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Abstract

We investigate the recursive structure of differentiable sequences over the alphabet
{1, 2}. We derive a recursive formula for the (n + 1)-th symbol of a differentiable se-
quence, which yields to a new recursive formula for the Kolakoski sequence. Finally, we
show that the sequence of absolute differences of consecutive symbols of a differentiable
sequence u is a morphic image of the run-length encoding of u.

1 Introduction

In 1965, W. Kolakoski [9] proposed the following problem:
“Describe a simple rule for constructing the sequence:

K = 12211212212211211221211212211211212212211212212 · · ·

What is the n-th term? Is the sequence periodic?”
This sequence, called now the Kolakoski sequence, is in fact the unique sequence starting

with 1 and identical to its own run-length encoding.
The Kolakoski sequence has been investigated in many papers [1, 3–8, 10–13]. Although

the non-periodicity of the sequence was shown immediately, the problem of finding a good
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formula for the n-th term is still open, and is related to other open problems. The most
famous open problems on the Kolakoski sequence (up to now) are as follows: Is the sequence
recurrent? Is the frequency of 1’s and 2’s asymptotically the same? Is the set of factors of
the sequence closed under reversal and/or swap of the symbols?

The Kolakoski sequence K (sequence A000002 in Sloane’s database) and the sequence k

(sequence A078880) obtained from the former by deleting the first symbol are the unique
fixed point of the run-length encoding operator ∆. A sequence u over the alphabet {1, 2}
such that ∆(u) is still a sequence over {1, 2} is called a differentiable sequence. The problems
stated above for the Kolakoski sequence remain unsolved for the wider class of sequences
that are differentiable arbitrary many times, called smooth sequences [1, 2].

In this paper we study the recursive relationship between any differentiable sequence u

and its run-length encoding ∆(u). We start by defining, for any differentiable sequence u,
the sequences ϕn(u) and γn(u). The sequence ϕn(u) is defined by ϕn(u) = |∆(u1u2 · · ·un)|.
In other words, ϕn(u) is equal to 1 plus the number of symbol changes in u1u2 · · · un. The
sequence γn(u) is defined by γn(u) = |un+1 − un|.

The sequences ϕn(K), ϕn(k) and γn(K) are known (sequences A156253, A156351, and
A156728 respectively).

Remark 1. We shall write ϕn, γn instead of ϕn(u), γn(u) when no confusion arises.

In Theorem 3.1 we derive a recursive formula for γn

γn = 1 − (u′

ϕn

− 1)γn−1

where u′ = ∆(u). This formula yields to recursive formulas for u and ϕ(u) (Corollaries 3.2
and 3.3)

un+1 = 3 − un + (u′

ϕn

− 1)(un − un−1)

ϕn+1 = ϕn + 1 − (u′

ϕn

− 1)(ϕn − ϕn−1)

When u = K1K2 · · · is the Kolakoski sequence, our recursive formula gives

Kn+1 = 3 − Kn + (Kϕn
− 1)(Kn − Kn−1)

A different approach allows us to derive an alternative recursive formula for the n + 1-th
term of a differentiable sequence. Indeed, in Theorem 3.4, we prove that

un+1 = un + (3 − 2un)

(

n + 1 −

ϕn
∑

i=1

u′

i

)

When u is the Kolakoski sequence, this latter formula is equivalent to one of Steinsky [13],
obtained with different techniques.

As a last result, in Lemma 3.5, we show that for any differentiable sequence u, the
sequence γn is a morphic image of the sequence ∆(u), under the morphism µ : 1 7→ 1, 2 7→ 01.
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2 Differentiable sequences

An alphabet, denoted by Σ, is a finite set of symbols. A sequence over Σ is a sequence of
symbols from Σ. The length of a finite sequence u is denoted by |u|. A right-infinite sequence
over Σ is a non-ending sequence of symbols from Σ. Formally, a right-infinite sequence is a
function f : N 7−→ Σ. For an abuse of notation, we shall often write fn for f(n).

A run in a sequence u is a maximal block of consecutive identical symbols.
Let u be a sequence over Σ. Then u can be uniquely written as a concatenation of

consecutive runs of the symbols of Σ, i.e. u = xi1
1 xi2

2 xi3
3 · · · , with xj ∈ Σ, xj 6= xj+1 and

ij > 0. The run-length encoding of u, noted ∆(u), is the sequence of exponents ij, i.e.
∆(u) = i1i2i3 · · · .

Remark 2. From now on we set Σ = {1, 2}.

We say that a sequence u over Σ is differentiable if ∆(u) is still a sequence over Σ. Since
Σ = {1, 2} we have that u is differentiable if and only if neither 111 nor 222 appear in u.

In the sequel we note ∆(u) = u′

1u
′

2 · · · for u a differentiable sequence.

Definition 2.1. A right-infinite sequence u over Σ is a smooth sequence if it is differentiable
arbitrary many times over Σ.

The most famous examples of smooth sequences are the Kolakoski sequences:

k = 2211212212211211221211212211211212212211212212 · · ·

and
K = 1k = 12211212212211211221211212211211212212211212212 · · ·

which are the fixed points of ∆.
The following lemma is a straightforward consequence of the definition of ∆.

Lemma 2.1. Let uv be a differentiable sequence. Then ∆(uv) = ∆(u)∆(v) if and only if

the last symbol of u and the first symbol of v are different.

Let u = u1u2u3 · · · be a finite or infinite sequence over Σ. We define the two functions
∆−1

1 and ∆−1

2 by:

∆−1

1 (u) = 1u12u21u3 · · ·

∆−1

2 (u) = 2u11u22u3 · · ·

In such a way, u = ∆(∆−1
x (u)) for any x ∈ Σ.

Remark 3. Let u = u1u2 · · · un be a sequence over Σ. Then for every x ∈ Σ

|∆−1

x (u1u2 · · ·un)| =
n
∑

i=1

ui
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3 Recursivity

Let u = u1u2 · · · be a differentiable sequence. We define, for every n > 0

ϕn(u) = |∆(u1u2 · · ·un)|

The definition of ∆ directly implies that ϕn(u) is equal to 1 plus the number of symbol
changes in u1u2 · · ·un. With our notation:

ϕn(u) = ϕn−1(u) + |un − un−1| = 1 +
n−1
∑

i=1

|ui+1 − ui| (1)

for every n > 1.
We also define, for every n > 0

γn(u) = |un+1 − un|

Example 1. The sequences ϕn(K), ϕn(k) and γn(K) are present in the Sloane’s database as
sequence A156253, A156351, and A156728 respectively. The first values of these sequences
are reported in Table 1.

Let u = u1u2 · · · be a (right infinite) differentiable sequence and let u′ = ∆(u) = u′

1u
′

2 · · ·
be its run-length encoding. For any n > 0 the two sequences ∆(u1u2 · · ·un) and u′

1u
′

2 · · ·u
′

ϕn

are equal if and only if un+1 6= un, as a consequence of Lemma 2.1. If instead un = un+1

then un 6= un−1 since u is differentiable, and hence the last symbol of ∆(u1 · · ·un) is equal
to 1, while u′

ϕn

= 2.
In other words, if un = un−1 then clearly un+1 6= un since u is differentiable. If instead

un 6= un−1 then un+1 = un when u′

ϕn

= 2, while un+1 6= un when u′

ϕn

= 1. We thus have

Theorem 3.1. Let u = u1u2 · · · be a differentiable sequence. Then for every n > 0

γn = 1 − (u′

ϕn

− 1)γn−1 (2)

Remark 4. Since Σ = {1, 2}, one has that, ∀x, y ∈ Σ, y = x + (3 − 2x)|y − x|.

From the previous remark and from Equation 2 we have

Corollary 3.2. Let u = u1u2 · · · be a differentiable sequence. Then for every n > 0

un+1 = 3 − un + (u′

ϕn

− 1)(un − un−1) (3)

And from Equations 1 and 2 we derive

Corollary 3.3. Let u = u1u2 · · · be a differentiable sequence. Then for every n > 0

ϕn+1 = ϕn + 1 − (u′

ϕn

− 1)(ϕn − ϕn−1) (4)

Example 2. When u is the Kolakoski sequence K, Equation 3 gives

Kn+1 = 3 − Kn + (Kϕn
− 1)(Kn − Kn−1) (5)
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We now give another recursive formula for the n+1-th symbol of a differentiable sequence.

Theorem 3.4. Let u = u1u2 · · · be a differentiable sequence. Then for every n > 0

un+1 = un + (3 − 2un)

(

n + 1 −

ϕn
∑

i=1

u′

i

)

(6)

Proof. If un = un+1 then ϕn = ϕn+1, so ∆−1
u1

(u′

1 · · ·u
′

ϕn

) = ∆−1
u1

(u′

1 · · ·u
′

ϕn+1
) = u1u2 · · ·un+1.

Hence, by Remark 3,
∑ϕn

i=1
u′

i = n + 1.
If instead un 6= un+1 then, by Lemma 2.1, ∆(u1 · · ·un) = u′

1 · · · u
′

ϕn

, which implies that
∆−1

u1
(u′

1 · · ·u
′

ϕn

) = u1u2 · · ·un. Hence, again by Remark 3,
∑ϕn

i=1
u′

i = n.
Thus

|un+1 − un| = n + 1 −

ϕn
∑

i=1

u′

i

The claim then follows from Remark 4.

Example 3. For u = K, Equation 6 becomes

Kn+1 = Kn + (3 − 2Kn)

(

n + 1 −

ϕn
∑

i=1

Ki

)

(7)

Equation 7 can be found in a paper of Steinsky [13], where ϕn(K) is replaced by ρn(K) =

min
{

j :
∑j

i=1
Ki ≥ n

}

. But it is easy to see that for any differentiable sequence u one has

ϕn = min
{

j :
∑j

i=1
u′

i ≥ n
}

.

We now show that, for any differentiable sequence u, the sequence γn(u) is a morphic
image of the sequence ∆(u).

Lemma 3.5. Let µ be the morphism defined on Σ by

µ :

{

1 7−→ 1
2 7−→ 01

and let vn be the sequence µ(∆(u)). Then vn = γn.

Proof. It is sufficient to prove that the sequences vn and γn have the same partial sums. We
have two cases:

Case 1. un 6= un+1. Then, by Lemma 2.1, ∆(u1 · · ·un) = u′

1 · · · u
′

ϕn

. From the definition of
µ, one has

∑n

i=1
vi = |u′

1 · · ·u
′

ϕn

| = ϕn.

Case 2. un = un+1. This implies that u′

ϕn

= 2 and so
∑n

i=1
vi =

∑n−1

i=1
vi. On the other

hand, we must have un−1 6= un and therefore, arguing as in Case 1, we obtain
∑n−1

i=1
vi =

|u′

1 · · ·u
′

ϕn−1
| = ϕn−1 = ϕn − 1.

In summary, we have
∑n

i=1
vi = ϕn − 1 + γn.

On the other hand, by Equation 1, we have
∑n

i=1
γi =

∑n−1

i=1
γi + γn = ϕn − 1 + γn.
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4 Conclusion

The main purpose of this paper was to unify the description of various sequences described
in the Sloane’s database and related to the Kolakoski sequence. We showed that, indeed, all
these sequences or recurrences can be easily deduced from more general equalities holding
for any differentiable sequence. Unfortunately, it appears that all these results are finally
only another way to write the definition of differentiability of a sequence over the alphabet
{1, 2}. Thus, the challenge to find a formula for the n-th symbol of the Kolakoski sequence
without the knowledge of the preceding symbols is still open.

Table 1: First values of the sequences K, ϕ(K), ϕ(k), γ(K), corresponding, respectively, to
Sloane’s database entries A000002, A156253, A156351, and A156728
.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

K 1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1

ϕ(K) 1 2 2 3 3 4 5 6 6 7 8 8 9 9 10 11 11 12 12 13 14 15 15 16 17

ϕ(k) 1 1 2 2 3 4 5 5 6 7 7 8 8 9 10 10 11 11 12 13 14 14 15 16 17

γ(K) 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1
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[10] A. Lepistö. Repetitions in Kolakoski sequence. In G. Rozenberg and A. Salomaa,
editors, Developments in Language Theory, pp. 130–143. World Scientific, 1994.

[11] G. Paun. How much Thue is Kolakovski [sic]? Bull. European Assoc. Theor. Comput.

Sci., No. 49, (February 1993), 183–185.

[12] R. Steacy. Structure in the Kolakoski sequence. Bull. European Assoc. Theor. Comput.

Sci., No. 59, (1996), 173–182.

[13] B. Steinsky. A recursive formula for the Kolakoski sequence A000002. J. Integer Seq. 9

(3) (2006), Article 06.3.7.

2010 Mathematics Subject Classification: Primary 68R15; Secondary 11Y55, 11B83.
Keywords: Kolakoski sequence, integer sequences, differentiable sequences, smooth se-
quences, combinatorics of words.

(Concerned with sequences A000002, A078880, A156253, A156351, and A156728.)

Received December 8 2009; revised version received February 25 2010. Published in Journal

of Integer Sequences, February 25 2010.

Return to Journal of Integer Sequences home page.

7

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000002
http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Steinsky/steinsky5.html
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000002
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A078880
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A156253
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A156351
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A156728
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Differentiable sequences
	Recursivity
	Conclusion

