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Abstract

In this paper, we consider Diophantine triples of the form {1, 3, c} in the ring Z[
√

d].
We prove that the Diophantine pair {1, 3} cannot be extended to the Diophantine
quintuple in Z[

√
d] with d < 0 and d 6= −2.

1 Introduction

A Diophantine m-tuple in a commutative ring R with the unit 1 is a set of m distinct non-
zero elements with the property that the product of each two distinct elements increased by
1 is a perfect square in R. These sets are studied in many different rings: the ring of integers
Z, the ring of rationals Q, the ring of Gaussian integers Z[i] ([2, 8]), the ring of integers
of quadratic fields Z[

√
d] and Z[(1 +

√
d)/2] ([7, 9]), polynomial rings ([4, 5]). The most

famous Diophantine m-tuples and historical examples are quadruples { 1

16
, 33

16
, 17

4
, 105

16
} (found

by Diophant) and {1, 3, 8, 120} (found by Fermat). More information about these sets can
be found on Dujella’s web page on Diophantine m-tuples [3].

In 1969, Baker and Davenport [1] showed that the Diophantine triple {1, 3, 8} can be
extended uniquely to the Diophantine quadruple {1, 3, 8, 120} A030063 . Hence, the triple
{1, 3, 8} cannot be extended to a Diophantine quintuple. Jones [10] proved that if the set
{1, 3, c} is a Diophantine triple then c must be of the form

ck =
1

6
((2 +

√
3)(7 + 4

√
3)k + (2 −

√
3)(7 − 4

√
3)k − 4),
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for some k ∈ N (A045899). It can be easily verified that sets {1, 3, ck, ck−1} and {1, 3, ck, ck+1}
are Diophantine quadruples. Indeed, ckck+1 + 1 = t2

k
, where (tk) is A051048. Moreover, the

Diophantine triple {1, 3, ck} can be extended to a quadruple only by the elements ck−1 and
ck+1. This assertion is proved in 1998. by Dujella and Pethö [6]. A direct consequence of
their assertion is the fact that the pair {1, 3} cannot be extended to a Diophantine quintuple.

A natural question that may arise is can we extend the pair {1, 3} to a quintuple in a
larger ring. In this paper, we have chosen the ring Z[

√
d] = {a+ b

√
d : a, b ∈ Z} where d ∈ Z

and d is not a perfect square. So, we assume that {1, 3, a + b
√

d} is a Diophantine triple in
Z[
√

d] and according to a definition it means that there exist integers ξ1, η1, ξ2, η2 such that

a + b
√

d + 1 = (ξ1 + η1

√
d)2 (1)

3a + 3b
√

d + 1 = (ξ2 + η2

√
d)2. (2)

Although, it seams that we have much more ’freedom’ in larger rings, the result for some
rings stays the same.

Theorem 1. Let d be a negative integer and d 6= −2. The Diophantine pair {1, 3} cannot
be extended to a Diophantine quintuple in the ring Z[

√
d].

In certain rings Z[
√

d] for positive d, Theorem 1 is not valid. For example {1, 3, 8, 120, 1680}
is the Diophantine quintuple in Z[

√
8 · 1680 + 1].

In last two sections, we describe the set of all Diophantine triples {1, 3, c} in Z[
√
−2]

and in Z[
√

d] for some positive integer d, where c is an integer and such that {1, 3, c} is not
a Diophantine triple in Z. The existence of such triples is related to solvability of certain
Pellian equations.

2 Main result

Proposition 2. Let d be a negative integer. If {1, 3, c} is a Diophantine triple in the ring
Z[
√

d], then c is an integer.

Proof. Let c = a + b
√

d. There exist ξ1, η1, ξ2, η2 ∈ Z such that

a + 1 = ξ2

1 + η2

1d, b = 2ξ1η1, 3a + 1 = ξ2

2 + η2

2d, 3b = 2ξ2η2. (3)

Evidently, b must be an even number. By squaring and subtracting corresponding relations
in (3), we get

(a + 1)2 − db2 = x2, (3a + 1)2 − d(3b)2 = y2, (4)

where x = ξ2
1 − η2

1d and y = ξ2
2 − η2

2d. By eliminating the quantities b and d from (4), we
obtain

(3x)2 − y2 = (3a + 3)2 − (3a + 1)2 = 4(3a + 2), (5)

It is clear, from (5), that 3x − y and 3x + y must be even. So, we have

3x − y = 2kc1, 3x + y = 2lc2,

2
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where k, l are positive integers and c1, c2 are odd. Thus, we have

(3x − y)(3x + y) = 2k+ln,

where and c1c2 = n. Furthermore, it follows that

y = 2l−1c2 − 2k−1c1.

The expression (3a + 1)2 − y2 can be given in terms of c1 and c2:

(3a + 1)2 − y2 = (2k+l−2n − 1)2 − (2l−1c2 − 2k−1c1)
2

= 4k+l−2n2 − 2k+l−1n + 1 − 4l−1c2

2 + 2k+l−1c1c2 − 4k−1c2

1

= 4k+l−2n2 + 1 − 4l−1c2

2 − 4k−1c2

1

= (4k−1c2

1 − 1)(4l−1c2

2 − 1).

On the other hand, (3a + 1)2 − y2 = d(3b)2 (by (4)). Since |ci| ≥ 1 and k, l ≥ 1, we obtain
that d < 0 implies b = 0.

According to the previous proposition, it may have sense to study Diophantine triples of
the form {1, 3, c} in Z[

√
d] such that c is an integer.

The triple {1, 3, c}, c ∈ Z, will be called a proper triple in Z[
√

d] if it is a Diophantine
triple Z[

√
d], but not a Diophantine triple in Z. For instance, {1, 3, 161} is a proper triple in

Z[
√

2], {1, 3,−3} is a proper triple in Z[
√
−2], but {1, 3, 120} is not a proper triple in Z[

√
d]

(d 6= 1).
Let us, now, assume that {1, 3, c} is proper triple in Z[

√
d]. So, one of the following cases

may occur
c + 1 = ξ2

3c + 1 = dη2,
(6)

c + 1 = dη2

3c + 1 = ξ2,
(7)

c + 1 = dη2
1

3c + 1 = dη2
2.

(8)

Following proposition gives a connection between the extensibility of the Diophantine
pair {1, 3} and solvability of certain Pellian equations.

Proposition 3. The Diophantine pair {1, 3} can be extended to a proper Diophantine triple
{1, 3, c} ⊂ Z in Z[

√
d] if and only if one of the following equations

3x2 − dy2 = 2 (9)

and
x2 − 3dy2 = −2 (10)

is solvable in Z.
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Proof. ⇒ If {1, 3, c} is a proper triple and (6) is fulfilled, then by eliminating c, we get
3ξ2 − dη2 = 2. So, the equation (9) is solvable in Z.

Analogously, by eliminating c from (7), we obtain that the equation (10) is solvable in Z.
Finally, from (8) we have

d(η2

2 − 3η2

1) = −2,

and the only possibilities are:

(a) d = −1 and η2
2 − 3η2

1 = 2, which is impossible (because the x2 − 3y2 = 2 is not solvable
in Z) ,

(b) d = 2 and η2
2 − 3η2

1 = −1, which is also impossible for the same reason,

(c) d = −2 and η2
2 − 3η2

1 = 1, which is possible because the Pell’s equation x2 − 3y2 = 1 has
infinitely many solution. Note that the equation (9) is also solvable if d = −2, it has
a unique solution (0, 1).

⇐ Assume that (ξ, η) ∈ Z2 is a solution of the equation (9). Then the set {1, 3, ξ2 −1}
represents a proper triple in Z[

√
d]. Indeed, 3(ξ2 − 1) + 1 = dη2 = (n

√
d)2.

Similarly, if (ξ, η) ∈ Z2 is a solution of (10), then we get a proper triple {1, 3, dη2−1}.

In order to prove Theorem 1, we need a special case of Theorem 8 from [10].

Lemma 4 (Theorem 8, [10]). If {1, 3, c} is a Diophantine triple in Z, then c = ck for some
integer k ≥ 2 where

ck = 14ck−1 − ck−2 + 6, c1 = 8, c0 = 0.

By solving the recursion from Lemma 4 we get

ck =
1

6
((2 +

√
3)(7 + 4

√
3)k + (2 −

√
3)(7 − 4

√
3)k − 4), k ≥ 0 (11)

Proposition 5. Let d be a negative integer and d 6= −2. If {1, 3, c} is a Diophantine triple
in Z[

√
d], then c = ck for some positive integer k, where ck is given by (11).

Proof. According to Proposition 2, c is an integer. Hence, {1, 3, c} is a triple in Z or a proper
triple in Z[

√
d]. Since the equations (9) and (10) are not solvable in Z for d < 0 and d 6= −2,

Proposition 3 implies that {1, 3, c} is not a proper triple in Z[
√

d]. Hence, it is a Diophantine
triple in Z. Finally, from Lemma 4 we get that c = ck for some k.

Lemma 6 (Theorem 1, [6]). If {1, 3, ck, d} is a Diophantine quadruple in Z where ck is given
by (11) and k is a positive integer, then d ∈ {ck−1, ck+1}.

At this point we can conclude that Theorem 1 is proved. (It follows directly from Propo-
sition 5 and Lemma 6.)

Since the extension of the pair {1, 3} is closely related to the solvability of the Pellian
equation x2 − 3y2 = −2, our result can be understood as the following statement.
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Corollary 7. Let d be a negative integer and d 6= −2. The equation

x2 − 3y2 = −2 (12)

in Z[
√

d] has only real solutions.

Proof. Suppose that (ξ1 + η1

√
d, ξ2 + η2

√
d) is a solution of the equation (12). For

a + b
√

d = (ξ2 + η2

√
d)2 − 1,

we obtain that {1, 3, a + b
√

d} is a Diophantine triple u Z[
√

d]. Indeed,

3(a + b
√

d) + 1 = 3(ξ2 + η2

√
d)2 − 2 = (ξ1 + η1

√
d)2.

According to Proposition 5, there exists some k such that a + b
√

d = ck. Immediately, we
conclude that η1 = η2 = 0.

3 The case d = −2

In this section, we will take a closer look at the Diophantine triples {1, 3, c} in Z[
√
−2]. In

fact, we are able to describe all Diophantine triples in Z[
√
−2].

Proposition 8. If {1, 3, c} is a Diophantine triple in Z[
√
−2], then c ∈ {−1, ck, dk} for

some k ∈ N, where ck is given by (11) and

dk = −1

6

(

(7 + 4
√

3)k + (7 − 4
√

3)k + 4
)

(13)

Proof. By Proposition 2, we have that c is an integer. Since the equation (9) is solvable in
Z, Proposition 3 implies that {1, 3, c} can be a triple in Z or a proper triple in Z[

√
−2]. If

{1, 3, c} is a triple in Z, then c = ck from Lemma 4. If {1, 3, c} is a proper triple in Z[
√
−2],

then one of the cases (6) and (8) may occur. The case (6) implies that c = −1, because
(0, 1) is the unique solution of (9).

In the case of (8), c = (−2x2 − 1)/3 where x is a solution of the Pell’s equation

x2 − 3y2 = 1. (14)

All solutions of (14) are
xk+2 = 4xk+1 − xk, x1 = 2, x0 = 1,

for k ≥ 0. By solving the recursion we obtain that

xk =
1

2
((2 −

√
3)k + (2 +

√
3)k),

and dk = (−2x2
k
− 1)/3.

Note that for k = 0, we have d0 = −1. Also, it is interesting that (−dk) is A011922.
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Remark 9. It is known that {1, 3, ck, ck+1} is a Diophantine quadruple in Z for k ≥ 1
(Lemma 6). The same can be proven for the set {1, 3, dk, dk+1} in Z[

√
−2] for k ≥ 0. We

have

36(dkdk+1 + 1) = 66 + (7 − 4
√

3)2k+1 + (7 + 4
√

3)2k+1 +

16((7 − 4
√

3)k(2 −
√

3) + (2 +
√

3)(7 + 4
√

3)k)

= 64 + 16((2 +
√

3)2k+1 + (2 −
√

3)2k+1) +

((2 +
√

3)2k+1 + (2 −
√

3)2k+1)2

= 4(x2

2k+1 + 8x2k+1 + 16) = 4(x2k+1 + 4)2,

where x2k+1 is a solution of x2 − 3y2 = 1. It can be easily shown that x2k+1 ≡ 2 (mod 3)
(because xn+2 = 4xn+1 − xn, x0 = 1, x1 = 2), so

√

dkdk+1 + 1 =
1

3
(x2k+1 + 4)

is an integer.

Further, the set {1, 3, ck, dl} is not a Diophantine quadruple for k ≥ 1 and l ≥ 0. Indeed,
it can be easily seen that ckdl + 1 is a negative odd number (from Lemma 4 it follows that
ck is even, and from (13) that dl < 0). Hence,

√
ckdl + 1 6∈ Z[

√
−2].

4 Proper triples in Z[
√

d] for some d > 0

According to Proposition 3, the set {1, 3, c} ⊂ Z is a proper Diophantine triple in Z[
√

d] if
and only if one of the equations (9), (10) is solvable in Z.

Example 10. Determine all proper Diophantine triples {1, 3, c} in Z[
√

10].

Note that d = 10 is the smallest positive integer, d 6= 1, such that the equation (9) is
solvable in Z. If (xn, yn) is a solution of (9), then {1, 3, x2

n
− 1} is a proper triple in Z[

√
10].

All solutions of (9) are
xn+2 = 22xn+1 − xn, x1 = 42, x0 = 2,

for n ≥ 0. Hence,

xn =
1

6
((6 +

√
30)(11 + 2

√
30)n + (6 −

√
30)(11 − 2

√
30)n), n ≥ 0.

So, all proper triples {1, 3, c} in Z[
√

10] are {1, 3, dn} where

dn = x2

n
− 1 =

1

6
((11 + 2

√
30)2n+1 + (11 − 2

√
30)2n+1 − 4), n ≥ 0. (15)

Besides these triples, sets {1, 3, 25 ± 8
√

10}, {1, 3, 160 ± 44
√

10}, {1, 3, 355 ± 112
√

10}
are also Diophantine triples in Z[

√
10]. The third element of these triples is related to the

solution in Z[
√

10] of the equation x2 − 3y2 = −2. For instance, (6 + 2
√

10, 4 +
√

10) is
solution of x2−3y2 = −2 and 25+8

√
10 = (4+

√
10)2−1. More generally, if X2−3Y 2 = −2

and X,Y ∈ Z[
√

10] then {1, 3, Y 2 − 1} is a Diophantine triple in Z[
√

10].
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Example 11. Determine all proper Diophantine triples {1, 3, c} in Z[
√

2].

Since the equation (10) is solvable in Z, {1, 3, 2y2
n
− 1} is a proper triple in Z[

√
2] where

(xn, yn) is a solution of (10). All solutions of (10) are

yn+2 = 10yn+1 − yn, y1 = 9, y0 = 1,

for n ≥ 0, i.e.,

yn =
1

6
((5 − 2

√
6)n(3 −

√
6) + (3 +

√
6)(5 + 2

√
6)n).

So, all proper triples {1, 3, c} in Z[
√

2] are {1, 3, dn} where

dn = 2y2

n
− 1 =

1

6
((5 + 2

√
6)2n+1 + (5 − 2

√
6)2n+1 − 4). (16)

Also, because the equation (10) is solvable in Z[
√

2], there exist triples like {1, 3, 11± 8
√

2},
{1, 3, 32 ± 20

√
2}, {1, 3, 161 ± 112

√
2}. Like in Example 10, the third element of these

triples is obtained from the solution (X,Y ) ∈ Z[
√

2]2 of the equation x2 − 3y2 = −2, i.e.,
{1, 3, Y 2 − 1} is a triple in Z[

√
2].

It is interesting to note that the expression (15) contains 11 + 2
√

30 (i.e. (11, 2)) which
is a fundamental solution of the Pell’s equation x2 − 30y2 = 1. Similarly, in (16), 5 + 2

√
6

represents a fundamental solution of x2 − 6y2 = 1.

In what follows, we will give the complete set of proper Diophantine triples {1, 3, c}
in Z[

√
d] for positive d which satisfies certain conditions. This problem is related to the

solvability of the equation x2 − 3dy2 = 6. For this equation, we have the following Nagell’s
result.

Lemma 12 (Theorem 11, [11]). Let D be a positive integer which is not a perfect square,
and let C 6= 1,−D be a square-free integer which divides 2D. Then if (x0, y0) is the least
positive (fundamental) solution of the equation

x2 − Dy2 = C, (17)

then
1

|C|(x0 + y0

√
D)2 =

x2
0 + Dy2

0

|C| +
2x0y0

|C|
√

D

is a fundamental solution of the related Pell’s equation x2 − Dy2 = 1. All solutions of (17)
are

xn + yn

√
D

√

|C|
=

(

x0 + y0

√
D

√

|C|

)n

,

where n is a positive odd integer.
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Theorem 13. Let d be a positive integer such that neither d nor 3d are perfect squares and
such that one of the equations (9), (10) is solvable in Z. If {1, 3, c} is a proper Diophantine
triple in Z[

√
d], d 6= 2, 10, then there exists nonnegative integer n such that

c = dn =
1

6
((ξ + η

√
3d)2n+1 + (ξ − η

√
3d)2n+1 − 4), (18)

where (ξ, η) is a fundamental solution of the Pell’s equation

x2 − 3dy2 = 1. (19)

If d ∈ {2, 10}, then c = dn for some n ≥ 1.

Proof. First, assume that the equation (9) is solvable in Z. Hence, c = x′2 − 1, where (x′, y′)
is a solution of (9). By Lemma 12, we get that all solutions of (9) are

xn =
1

6
((α + β

√
3d)(ξ + η

√
3d)n + (α − β

√
3d)(ξ − η

√
3d)n), n ≥ 0,

where (α, β) is a fundamental solution of the equation

x2 − 3dy2 = 6 (20)

and (ξ, η) is a fundamental solution of the related Pell’s equation (19). (Note that (20) has
exactly one class of solutions, since 6|x′x′′ − 3dy′y′′ i 6|x′y′′ − y′x′′ for each two solutions
(x′, y′) and (x′′, y′′) of (20)). Hence,

dn =
1

36
((α + β

√
3d)2(ξ + η

√
3d)2n + (α − β

√
3d)2(ξ − η

√
3d)2n + 12) − 1.

According to Lemma 12, 1

6
(α + β

√
3d)2 (i.e., (1

6
(α2 + 3dβ2), 1

3
αβ) is a fundamental solution

of x2 − 3dy2 = 1, and so, we get (18).
If (10) is solvable in Z, we obtain (18) in similar manner. Indeed, if (x′, y′) is a solution

of (10), then c = dy′2 − 1. All solutions of (10) are

yn =
1

2
√

3d
((x0 + y0

√
3d)(ξ + η

√
3d)n + (−x0 + y0

√
3d)(ξ − η

√
3d)n), n ≥ 0,

where (x0, y0) and (ξ, η) are fundamental solutions of (10) and (19), respectively. Further,
we have

dn =
1

6

(

1

2
(x0 + y0

√
3d)2(ξ + η

√
3d)2n +

1

2
(x0 − y0

√
3d)2(ξ − η

√
3d)2n − 4

)

.

From Lemma 12, we get that 1

2
(x0 ± y0

√
3d)2 = ξ ± η

√
3d and again obtain (18).

Finally, we must determine in which cases dn ∈ {0, 1, 3}, since a Diophantine triple
consists of three nonzero distinct elements. Obviously, dn > 3 for n ≥ 1, so we have to see if
d0 ∈ {0, 1, 3}. Because d0 = (ξ− 2)/3, it follows that ξ ∈ {2, 5, 11} where ξ is a fundamental
solution of (19). If

8



• ξ = 2, then 5 = 3dη2 which is not possible,

• ξ = 5, then 8 = dη2 which implies that η = 1, d = 8 or η = 2, d = 2,

• ξ = 11, then 40 = dη2 which implies that η = 1, d = 40 or η = 2, d = 10.

For d = 8, 40 equations (9) and (10) have no solution in Z, but (9) is solvable for d = 10
and (10) is solvable for d = 2. That is the reason why the element d0 in Z[

√
2] and Z[

√
10]

is omitted.

In Table 1 we give a list of 1 < d < 100 such that the equation (9) is solvable. In the last
column of Table 1, the smallest c of a proper triple {1, 3, c} in Z[

√
d] is given.

d fund. solution of (9) fund. solution of (19) cmin

10 (2,1) (11,2) 1763
46 (4,1) (47,4) 15
58 (22,5) (1451,110) 483
73 (5,1) (74,5) 24
94 (28,5) (2351,140) 783

Table 1: A list of 1 < d < 100 such that (9) is solvable

If the equation (10) is solvable, we obtain Table 2.

d fund. solution of (9) fund. solution of (19) cmin

2 (2,1) (5,2) 161
6 (4,1) (17,4) 5
17 (7,1) (50,7) 16
18 (22,3) (485,66) 161
22 (8,1) (65,8) 21
34 (10,1) (101,10) 33
38 (32,3) (1025,96) 341
41 (11,1) (122,11) 40
54 (140,11) (19601,1540) 6533
57 (13,1) (170,13) 56
66 (14,1) (197,14) 65
82 (298,19) (88805,5662) 29601
86 (16,1) (257,16) 85
89 (49,3) (2402,147) 800
97 (17,1) (290,17) 96

Table 2: A list of 1 < d < 100 such that (10) is solvable
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