Journal of Integer Sequences, Vol. 13 (2010), Article 10.9.6

On the Extension of the Diophantine Pair $\{1,3\}$ in $\mathbb{Z}[\sqrt{d}]$
Zrinka Franušić
Department of Mathematics
University of Zagreb
Bijenička cesta 30
10000 Zagreb
Croatia
fran@math.hr

Abstract

In this paper, we consider Diophantine triples of the form $\{1,3, c\}$ in the ring $\mathbb{Z}[\sqrt{d}]$. We prove that the Diophantine pair $\{1,3\}$ cannot be extended to the Diophantine quintuple in $\mathbb{Z}[\sqrt{d}]$ with $d<0$ and $d \neq-2$.

1 Introduction

A Diophantine m-tuple in a commutative ring R with the unit 1 is a set of m distinct nonzero elements with the property that the product of each two distinct elements increased by 1 is a perfect square in R. These sets are studied in many different rings: the ring of integers \mathbb{Z}, the ring of rationals \mathbb{Q}, the ring of Gaussian integers $\mathbb{Z}[i]([2,8])$, the ring of integers of quadratic fields $\mathbb{Z}[\sqrt{d}]$ and $\mathbb{Z}[(1+\sqrt{d}) / 2]([7,9])$, polynomial rings $([4,5])$. The most famous Diophantine m-tuples and historical examples are quadruples $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$ (found by Diophant) and $\{1,3,8,120\}$ (found by Fermat). More information about these sets can be found on Dujella's web page on Diophantine m-tuples [3].

In 1969, Baker and Davenport [1] showed that the Diophantine triple $\{1,3,8\}$ can be extended uniquely to the Diophantine quadruple $\{1,3,8,120\}$ A030063. Hence, the triple $\{1,3,8\}$ cannot be extended to a Diophantine quintuple. Jones [10] proved that if the set $\{1,3, c\}$ is a Diophantine triple then c must be of the form

$$
c_{k}=\frac{1}{6}\left((2+\sqrt{3})(7+4 \sqrt{3})^{k}+(2-\sqrt{3})(7-4 \sqrt{3})^{k}-4\right),
$$

for some $k \in \mathbb{N}$ (A045899). It can be easily verified that sets $\left\{1,3, c_{k}, c_{k-1}\right\}$ and $\left\{1,3, c_{k}, c_{k+1}\right\}$ are Diophantine quadruples. Indeed, $c_{k} c_{k+1}+1=t_{k}^{2}$, where $\left(t_{k}\right)$ is $\mathbf{A} 051048$. Moreover, the Diophantine triple $\left\{1,3, c_{k}\right\}$ can be extended to a quadruple only by the elements c_{k-1} and c_{k+1}. This assertion is proved in 1998. by Dujella and Pethö [6]. A direct consequence of their assertion is the fact that the pair $\{1,3\}$ cannot be extended to a Diophantine quintuple.

A natural question that may arise is can we extend the pair $\{1,3\}$ to a quintuple in a larger ring. In this paper, we have chosen the ring $\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}$ where $d \in \mathbb{Z}$ and d is not a perfect square. So, we assume that $\{1,3, a+b \sqrt{d}\}$ is a Diophantine triple in $\mathbb{Z}[\sqrt{d}]$ and according to a definition it means that there exist integers $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}$ such that

$$
\begin{align*}
a+b \sqrt{d}+1 & =\left(\xi_{1}+\eta_{1} \sqrt{d}\right)^{2} \tag{1}\\
3 a+3 b \sqrt{d}+1 & =\left(\xi_{2}+\eta_{2} \sqrt{d}\right)^{2} \tag{2}
\end{align*}
$$

Although, it seams that we have much more 'freedom' in larger rings, the result for some rings stays the same.

Theorem 1. Let d be a negative integer and $d \neq-2$. The Diophantine pair $\{1,3\}$ cannot be extended to a Diophantine quintuple in the ring $\mathbb{Z}[\sqrt{d}]$.

In certain rings $\mathbb{Z}[\sqrt{d}]$ for positive d, Theorem 1 is not valid. For example $\{1,3,8,120,1680\}$ is the Diophantine quintuple in $\mathbb{Z}[\sqrt{8 \cdot 1680+1}]$.

In last two sections, we describe the set of all Diophantine triples $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{-2}]$ and in $\mathbb{Z}[\sqrt{d}]$ for some positive integer d, where c is an integer and such that $\{1,3, c\}$ is not a Diophantine triple in \mathbb{Z}. The existence of such triples is related to solvability of certain Pellian equations.

2 Main result

Proposition 2. Let d be a negative integer. If $\{1,3, c\}$ is a Diophantine triple in the ring $\mathbb{Z}[\sqrt{d}]$, then c is an integer.

Proof. Let $c=a+b \sqrt{d}$. There exist $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2} \in \mathbb{Z}$ such that

$$
\begin{equation*}
a+1=\xi_{1}^{2}+\eta_{1}^{2} d, b=2 \xi_{1} \eta_{1}, 3 a+1=\xi_{2}^{2}+\eta_{2}^{2} d, 3 b=2 \xi_{2} \eta_{2} \tag{3}
\end{equation*}
$$

Evidently, b must be an even number. By squaring and subtracting corresponding relations in (3), we get

$$
\begin{equation*}
(a+1)^{2}-d b^{2}=x^{2},(3 a+1)^{2}-d(3 b)^{2}=y^{2} \tag{4}
\end{equation*}
$$

where $x=\xi_{1}^{2}-\eta_{1}^{2} d$ and $y=\xi_{2}^{2}-\eta_{2}^{2} d$. By eliminating the quantities b and d from (4), we obtain

$$
\begin{equation*}
(3 x)^{2}-y^{2}=(3 a+3)^{2}-(3 a+1)^{2}=4(3 a+2), \tag{5}
\end{equation*}
$$

It is clear, from (5), that $3 x-y$ and $3 x+y$ must be even. So, we have

$$
3 x-y=2^{k} c_{1}, 3 x+y=2^{l} c_{2},
$$

where k, l are positive integers and c_{1}, c_{2} are odd. Thus, we have

$$
(3 x-y)(3 x+y)=2^{k+l} n
$$

where and $c_{1} c_{2}=n$. Furthermore, it follows that

$$
y=2^{l-1} c_{2}-2^{k-1} c_{1} .
$$

The expression $(3 a+1)^{2}-y^{2}$ can be given in terms of c_{1} and c_{2} :

$$
\begin{aligned}
(3 a+1)^{2}-y^{2} & =\left(2^{k+l-2} n-1\right)^{2}-\left(2^{l-1} c_{2}-2^{k-1} c_{1}\right)^{2} \\
& =4^{k+l-2} n^{2}-2^{k+l-1} n+1-4^{l-1} c_{2}^{2}+2^{k+l-1} c_{1} c_{2}-4^{k-1} c_{1}^{2} \\
& =4^{k+l-2} n^{2}+1-4^{l-1} c_{2}^{2}-4^{k-1} c_{1}^{2} \\
& =\left(4^{k-1} c_{1}^{2}-1\right)\left(4^{l-1} c_{2}^{2}-1\right)
\end{aligned}
$$

On the other hand, $(3 a+1)^{2}-y^{2}=d(3 b)^{2}\left(\right.$ by (4)). Since $\left|c_{i}\right| \geq 1$ and $k, l \geq 1$, we obtain that $d<0$ implies $b=0$.

According to the previous proposition, it may have sense to study Diophantine triples of the form $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{d}]$ such that c is an integer.

The triple $\{1,3, c\}, c \in \mathbb{Z}$, will be called a proper triple in $\mathbb{Z}[\sqrt{d}]$ if it is a Diophantine triple $\mathbb{Z}[\sqrt{d}]$, but not a Diophantine triple in \mathbb{Z}. For instance, $\{1,3,161\}$ is a proper triple in $\mathbb{Z}[\sqrt{2}],\{1,3,-3\}$ is a proper triple in $\mathbb{Z}[\sqrt{-2}]$, but $\{1,3,120\}$ is not a proper triple in $\mathbb{Z}[\sqrt{d}]$ $(d \neq 1)$.

Let us, now, assume that $\{1,3, c\}$ is proper triple in $\mathbb{Z}[\sqrt{d}]$. So, one of the following cases may occur

$$
\begin{align*}
c+1 & =\xi^{2} \tag{6}\\
3 c+1 & =d \eta^{2}, \\
c+1 & =d \eta^{2} \tag{7}\\
3 c+1 & =\xi^{2} \\
c+1 & =d \eta_{1}^{2} \\
3 c+1 & =d \eta_{2}^{2} . \tag{8}
\end{align*}
$$

Following proposition gives a connection between the extensibility of the Diophantine pair $\{1,3\}$ and solvability of certain Pellian equations.

Proposition 3. The Diophantine pair $\{1,3\}$ can be extended to a proper Diophantine triple $\{1,3, c\} \subset \mathbb{Z}$ in $\mathbb{Z}[\sqrt{d}]$ if and only if one of the following equations

$$
\begin{equation*}
3 x^{2}-d y^{2}=2 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}-3 d y^{2}=-2 \tag{10}
\end{equation*}
$$

is solvable in \mathbb{Z}.

Proof. \Rightarrow If $\{1,3, c\}$ is a proper triple and (6) is fulfilled, then by eliminating c, we get $3 \xi^{2}-d \overline{\eta^{2}}=2$. So, the equation (9) is solvable in \mathbb{Z}.

Analogously, by eliminating c from (7), we obtain that the equation (10) is solvable in \mathbb{Z}. Finally, from (8) we have

$$
d\left(\eta_{2}^{2}-3 \eta_{1}^{2}\right)=-2
$$

and the only possibilities are:
(a) $d=-1$ and $\eta_{2}^{2}-3 \eta_{1}^{2}=2$, which is impossible (because the $x^{2}-3 y^{2}=2$ is not solvable in $\mathbb{Z})$,
(b) $d=2$ and $\eta_{2}^{2}-3 \eta_{1}^{2}=-1$, which is also impossible for the same reason,
(c) $d=-2$ and $\eta_{2}^{2}-3 \eta_{1}^{2}=1$, which is possible because the Pell's equation $x^{2}-3 y^{2}=1$ has infinitely many solution. Note that the equation (9) is also solvable if $d=-2$, it has a unique solution $(0,1)$.
\Leftarrow Assume that $(\xi, \eta) \in \mathbb{Z}^{2}$ is a solution of the equation (9). Then the set $\left\{1,3, \xi^{2}-1\right\}$ represents a proper triple in $\mathbb{Z}[\sqrt{d}]$. Indeed, $3\left(\xi^{2}-1\right)+1=d \eta^{2}=(n \sqrt{d})^{2}$.

Similarly, if $(\xi, \eta) \in \mathbb{Z}^{2}$ is a solution of (10), then we get a proper triple $\left\{1,3, d \eta^{2}-1\right\}$.
In order to prove Theorem 1, we need a special case of Theorem 8 from [10].
Lemma 4 (Theorem 8, [10]). If $\{1,3, c\}$ is a Diophantine triple in \mathbb{Z}, then $c=c_{k}$ for some integer $k \geq 2$ where

$$
c_{k}=14 c_{k-1}-c_{k-2}+6, c_{1}=8, c_{0}=0
$$

By solving the recursion from Lemma 4 we get

$$
\begin{equation*}
c_{k}=\frac{1}{6}\left((2+\sqrt{3})(7+4 \sqrt{3})^{k}+(2-\sqrt{3})(7-4 \sqrt{3})^{k}-4\right), k \geq 0 \tag{11}
\end{equation*}
$$

Proposition 5. Let d be a negative integer and $d \neq-2$. If $\{1,3, c\}$ is a Diophantine triple in $\mathbb{Z}[\sqrt{d}]$, then $c=c_{k}$ for some positive integer k, where c_{k} is given by (11).

Proof. According to Proposition 2, c is an integer. Hence, $\{1,3, c\}$ is a triple in \mathbb{Z} or a proper triple in $\mathbb{Z}[\sqrt{d}]$. Since the equations (9) and (10) are not solvable in \mathbb{Z} for $d<0$ and $d \neq-2$, Proposition 3 implies that $\{1,3, c\}$ is not a proper triple in $\mathbb{Z}[\sqrt{d}]$. Hence, it is a Diophantine triple in \mathbb{Z}. Finally, from Lemma 4 we get that $c=c_{k}$ for some k.

Lemma 6 (Theorem 1, [6]). If $\left\{1,3, c_{k}, d\right\}$ is a Diophantine quadruple in \mathbb{Z} where c_{k} is given by (11) and k is a positive integer, then $d \in\left\{c_{k-1}, c_{k+1}\right\}$.

At this point we can conclude that Theorem 1 is proved. (It follows directly from Proposition 5 and Lemma 6.)

Since the extension of the pair $\{1,3\}$ is closely related to the solvability of the Pellian equation $x^{2}-3 y^{2}=-2$, our result can be understood as the following statement.

Corollary 7. Let d be a negative integer and $d \neq-2$. The equation

$$
\begin{equation*}
x^{2}-3 y^{2}=-2 \tag{12}
\end{equation*}
$$

in $\mathbb{Z}[\sqrt{d}]$ has only real solutions.
Proof. Suppose that $\left(\xi_{1}+\eta_{1} \sqrt{d}, \xi_{2}+\eta_{2} \sqrt{d}\right)$ is a solution of the equation (12). For

$$
a+b \sqrt{d}=\left(\xi_{2}+\eta_{2} \sqrt{d}\right)^{2}-1
$$

we obtain that $\{1,3, a+b \sqrt{d}\}$ is a Diophantine triple $\mathrm{u} \mathbb{Z}[\sqrt{d}]$. Indeed,

$$
3(a+b \sqrt{d})+1=3\left(\xi_{2}+\eta_{2} \sqrt{d}\right)^{2}-2=\left(\xi_{1}+\eta_{1} \sqrt{d}\right)^{2}
$$

According to Proposition 5, there exists some k such that $a+b \sqrt{d}=c_{k}$. Immediately, we conclude that $\eta_{1}=\eta_{2}=0$.

3 The case $d=-2$

In this section, we will take a closer look at the Diophantine triples $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{-2}]$. In fact, we are able to describe all Diophantine triples in $\mathbb{Z}[\sqrt{-2}]$.

Proposition 8. If $\{1,3, c\}$ is a Diophantine triple in $\mathbb{Z}[\sqrt{-2}]$, then $c \in\left\{-1, c_{k}, d_{k}\right\}$ for some $k \in \mathbb{N}$, where c_{k} is given by (11) and

$$
\begin{equation*}
d_{k}=-\frac{1}{6}\left((7+4 \sqrt{3})^{k}+(7-4 \sqrt{3})^{k}+4\right) \tag{13}
\end{equation*}
$$

Proof. By Proposition 2, we have that c is an integer. Since the equation (9) is solvable in \mathbb{Z}, Proposition 3 implies that $\{1,3, c\}$ can be a triple in \mathbb{Z} or a proper triple in $\mathbb{Z}[\sqrt{-2}]$. If $\{1,3, c\}$ is a triple in \mathbb{Z}, then $c=c_{k}$ from Lemma 4. If $\{1,3, c\}$ is a proper triple in $\mathbb{Z}[\sqrt{-2}]$, then one of the cases (6) and (8) may occur. The case (6) implies that $c=-1$, because $(0,1)$ is the unique solution of (9).

In the case of (8), $c=\left(-2 x^{2}-1\right) / 3$ where x is a solution of the Pell's equation

$$
\begin{equation*}
x^{2}-3 y^{2}=1 \tag{14}
\end{equation*}
$$

All solutions of (14) are

$$
x_{k+2}=4 x_{k+1}-x_{k}, x_{1}=2, x_{0}=1,
$$

for $k \geq 0$. By solving the recursion we obtain that

$$
x_{k}=\frac{1}{2}\left((2-\sqrt{3})^{k}+(2+\sqrt{3})^{k}\right),
$$

and $d_{k}=\left(-2 x_{k}^{2}-1\right) / 3$.
Note that for $k=0$, we have $d_{0}=-1$. Also, it is interesting that $\left(-d_{k}\right)$ is A011922.

Remark 9. It is known that $\left\{1,3, c_{k}, c_{k+1}\right\}$ is a Diophantine quadruple in \mathbb{Z} for $k \geq 1$ (Lemma 6). The same can be proven for the set $\left\{1,3, d_{k}, d_{k+1}\right\}$ in $\mathbb{Z}[\sqrt{-2}]$ for $k \geq 0$. We have

$$
\begin{aligned}
36\left(d_{k} d_{k+1}+1\right)= & 66+(7-4 \sqrt{3})^{2 k+1}+(7+4 \sqrt{3})^{2 k+1}+ \\
& 16\left((7-4 \sqrt{3})^{k}(2-\sqrt{3})+(2+\sqrt{3})(7+4 \sqrt{3})^{k}\right) \\
= & 64+16\left((2+\sqrt{3})^{2 k+1}+(2-\sqrt{3})^{2 k+1}\right)+ \\
& \left((2+\sqrt{3})^{2 k+1}+(2-\sqrt{3})^{2 k+1}\right)^{2} \\
= & 4\left(x_{2 k+1}^{2}+8 x_{2 k+1}+16\right)=4\left(x_{2 k+1}+4\right)^{2},
\end{aligned}
$$

where $x_{2 k+1}$ is a solution of $x^{2}-3 y^{2}=1$. It can be easily shown that $x_{2 k+1} \equiv 2(\bmod 3)$ (because $x_{n+2}=4 x_{n+1}-x_{n}, x_{0}=1, x_{1}=2$), so

$$
\sqrt{d_{k} d_{k+1}+1}=\frac{1}{3}\left(x_{2 k+1}+4\right)
$$

is an integer.
Further, the set $\left\{1,3, c_{k}, d_{l}\right\}$ is not a Diophantine quadruple for $k \geq 1$ and $l \geq 0$. Indeed, it can be easily seen that $c_{k} d_{l}+1$ is a negative odd number (from Lemma 4 it follows that c_{k} is even, and from (13) that $\left.d_{l}<0\right)$. Hence, $\sqrt{c_{k} d_{l}+1} \notin \mathbb{Z}[\sqrt{-2}]$.

4 Proper triples in $\mathbb{Z}[\sqrt{d}]$ for some $d>0$

According to Proposition 3, the set $\{1,3, c\} \subset \mathbb{Z}$ is a proper Diophantine triple in $\mathbb{Z}[\sqrt{d}]$ if and only if one of the equations $(9),(10)$ is solvable in \mathbb{Z}.

Example 10. Determine all proper Diophantine triples $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{10}]$.
Note that $d=10$ is the smallest positive integer, $d \neq 1$, such that the equation (9) is solvable in \mathbb{Z}. If $\left(x_{n}, y_{n}\right)$ is a solution of (9), then $\left\{1,3, x_{n}^{2}-1\right\}$ is a proper triple in $\mathbb{Z}[\sqrt{10}]$. All solutions of (9) are

$$
x_{n+2}=22 x_{n+1}-x_{n}, x_{1}=42, x_{0}=2 \text {, }
$$

for $n \geq 0$. Hence,

$$
x_{n}=\frac{1}{6}\left((6+\sqrt{30})(11+2 \sqrt{30})^{n}+(6-\sqrt{30})(11-2 \sqrt{30})^{n}\right), n \geq 0 .
$$

So, all proper triples $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{10}]$ are $\left\{1,3, d_{n}\right\}$ where

$$
\begin{equation*}
d_{n}=x_{n}^{2}-1=\frac{1}{6}\left((11+2 \sqrt{30})^{2 n+1}+(11-2 \sqrt{30})^{2 n+1}-4\right), n \geq 0 . \tag{15}
\end{equation*}
$$

Besides these triples, sets $\{1,3,25 \pm 8 \sqrt{10}\},\{1,3,160 \pm 44 \sqrt{10}\},\{1,3,355 \pm 112 \sqrt{10}\}$ are also Diophantine triples in $\mathbb{Z}[\sqrt{10}]$. The third element of these triples is related to the solution in $\mathbb{Z}[\sqrt{10}]$ of the equation $x^{2}-3 y^{2}=-2$. For instance, $(6+2 \sqrt{10}, 4+\sqrt{10})$ is solution of $x^{2}-3 y^{2}=-2$ and $25+8 \sqrt{10}=(4+\sqrt{10})^{2}-1$. More generally, if $X^{2}-3 Y^{2}=-2$ and $X, Y \in \mathbb{Z}[\sqrt{10}]$ then $\left\{1,3, Y^{2}-1\right\}$ is a Diophantine triple in $\mathbb{Z}[\sqrt{10}]$.

Example 11. Determine all proper Diophantine triples $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{2}]$.
Since the equation (10) is solvable in $\mathbb{Z},\left\{1,3,2 y_{n}^{2}-1\right\}$ is a proper triple in $\mathbb{Z}[\sqrt{2}]$ where $\left(x_{n}, y_{n}\right)$ is a solution of (10). All solutions of (10) are

$$
y_{n+2}=10 y_{n+1}-y_{n}, y_{1}=9, y_{0}=1
$$

for $n \geq 0$, i.e.,

$$
y_{n}=\frac{1}{6}\left((5-2 \sqrt{6})^{n}(3-\sqrt{6})+(3+\sqrt{6})(5+2 \sqrt{6})^{n}\right) .
$$

So, all proper triples $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{2}]$ are $\left\{1,3, d_{n}\right\}$ where

$$
\begin{equation*}
d_{n}=2 y_{n}^{2}-1=\frac{1}{6}\left((5+2 \sqrt{6})^{2 n+1}+(5-2 \sqrt{6})^{2 n+1}-4\right) \tag{16}
\end{equation*}
$$

Also, because the equation (10) is solvable in $\mathbb{Z}[\sqrt{2}]$, there exist triples like $\{1,3,11 \pm 8 \sqrt{2}\}$, $\{1,3,32 \pm 20 \sqrt{2}\},\{1,3,161 \pm 112 \sqrt{2}\}$. Like in Example 10, the third element of these triples is obtained from the solution $(X, Y) \in \mathbb{Z}[\sqrt{2}]^{2}$ of the equation $x^{2}-3 y^{2}=-2$, i.e., $\left\{1,3, Y^{2}-1\right\}$ is a triple in $\mathbb{Z}[\sqrt{2}]$.

It is interesting to note that the expression (15) contains $11+2 \sqrt{30}$ (i.e. (11, 2)) which is a fundamental solution of the Pell's equation $x^{2}-30 y^{2}=1$. Similarly, in (16), $5+2 \sqrt{6}$ represents a fundamental solution of $x^{2}-6 y^{2}=1$.

In what follows, we will give the complete set of proper Diophantine triples $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{d}]$ for positive d which satisfies certain conditions. This problem is related to the solvability of the equation $x^{2}-3 d y^{2}=6$. For this equation, we have the following Nagell's result.

Lemma 12 (Theorem 11, [11]). Let D be a positive integer which is not a perfect square, and let $C \neq 1,-D$ be a square-free integer which divides $2 D$. Then if $\left(x_{0}, y_{0}\right)$ is the least positive (fundamental) solution of the equation

$$
\begin{equation*}
x^{2}-D y^{2}=C, \tag{17}
\end{equation*}
$$

then

$$
\frac{1}{|C|}\left(x_{0}+y_{0} \sqrt{D}\right)^{2}=\frac{x_{0}^{2}+D y_{0}^{2}}{|C|}+\frac{2 x_{0} y_{0}}{|C|} \sqrt{D}
$$

is a fundamental solution of the related Pell's equation $x^{2}-D y^{2}=1$. All solutions of (17) are

$$
\frac{x_{n}+y_{n} \sqrt{D}}{\sqrt{|C|}}=\left(\frac{x_{0}+y_{0} \sqrt{D}}{\sqrt{|C|}}\right)^{n}
$$

where n is a positive odd integer.

Theorem 13. Let d be a positive integer such that neither d nor $3 d$ are perfect squares and such that one of the equations (9), (10) is solvable in \mathbb{Z}. If $\{1,3, c\}$ is a proper Diophantine triple in $\mathbb{Z}[\sqrt{d}], d \neq 2,10$, then there exists nonnegative integer n such that

$$
\begin{equation*}
c=d_{n}=\frac{1}{6}\left((\xi+\eta \sqrt{3 d})^{2 n+1}+(\xi-\eta \sqrt{3 d})^{2 n+1}-4\right) \tag{18}
\end{equation*}
$$

where (ξ, η) is a fundamental solution of the Pell's equation

$$
\begin{equation*}
x^{2}-3 d y^{2}=1 \tag{19}
\end{equation*}
$$

If $d \in\{2,10\}$, then $c=d_{n}$ for some $n \geq 1$.
Proof. First, assume that the equation (9) is solvable in \mathbb{Z}. Hence, $c=x^{\prime 2}-1$, where $\left(x^{\prime}, y^{\prime}\right)$ is a solution of (9). By Lemma 12, we get that all solutions of (9) are

$$
x_{n}=\frac{1}{6}\left((\alpha+\beta \sqrt{3 d})(\xi+\eta \sqrt{3 d})^{n}+(\alpha-\beta \sqrt{3 d})(\xi-\eta \sqrt{3 d})^{n}\right), n \geq 0
$$

where (α, β) is a fundamental solution of the equation

$$
\begin{equation*}
x^{2}-3 d y^{2}=6 \tag{20}
\end{equation*}
$$

and (ξ, η) is a fundamental solution of the related Pell's equation (19). (Note that (20) has exactly one class of solutions, since $6 \mid x^{\prime} x^{\prime \prime}-3 d y^{\prime} y^{\prime \prime}$ i $6 \mid x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}$ for each two solutions $\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime \prime}, y^{\prime \prime}\right)$ of (20)). Hence,

$$
d_{n}=\frac{1}{36}\left((\alpha+\beta \sqrt{3 d})^{2}(\xi+\eta \sqrt{3 d})^{2 n}+(\alpha-\beta \sqrt{3 d})^{2}(\xi-\eta \sqrt{3 d})^{2 n}+12\right)-1
$$

According to Lemma $12, \frac{1}{6}(\alpha+\beta \sqrt{3 d})^{2}$ (i.e., $\left(\frac{1}{6}\left(\alpha^{2}+3 d \beta^{2}\right), \frac{1}{3} \alpha \beta\right)$ is a fundamental solution of $x^{2}-3 d y^{2}=1$, and so, we get (18).

If (10) is solvable in \mathbb{Z}, we obtain (18) in similar manner. Indeed, if $\left(x^{\prime}, y^{\prime}\right)$ is a solution of (10), then $c=d y^{\prime 2}-1$. All solutions of (10) are

$$
y_{n}=\frac{1}{2 \sqrt{3 d}}\left(\left(x_{0}+y_{0} \sqrt{3 d}\right)(\xi+\eta \sqrt{3 d})^{n}+\left(-x_{0}+y_{0} \sqrt{3 d}\right)(\xi-\eta \sqrt{3 d})^{n}\right), n \geq 0
$$

where $\left(x_{0}, y_{0}\right)$ and (ξ, η) are fundamental solutions of (10) and (19), respectively. Further, we have

$$
d_{n}=\frac{1}{6}\left(\frac{1}{2}\left(x_{0}+y_{0} \sqrt{3 d}\right)^{2}(\xi+\eta \sqrt{3 d})^{2 n}+\frac{1}{2}\left(x_{0}-y_{0} \sqrt{3 d}\right)^{2}(\xi-\eta \sqrt{3 d})^{2 n}-4\right)
$$

From Lemma 12, we get that $\frac{1}{2}\left(x_{0} \pm y_{0} \sqrt{3 d}\right)^{2}=\xi \pm \eta \sqrt{3 d}$ and again obtain (18).
Finally, we must determine in which cases $d_{n} \in\{0,1,3\}$, since a Diophantine triple consists of three nonzero distinct elements. Obviously, $d_{n}>3$ for $n \geq 1$, so we have to see if $d_{0} \in\{0,1,3\}$. Because $d_{0}=(\xi-2) / 3$, it follows that $\xi \in\{2,5,11\}$ where ξ is a fundamental solution of (19). If

- $\xi=2$, then $5=3 d \eta^{2}$ which is not possible,
- $\xi=5$, then $8=d \eta^{2}$ which implies that $\eta=1, d=8$ or $\eta=2, d=2$,
- $\xi=11$, then $40=d \eta^{2}$ which implies that $\eta=1, d=40$ or $\eta=2, d=10$.

For $d=8,40$ equations (9) and (10) have no solution in \mathbb{Z}, but (9) is solvable for $d=10$ and (10) is solvable for $d=2$. That is the reason why the element d_{0} in $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{10}]$ is omitted.

In Table 1 we give a list of $1<d<100$ such that the equation (9) is solvable. In the last column of Table 1 , the smallest c of a proper triple $\{1,3, c\}$ in $\mathbb{Z}[\sqrt{d}]$ is given.

d	fund. solution of (9)	fund. solution of (19)	$c_{\min }$
10	$(2,1)$	$(11,2)$	1763
46	$(4,1)$	$(47,4)$	15
58	$(22,5)$	$(1451,110)$	483
73	$(5,1)$	$(74,5)$	24
94	$(28,5)$	$(2351,140)$	783

Table 1: A list of $1<d<100$ such that (9) is solvable
If the equation (10) is solvable, we obtain Table 2.

d	fund. solution of (9)	fund. solution of (19)	$c_{\min }$
2	$(2,1)$	$(5,2)$	161
6	$(4,1)$	$(17,4)$	5
17	$(7,1)$	$(50,7)$	16
18	$(22,3)$	$(485,66)$	161
22	$(8,1)$	$(65,8)$	21
34	$(10,1)$	$(101,10)$	33
38	$(32,3)$	$(1025,96)$	341
41	$(11,1)$	$(122,11)$	40
54	$(140,11)$	$(19601,1540)$	6533
57	$(13,1)$	$(170,13)$	56
66	$(14,1)$	$(197,14)$	65
82	$(298,19)$	$(88805,5662)$	29601
86	$(16,1)$	$(257,16)$	85
89	$(49,3)$	$(2402,147)$	800
97	$(17,1)$	$(290,17)$	96

Table 2: A list of $1<d<100$ such that (10) is solvable

5 Acknowledgements

The author would like to thank A. Dujella for his helpful comments.

References

[1] A. Baker and D. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[2] A. Dujella, The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1-10.
[3] A. Dujella, Diophantine m-tuples, http://www.math.hr/~duje/dtuples.html.
[4] A. Dujella and C. Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J. Number Theory 106 (2004), 326-344.
[5] A. Dujella and A. Jurasić, On the size of sets in a poynomial variant of a problem of Diophantus, Int. J. Number Theory, to appear.
[6] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
[7] Z. Franušić, Diophantine quadruples in $\mathbb{Z}[\sqrt{4 k+3}]$, Ramanujan J. 17 (2008), 77-88.
[8] Z. Franušić, On the extensibility of Diophantine triples $\{k-1, k+1,4 k\}$ for Gaussian integers, Glas. Mat. Ser. III 43 (2008), 265-291.
[9] Z. Franušić, A Diophantine problem in $\mathbb{Z}[(1+\sqrt{d}) / 2]$, Studia Sci. Math. Hungar. 46 (2009), 103-112.
[10] B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16(1978), 155-165.
[11] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Reg. Soc. Sc. Upsaliensis (4) 16 (1955), No. 2, 1-38.
[12] N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/.

2000 Mathematics Subject Classification: 11D09, 11R11.
Keywords: Diophantine sets, quadratic fields, Pellian equations.
(Concerned with sequences $\underline{\text { A011922, }} \underline{\text { A030063 }}, \underline{A 045899}$, and $\underline{\text { A051048. }}$)

Received August 19 2010; revised version received August 31 2010; November 172010. Published in Journal of Integer Sequences, December 72010.

Return to Journal of Integer Sequences home page.

