, so it is reasonable to interpret special steps
in the path as special edges in the matching. For example, the path UUdUUUDDdD cor-
responds to the noncrossing matching {(1, 10), (2, 3), (4, 9), (5, 8), (6, 7)} in which the edges
between 2 and 3 and between 4 and 9 are special.

To interpret paths with both special steps and horizontal steps and understand the action
of e in terms of paths, we need to define nesting. An edge (i1, j1) in a matching nests the
edge (i2, j2) if i1 < i2 < j2 < j1. An edge a in a matching immediately nests edge b if a nests
b, and any other edge that nests b also nests a.

Before describing the action of the flatten and slide operations on “hybrid matchings”,
we need one observation.

Lemma 6. Let h be a double horizontal step in a little hybrid path. Let d be the downstep
matching h and u the upstep matching d. The step in the path corresponding to the rightmost
(respectively, leftmost) vertex involved in the 1-distant crossing at h is either d (resp., u) or
the leftmost (resp., rightmost) horizontal step to the right (resp., left) of h which is at the
same height as h, whichever is closer to h.
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Proof. A key idea in this proof is that a sequence of steps in a hybrid path that begins with
an upstep and ending with the matching downstep—what we called a hill in the proof of
Theorem 2— corresponds to a set of vertices in the matching that form a “submatching”.
Let h be a double horizontal step in a little hybrid path, and partition the path as we did to
find the second active subpath in the proof of Theorem 2 (but ignore the height of h). The
first step in h corresponds to an opening half edge x. To what vertex will x be connected?
Any hill to the right of h corresponds to a group of vertices that form a submatching, and
hence x will not be connected to any of them. If there is a double horizontal step between h
and d, then x will be connected to the vertex corresponding to the second step of the leftmost
such double horizontal step; otherwise, x will be connected to the vertex corresponding to
d. The proof for the “respectively” part of the statement is similar.

For example, in Figure 2, the horizontal step at positions 4 and 5 corresponds to the
1-distant crossing in the matching in the same position; step 14 in the Schröder path is the
downstep that matches the horizontal edge, so the right vertex of the edge incident to vertex
4 is vertex 14; and step 1 in the path is the upstep that matches step 14, so vertex 1 is
the left vertex of the edge incident to vertex 5. Another example is UHHUDHHD; vertex
2 in the corresponding matching (which is {(1, 3), (2, 7), (4, 5), (6, 8)}) connects to vertex 7
because the second horizontal step is at the same height as the first, and is between the first
horizontal step and its matching downstep.

Now we can describe the corresponding action of the bijection e on hybrid matchings.

M1 M2 M1 M2

(a) The flatten operation when applied to a matching just “swaps tails”.

a bc

M1

b − 1c + 1

M2

a bc

M1

c + 1

M2

(b) The slide operation when applied to a matching. Note that the edge from c to b − 1
may actually be several edges, as in UUUHHDdD, where b − 1 is 6 and c is 3.

Figure 8: The effect of e on matchings. This is the matchings version of Figure 3.

Theorem 7. The analogue of the flatten operation for hybrid paths works as follows on
matchings: given a special edge connecting vertices c and c+1, find the edge that immediately
nests that special edge; say it connects a and b. Then “swap the tails”: replace the edges
(c, c + 1) and (a, b) with edges (c, b) and (a, c + 1).

Proof. The special downstep in the path (which is immediately preceded by an upstep,
since we are doing a flatten operation) becomes a horizontal edge. So there will be 1-distant
crossing at vertices c and c+1. We only need to find the other two vertices involved; because
of the way matchings are constructed from paths and Lemma 6, those other two vertices are
a and b.
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To define the analogue of the slide operation, we need to define the transitive left endpoint

of an edge. Given an edge e, the transitive left endpoint of that edge is simply the left
endpoint of e—unless the edge is the right edge in a 1-distant crossing; then the transitive
left endpoint of e is the transitive left endpoint of the left edge in the crossing. For example,
the transitive left endpoint of the edge (6, 8) in the matching {(1, 5), (2, 3), (4, 7), (6, 8)} is
1. In little hybrid paths, the transitive left endpoint corresponds to finding the upstep
that matches a downstep; because of Lemma 6, a matching upstep-downstep pair may not
correspond to the left and right vertices of a single edge.

Theorem 8. The analogue of the slide operation for paths works as follows on matchings:
given a special edge (a, b), let c be the transitive left vertex of the edge incident to vertex
b − 1. The slide operation on hybrid paths corresponds to replacing (a, b) and (c, b − 1) with
edges (a, c + 1) and (c, b) and sliding all half edges incident to vertices from c + 1 to b− 2 to
the right by one vertex.

Proof. Since we are doing a slide operation, the special step in the path must be preceded
by a ordinary downstep, which means b − 1 must be the right vertex of an ordinary edge
nested by the special edge. The new 1-distant crossing created by the slide operation will be
at the upstep that matches the downstep at b − 1, which as we saw above is the transitive
left endpoint of the edge incident to b − 1 in the matching. We create the new crossing at
vertices c and c + 1; the slide operation on the path moves all steps from c + 1 to b − 2 to
c + 2 to b− 1, so all half edges incident to vertices from c + 1 to b− 2 are moved to the right
one vertex.

Figure 8 demonstrates these two operations for matchings.

4 Enumeration of hybrid paths

Having defined and used hybrid paths it is natural to wonder just many of them there are.
Let Ln and Bn be the number of little and big hybrid paths, respectively. All big Schröder
paths and odd-special Dyck paths are big hybrid paths, and Dyck paths, which are counted
by the Catalan number Cn, are both big Schröder paths and OSDPs, so Bn is certainly at
least 2Sn − Cn, but there are paths such as HHUd which are neither Schröder paths nor
odd-special Dyck paths. Table 1 shows the number of all hybrid paths, little and big, for
some small values of n.

n: 0 2 4 6 8 10 12 14 16 18 20 22
little: 1 1 4 18 87 439 2278 12052 64669 350733 1918152 10560678
big: 1 3 11 47 219 1075 5459 28383 150131 804515 4355163 23768079

Table 1: The number of little and big hybrid paths.

One way to count hybrid paths is to begin with even- and odd-special Dyck paths with
j special steps, which are counted in equations (3) and (4); repeatedly applying e or E to
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such a Dyck path will produce j hybrid paths. Multiplying those equations by j + 1 and
summing over j yields, for little hybrid paths,

Ln = Cn 3F2

(

−n −n + 1 2
−2n 1

;−1

)

, (5)

where Cn is a Catalan number and the hypergeometric function is now evaluated at −1.
Similarly, the number of big hybrid paths is

Bn = Cn 3F2

(

−n −n − 1 2
−2n 1

;−1

)

. (6)

Another way to enumerate these paths is to find their generating functions. Let L(x) and
B(x) be the generating functions for little and big hybrid paths, respectively. We will use the
following generating functions: E(x) and O(x) for even- and odd-special Dyck paths, and
s(x) and S(x) for little and big Schröder paths. Of course, we already know that E(x) = s(x),
O(x) = S(x), S(x) = 2s(x) − 1, and

s(x) =
2

1 + x +
√

x2 − 6x + 1
,

but it will be helpful to use different names to keep different types of paths separate. In all
the generating functions considered here, paths of length 2n are weighted by xn.

Theorem 9. Let R =
√

x2 − 6x + 1. The ordinary generating function for little hybrid paths
is

L(x) =
R + 1 − x

2
· 2(R + x)

R(R + x + 1)
· 2

R + x + 1
(7)

and the ordinary generating function for big hybrid paths is

B(x) =

(

R + 1 − x

2
− 1 + x − R(R + x)

2
+

3

2
− 3x

2

)

2(R + x)

R(R + x + 1)
· 2

R + x + 1
. (8)

More explicitly, we have

L(x) =
1

8x

(

3x + 1 − 3x2 − 8x + 1√
x2 − 6x + 1

)

(9)

and

B(x) =
1

2x

(

1 − 2x2 − 7x + 1√
x2 − 6x + 1

)

− 1. (10)

Proof. We will decompose little and big hybrid paths to express L and B in terms of each
other and then solve the system. A key idea is that raising a big hybrid path up one unit
and sandwiching it between an upstep and downstep yields a valid little hybrid path, since
all the step height parities have effectively been reversed. Doing the same thing to a little
hybrid path yields a big hybrid path, although the resulting path will never have a horizontal
step at height 1.
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big hybrid P

little hybrid Q

Figure 9: A decomposition of a nonempty little hybrid path.

Every nonempty little hybrid path may be decomposed into an upstep, a big hybrid path
P , a downstep, then a little hybrid path Q, as shown in Figure 9. Any pair P and Q is
allowed, unless P has a special step and Q has a horizontal step.

Assume that P has a special step, so that Q has no horizontal step. Since S(x) counts big
hybrid paths with only upsteps, downsteps, and horizontal steps—in other words, with no
special steps—the generating function for big hybrid paths with a special step is B(x)−S(x);
similar reasoning shows that the generating function for little hybrid paths with no horizontal
steps is simply E(x). Thus the generating function for little hybrid paths with a special step
in their first components is x(B(x) − S(x))E(x).

On the other hand, if P doesn’t have a special step, then it is a big Schröder path and Q
can be any little hybrid path. The generating function for little hybrid paths with no special
step in their first components is therefore xS(x)L(x).

Every nonempty little hybrid path can be uniquely decomposed in this way and falls into
exactly one of the above categories, so adding in the empty path we have

L(x) = 1 + x(B(x) − S(x))E(x) + xS(x)L(x),

or, solving for L,

L(x) =
1 + x(B(x) − S(x))E(x)

1 − xS(x)
. (11)

The decomposition for big hybrid paths is slightly more involved. Given a big hybrid
path with an upstep, let s be the first downstep to return to the x-axis and decompose the
path as in Figure 10. In any such big hybrid path, either there is or is not a special step
before Q.

little hybrid P

s

big hybrid Q

Figure 10: A decomposition of a big hybrid path with an upstep. The path begins with a
possibly empty sequence of horizontal steps. The step s is the first downstep to return to
the x-axis; it may or may not be a special step.

Assume that there is a special step before Q, and that s is special. In that case, P can be
any little hybrid path, because if s is special, we know that no horizontal steps can appear
in P at height 1—such a step has s as its matching downstep and can only be created with
a slide operation that would make s an ordinary step. Since there are no horizontal steps

13



at height 1, P can be any little hybrid path, and since there are special steps preceding Q,
it cannot have any horizontal steps, and hence is an odd-special Dyck path. The generating
function for the possibly empty sequence of horizontal steps at the beginning is 1/(1 − x),
so the generating function for paths of this type is xL(x)O(x)/(1 − x).

If a special step appears before Q and s is ordinary, then P must have a special step and
cannot have a horizontal step at height 1. Assume there is such a horizontal step h. The
step h is at odd height and its matching step is s, so the only way h could be created is by
a slide operation that converts s from a special to an ordinary step, but since we process
special steps left to right, s would be converted from special to ordinary only if there were
no special steps in P , which is a contradiction. This means that P can be any little hybrid
path with a special step; the generating function for such paths is L(x)− s(x). The subpath
Q can therefore be any odd-special Dyck path, so the generating function for all such big
hybrid paths is x(L(x) − s(x))O(x)/(1 − x).

Finally, if there is no special step preceding Q, then P can be any big Schröder path,
and Q can be any big hybrid path. The generating function for such big hybrid paths is
xS(x)B(x)/(1 − x).

Every big hybrid path with an upstep falls into exactly one of the categories above, so,
including paths that consist only of a sequence of horizontal steps on the axis, we have

B(x) =
1

1 − x
+

xL(x)O(x)

1 − x
+

x(L(x) − s(x))O(x)

1 − x
+

xS(x)B(x)

1 − x
,

or, solving for B,

B(x) =
1 + xL(x)O(x) + x(L(x) − s(x))

1 − x − xS(x)
. (12)

Solving the system of equations (11) and (12) and using the fact that

s(x) = E(x) =
2

1 + x + R
=

1 + x − R

4x
and

S(x) = O(x) =
4

1 + x + R
− 1 =

1 + x − R

2x
− 1,

we obtain the desired expressions for L(x) and B(x).

It may seem that the generating functions L and B were described in equations (7) and
(8) in an unusual way, but the expressions show that L and B are in some sense built out of
familiar generating functions for paths:

2(R + x)

R(R + x + 1)
= 1 + 2x + 7x2 + 30x3 + 141x4 + · · ·

is the generating function for sequence A116363, which counts dot products of rows of Pas-
cal’s and Catalan’s triangle, and of course 2/(R + x + 1) is the generating function for the
little Schröder numbers. Also appearing in both L and B is

R + 1 − x

2
= 1 − x − xS(x),
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a minor modification of the generating function for the big Schröder numbers. In B, we see
that we have exactly −xS(x); the remaining terms in B are

−R(R + x)

2
+

3

2
− 3x

2

which is 1 + x + x2S(x).
The expressions in (9) and (10) for L(x) and B(x) allow us to derive new expressions for

the numbers of little and big hybrid paths. The expression 1/
√

x2 − 6x + 1 is the generating
function for the central Delannoy numbers (sequence A001850). The central Delannoy num-
ber Dn can be interpreted as the number of lattice paths from (0, 0) to (n, 0), not necessarily
above the x-axis, consisting of upsteps, downsteps, and double horizontal steps; they can be
expressed as

Dn =
∑

k≥0

(

n

k

)2

2k.

See Sulanke [11] for basic facts about the central Delannoy numbers and a collection of
objects enumerated by them. Using the generating function expressions, one may easily
derive the number of little hybrid paths of length 2n. Equation (9) implies that

Ln = −1

8
[xn+1]

3x2 − 8x + 1√
x2 − 6x + 1

= −1

8
(Dn+1 − 8Dn + 3Dn−1), (13)

and similarly (10) implies that

Bn = −1

2
[xn+1]

2x2 − 7x + 1√
x2 − 6x + 1

= −1

2
(Dn+1 − 7Dn + 2Dn−1). (14)

Both expressions above are valid for n ≥ 1 and are, of course, equal to the expressions in (5)
and (6), respectively. My thanks to the anonymous referee for pointing out the relationship
between the generating functions L(x) and B(x) and the central Delannoy numbers.

5 The bijections E and e and 231-avoiding permuta-

tions

While using the bijections E or e, one can keep track of the order in which horizontal steps
are added and thereby associate a permutation to an even- or odd-special Dyck path. For
example, the paths in Figure 4 correspond to the permutations 321, 123, and 132; the path
in Figure 7 corresponds to 12387465. In this section we will see that every permutation so
obtained must avoid the pattern 231. This is very interesting, since 231-avoiding permuta-
tions are counted by the Catalan numbers and hence are in bijection with Dyck paths; see
Mansour et al. [7, §3.1].

A permutation π = π1π2 · · · πn written in one-line notation contains a pattern σ (another
permutation) if there is some subset of the πi’s that are order-isomorphic to σ. A permu-
tation avoids a pattern if it does not contain it. The permutation 12584367 contains the
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pattern 231 because the subset 583 is order-isomorphic to 231, and avoids the pattern 3124.
The notation Sn(231) refers to the set of 231-avoiding permutations of [n].

We start with a lemma that tells us exactly when the horizontal steps created by two
special steps are added out of order—that is, when two special steps create the pattern 21.
Given a special step s, let h(s) refer to the horizontal step created when s is turned into an
ordinary step.

Lemma 10. Given two special steps a and b in a hybrid path with a to the left of b, h(b) is
created to the left of h(a) if and only if b is preceded by a downstep d and the upstep matching
d is to the left of a.

Proof. We only need to examine three possibilities: b is preceded by an upstep, b is preceded
by a downstep whose matching upstep is to the right of a, and b is preceded by a downstep
whose matching upstep is to the left of a. To work through those three cases, we need to
use the fact that for any special step s, h(s) is created to the left of s and to the right of
the downstep matching s. (When doing a flatten, “to the left” and “to the right” are weak
inequalities, since the horizontal step will be created in the same position as those steps.)

In the first case, if b is preceded by an upstep, then h(b) will clearly be to the left of h(a),
since h(b) will be created at the position of b, which is to the right of a.

If b is preceded by a downstep whose matching upstep is to the right of a, let u be that
matching upstep. Since h(b) will be created at u and the following step, h(b) is to the right
of a and hence to the right of h(a).

Finally, if b is preceded by a downstep whose matching upstep is to the left of a, let u
be that matching upstep. See Figure 3b; b would be the special step pictured in that figure,
u would be the upstep, and a would be somewhere in the subpath P , and since the upstep
matching a is also in that subpath, h(b) will be created to the left of h(a).

With that result, we can easily prove the following theorem.

Theorem 11. The permutation corresponding to the order in which horizontal steps are
added while transforming an even- or odd-special Dyck path into a small or large Schröder
path avoids the pattern 231.

Proof. Consider any three special steps a, b, and c in a hybrid path, appearing in that order
left to right. If these three steps cause the corresponding permutation to contain 231, then
we must have h(b), h(c), and h(a) in that order. The bijections E and e process special steps
left to right, so we first create h(a), and then create h(b) to the left of that. Now we must
have h(c) created to the right of h(b), which means by Lemma 10 either c is preceded by an
upstep, or is preceded by a downstep whose matching upstep is to the right of b, but both
of those possibilities cause h(c) to be to the right of h(a), which is a contradiction.

The permutations produced are therefore a subset of 231-avoiding permutations; next we
will see that every such permutation can be obtained from some even- or odd-special Dyck
path.

Theorem 12. Every 231-avoiding permutation can be obtained from some odd-special Dyck
path.
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Proof. Given a 231-avoiding permutation π = π1 · · ·πn, we use the following recursive pro-
cedure to construct an odd-special Dyck path that, when using E∞, will create horizontal
steps in the order specified by π.

To begin with, the empty permutation corresponds to the empty path. Given a nonempty
permutation π of length n, if πn = n, find the path corresponding to π1 · · ·πn−1 and append
the steps Ud to that path. (Recall that U refers to an upstep, and D and d refer to ordinary
and special downsteps, respectively.) We will call this an append operation; it corresponds
to the flatten operation. If a path P corresponds to the permutation π1π2 · · ·πn−1, then the
path obtained by appending Ud to P will correspond to π1π2 · · ·πn−1n.

If the permutation does not end with n, we will need the lift operation, which is defined
as follows: given an odd-special Dyck path of the kind produced by this procedure, find
an upstep leaving from the x-axis and let Q be the subpath consisting of that upstep and
everything following it. The lift operation, illustrated in Figure 11, replaces Q with a path
consisting of two upsteps, then Q, then an ordinary downstep and a special downstep. The
lift operation corresponds to the slide operation of E and e.

P Q P

Q

Figure 11: The lift operation. If the resulting path has n special steps, in the corresponding
permutation all numbers from P will precede n, and all numbers from Q will follow n.

For ease of description, define good insertion to be the operation of inserting n into a 231-
avoiding permutation of [n−1] anywhere except at the end so that the resulting permutation
is also 231-avoiding. We write P ↔ π if a path P , constructed using the append and lift
operations, corresponds to the permutation π.

Assume P ↔ π, where π ∈ Sn(231). Say that we obtain π′ by good insertion of n + 1
after the kth entry of π. We need to show:

1. that we can do a lift operation following the kth special step of P (that is, the kth
special step ends on the x-axis), and

2. the corresponding path P ′ corresponds to π′.

The path Ud corresponds to the permutation 1, and both claims are true for that path-
permutation pair. To prove the two claims in general, we need two propositions:

Proposition 13. If π ∈ Sn(231), good insertion can be done after the kth entry of π if and
only if the first k entries of π form a permutation of [k].

Proposition 14. Assume that P ↔ π. The kth special step of P ends on the x-axis if and
only if the first k entries of π form a permutation of [k].
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The proof of the first is elementary and left to the reader. As for the second, let s be
the kth special step of P . Assume s ends on the x-axis. Then by Lemma 10, the horizontal
step for every special step to the right of s will be created to the right of s, which means
the first k entries of π form a permutation of [k]. On the other hand, if s does not end on
the x-axis, then because of the definition of the lift operation, there must be a special step
to the right of s that is immediately preceded by a downstep d, with the upstep matching d
to the left of s. Therefore, by Lemma 10, there will be a number bigger than k among the
first k entries of π, so π1 · · ·πk will not form a permutation of [k].

The first claim above is now clear, since if π′ was obtained by good insertion into the
(k + 1)st position of π, then the first k entries of π form a permutation of [k], which in turn
means that the kth special step ends on the x-axis, and one can do a lift operation starting
with following step.

The second claim is also easy to see: say π = π1 · · · πn and π′ is obtained by good insertion
after πk. If one lifts P after the kth special step, the resulting path P ′ will correspond to
the permutation π′ because, following the lift operation, the special steps corresponding to
π1 · · ·πk and to πk+1 · · ·πn will be turned into horizontal steps in the same order (they are
either unchanged or simply raised by 2 units), and the final step of P ′ is a special downstep
that will be turned into a horizontal step that follows every horizontal step created by the
first k special steps of P ′ and precedes every horizontal step created by the (k + 1)st to nth
special steps.

Figure 12 shows an example of this procedure. The permutation 21354 is built from the
permutation 1 with the sequence “good insert into position 1, append, append, good insert
into position 4”; the path is built using the corresponding append and lift operations in the
same order.

21354 2134 213 21 1

Figure 12: An example of the recursive procedure to build an OSDP corresponding to a
231-avoiding permutation. Here we see how the path for 21354 is built up from the path
Ud. Below each path is the corresponding permutation.

One can also obtain every 231-avoiding permutation with even-special Dyck paths simply
by taking a path produced by this procedure and sandwiching it between an upstep and an
ordinary downstep. That produces an even-special Dyck path that clearly corresponds to
the same permutation.

We close with an interesting conjecture. The paths produced for 231-avoiding permuta-
tions of [n] are not all the same length; the lengths range from 2n for the path corresponding
to 123 · · ·n to 4n−2 for the path corresponding to n(n−1) · · · 21. An obvious question to ask
is: how are the lengths distributed? In other words, find the coefficients of the polynomial

∑

π∈Sn(231)

qpathlen(π),
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where pathlen(π) is the length of the path corresponding to π using the construction above.
We can also sum that expression over all n, since for a given length there can be only finitely
many permutations that correspond to a path of that length, and ask what generating
function we get.

The lengths appear to have the Narayana distribution; see sequence A001263 and Sulanke
[10]. The table below shows the polynomials for some small values of n.

n distribution of lengths n distribution of lengths
1 q2 4 q14 + 6q12 + 6q10 + q8

2 q6 + q4 5 q18 + 10q16 + 20q14 + 10q12 + q10

3 q10 + 3q8 + q6 6 q22 + 15q20 + 50q18 + 50q16 + 15q14 + q12

Table 2: The lengths of the OSDPs corresponding to 231-avoiding permutations of [n] appear
to be Narayana-distributed.

Conjecture 15. The lengths of the paths corresponding to 231-avoiding permutations of
[n] using the above construction have the Narayana distribution; that is,

∑

π∈Sn(231)

qpathlen(π) = q2n
∑

k≥0

N(n, k)q2k, (15)

where N(n, k) is a Narayana number. We also have

∑

n≥0

∑

π∈Sn(231)

qpathlen(π) =
1 − q2 + q4 −

√

1 − 2q2 − q4 − 2q6 + q8

2q4
. (16)

The right-hand side of equation (16) is the generating function for generalized Catalan
numbers described by Stein and Waterman [9] (see the m = 1 column of Table 1), and
by Vauchassade de Chaumont and Viennot [2]. Those numbers are sequence A004148, and
count secondary structures of RNA molecules according to the number of bases.

6 Sage code

Readers interested in programming code for working with the various paths, bijections,
matchings, and permutations described here may find code for the Sage mathematics software
system (see sagemath.org) at arxiv.org/abs/1006.1959. On that page, click “Other
formats”, then “Download source”, and look for the file code for dyck schroeder.sage in
the resulting archive.
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[13] Gérard Viennot. Une théorie combinatoire des pôlynomes othogonaux generaux. Notes
from a conference at the Université du Québec à Montréal, September 1983.
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