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Abstract

We study some properties of functions that satisfy the condition f ′(x) = o
(

f(x)
x

)

,

for x → ∞, i.e., limx→∞
f ′(x)
f(x)

x

= 0. We call these “functions of slow increase”, since

they satisfy the condition limx→∞
f(x)
xα = 0 for all α > 0. A typical example of a

function of slow increase is the function f(x) = log x. As an application, we obtain
some general results on sequence An of positive integers that satisfy the asymptotic
formula An ∼ nsf(n), where f(x) is a function of slow increase.

1 Functions of Slow Increase

Definition 1. Let f(x) be a function defined on the interval [a,∞) such that f(x) > 0,
limx→∞ f(x) = ∞ and with continuous derivative f ′(x) > 0. The function f(x) is of slow
increase if the following condition holds.

lim
x→∞

f ′(x)
f(x)
x

= 0. (1)

Typical functions of slow increase are f(x) = log x, f(x) = log2 x, f(x) = log log x,

f(x) = log x
log log x

and Ψ : (0,∞) → (0,∞), Ψ(x) = Γ′(x)
Γ(x)

, where Γ(x) =
∫∞

0
tx−1e−t dt, which

generalize the harmonic sum Hn : N∗ → R, Hn = 1 + 1
2

+ 1
3

+ · · · + 1
n

to (0,∞), namely
Hn = Ψ(n+ 1) + γ, where γ is Euler’s constant.

We have the following theorems.
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Theorem 2. If f(x) and g(x) are functions of slow increase and C and α are positive
constants then the following functions are of slow increase.

f(x) + C, f(x) − C, Cf(x), f(x)g(x), f(x)α,

f(g(x)), log f(x), f(xα), f(xαg(x)), f(x) + g(x).

If f(x) and g(x) are functions of slow increase, limx→∞
f(x)
g(x)

= ∞ and d
dx

(

f(x)
g(x)

)

> 0 then
f(x)
g(x)

is a function of slow increase.

If h(x) is a function such that h(x) > 0, limx→∞ h(x) = ∞ and with continuous derivative

h′(x) > 0, then h(log x) is a function of slow increase if and only if limx→∞
h′(x)
h(x)

= 0.

If h(x) is a function such that h(x) > 0, limx→∞ h(x) = ∞ and with continuous derivative
h′(x) > 0, then eh(x) is a function of slow increase if and only if limx→∞ xh′(x) = 0.

If f(x) is a function of slow increase the following limit holds.

lim
x→∞

log f(x)

log x
= 0. (2)

Proof. Use Definition 1.

Theorem 3. The function f(x) is of slow increase if and only if f(x)
xα has negative derivative

(from a certain xα) for all α > 0.

Proof. We have
d

dx

(

f(x)

xα

)

=
f(x)

xα+1

(

xf ′(x)

f(x)
− α

)

. (3)

Therefore if limit (1) holds we obtain that for all α > 0,

d

dx

(

f(x)

xα

)

< 0 (4)

for x > xα. On the other hand, if (4) holds (for x > xα), (3) gives

0 <
xf ′(x)

f(x)
< α.

Consequently we obtain (note that α is arbitrary)

lim
x→∞

xf ′(x)

f(x)
= 0.

That is, equation (1).

The following theorem justifies the term “slow increase”.

Theorem 4. If the function f(x) is of slow increase then

lim
x→∞

f(x)

xβ
= 0 (5)

for all β > 0.
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Proof. Let α > 0 be such that α < β. Then f(x)
xα has a negative derivative (for x > xα), then

it is decreasing, therefore it is bounded 0 < f(x)
xα < M . So

lim
x→∞

f(x)

xβ
= lim

x→∞

f(x)

xα
.

1

xβ−α
= 0.

Corollary 5. If the function f(x) is of slow increase then the following limits hold.

lim
x→∞

f(x)

x
= 0, (6)

lim
x→∞

f ′(x) = 0. (7)

Proof. Limit (6) is an immediate consequence of Theorem 4. Limit (7) is an immediate
consequence of limit (6) and limit (1).

Theorem 6. If the function f(x) is of slow increase then

∞
∑

i=1

iαf(i)β = ∞ (8)

for all α > −1 and for all β.

Proof. We have
∞
∑

i=1

iαf(i)β =
∞
∑

i=1

(

iα+1f(i)β
) 1

i
. (9)

Now, it is well-known that
∞
∑

i=1

1

i
= ∞. (10)

On the other hand, we have (note that α+ 1 > 0)

lim
i→∞

iα+1f(i)β = ∞. (11)

Limit (11) is clearly true if β ≥ 0. If β < 0 limit (11) is a direct consequence of Theorem 2
(f(x)−β is of slow increase) and Theorem 4.

Finally, equations (9), (10) and (11) give equation (8).

Theorem 7. If the function f(x) is of slow increase then the following limit holds

lim
x→∞

∫ x

a
tαf(t)β dt

xα+1

α+1
f(x)β

= 1 (12)

for all α > −1 and for all β.
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Proof. We have (see (11))

lim
x→∞

xα+1

α+ 1
f(x)β = ∞.

On the other hand, the function tαf(t)β is either increasing or decreasing.
Use Theorem 2 and Theorem 3 in the case α < 0, β > 0 and α > 0, β < 0. The others

cases are trivial.
Consequently (8) implies,

lim
x→∞

∫ x

a

tαf(t)β dt = ∞.

Now, limit (12) is a direct consequence of the L’Hospital’s rule and limit (1).

Some particular cases of this theorem are the following:
If α = 0 we have

∫ x

a

f(t)β dt ∼ xf(x)β. (13)

If α = 0 and β = 1 we have

∫ x

a

f(t) dt ∼ xf(x). (14)

If α = 0 and β = −1 we have

∫ x

a

1

f(t)
dt ∼ x

f(x)
. (15)

Theorem 8. If the function f(x) is of slow increase and C is a constant then the following
limit holds

lim
x→∞

f(x+ C)

f(x)
= 1. (16)

Proof. If C > 0, applying the Lagrange’s Theorem we obtain

0 ≤ f(x+ C) − f(x)

f(x)
=
Cf ′(ξ)

f(x)
, (x < ξ < x+ C). (17)

Equations (17) and (7) give (16). In the same way can be proved the case C < 0.

Theorem 9. If the function f(x) is of slow increase, f ′(x) is decreasing and C > 0 then the
following limit holds

lim
x→∞

f(Cx)

f(x)
= 1. (18)

Proof. Suppose that C > 1. Applying Lagrange’s theorem we obtain

0 ≤ f(Cx) − f(x)

f(x)
=

(Cx− x)f ′(ξ)

f(x)
≤ (C − 1)

xf ′(x)

f(x)
, (x < ξ < Cx). (19)

Equations (19) and (1) give (18).
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Suppose that C < 1. Applying Lagrange’s theorem we obtain

0 ≤ f(x) − f(Cx)

f(Cx)
=

(x− Cx)f ′(ξ)

f(Cx)
≤ 1 − C

C

Cxf ′(Cx)

f(Cx)
, (Cx < ξ < x). (20)

Equations (20) and (1) give (18).

Theorem 10. If the function f(x) is of slow increase, f ′(x) is decreasing and 0 < C1 ≤
g(x) ≤ C2 then the following limit holds.

lim
x→∞

f(g(x)x)

f(x)
= 1. (21)

Proof. We have
f(C1x)

f(x)
≤ f(g(x)x)

f(x)
≤ f(C2x)

f(x)
. (22)

Equation (22) and Theorem 9 give (21).

2 Applications to Integer Sequences

In this section we consider only functions of slow increase that have decreasing derivative.
Let An be a strictly increasing sequence of positive integers such that

An ∼ nsf(n), (A1 > 1) (23)

and f(x) is a function of slow increase.
Let ψ(x) be the number of An that do not exceed x.

Example 11. If An = pn is the sequence of prime numbers we have (Prime Number
Theorem) s = 1 and f(x) = log x. If An = cn,k is the sequence of numbers with k prime

factors we have s = 1 and f(x) = (k−1)! log x
(log log x)k−1 (see [2]). If An = p2

n we have s = 2 and

f(x) = log2 x.

Remark 12. Note that: (i) Theorem 4 implies that s ≥ 1 in equation (23).
(ii) There exists a strictly increasing sequence An that satisfies (23), for example An =

⌊nsf(n)⌋.
(iii) If the function g(x) is of slow increase then g(An)

g(n)
→ l ⇔ g(nsf(n))

g(n)
→ l and g(An)

g(n)
→

∞ ⇔ g(nsf(n))
g(n)

→ ∞, because (Theorem 10) g(An) ∼ g(nsf(n)).

Theorem 13. If An satisfies (23) and g(x) is a function of slow increase then the following
equations hold

An+1 ∼ An, (24)

lim
n→∞

An+1 − An
An

= 0, (25)
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logAn+1 ∼ logAn, (26)

g(An+1) ∼ g(An), (27)

logAn ∼ s log n, (28)

log logAn ∼ log log n, (29)

lim
x→∞

ψ(x)

x
= 0.

Proof. Equation (24) is an immediate consequence of equation (23) and Theorem 8. Equation
(25) is an immediate consequence of equation (24). Equations (26) and (27) are an immediate
consequence of equation (24) and Theorem 10. Equation (28) is an direct consequence of
equations (23) and (2). Equation (29) is an direct consequence of (28). The last limit is an
immediate consequence of (23) ((An/n) → ∞) and (24).

Theorem 14. If An satisfies (23) and g(x) is a function of slow increase then the following
equation holds (note that l ≥ 1).

g(An) ∼ lg(n) ⇔ g(ψ(x)) ∼ 1

l
g(x). (30)

In particular (see (28) and (29))

logAn ∼ s log n⇔ logψ(x) ∼ 1

s
log x, (31)

log logAn ∼ log log n⇔ log logψ(x) ∼ log log x. (32)

Proof. We have

g(ψ(x)) ∼ 1

l
g(x) ⇒ g(ψ(An)) ∼

1

l
g(An) ⇒ g(n) ∼ 1

l
g(An)

⇒ g(An) ∼ lg(n).

On the other hand

g(An) ∼ lg(n) ⇒ g(An) ∼ lg(ψ(An)) ⇒ g(ψ(An)) ∼
1

l
g(An). (33)

If An ≤ x < An+1 we have

g(ψ(An))
1
l
g(An+1)

≤ g(ψ(x))
1
l
g(x)

≤ g(ψ(An))
1
l
g(An)

.

Now, both sides have limit 1 (see (33) and (27)).

6



We shall need the following well-known lemma (see [5, p. 332]).

Lemma 15. Let
∑∞

i=1 ai and
∑∞

i=1 bi be two series of positive terms such that limi→∞
ai

bi
= 1.

Then if
∑∞

i=1 bi is divergent, the following limit holds.

lim
n→∞

∑n

i=1 ai
∑n

i=1 bi
= 1.

In the following theorem we shall obtain information on ψ(x) when s = 1 (see (23)) and
f(An) ∼ f(n).

Theorem 16. If f(An) ∼ f(n) then

An ∼ nf(n) ⇔ ψ(x) ∼ x

f(x)
⇔ ψ(x) ∼

∫ x

a

1

f(t)
dt⇔

∑

Ai≤x

f(Ai) ∼ x. (34)

Besides if g(x) is a function of slow increase and g(An) ∼ l′g(n) then

ψ(x) ∼
∑

Ai≤x
g(Ai)

β

g(x)β
(35)

for all β.

Proof. We have (note that x
f(x)

→ ∞, see (6))

ψ(x) ∼ x

f(x)
⇒ ψ(An) ∼

An
f(An)

⇒ n ∼ An
f(An)

⇒ An ∼ nf(An)

⇒ An ∼ nf(n).

On the other hand

An ∼ nf(n) ⇒ An ∼ ψ(An)f(n) ⇒ ψ(An) ∼
An
f(n)

⇒ ψ(An) ∼
An

f(An)
. (36)

If An ≤ x < An+1 we have (note that x
f(x)

is increasing, see Theorem 3)

ψ(An)
An+1

f(An+1)

≤ ψ(x)
x

f(x)

≤ ψ(An)
An

f(An)

. (37)

Now, both sides have limit 1 (see (36), (24) and (27)). Consequently

An ∼ nf(n) ⇒ ψ(x) ∼ x

f(x)
.

On the other hand (see (15))

ψ(x) ∼ x

f(x)
⇔ ψ(x) ∼

∫ x

a

1

f(t)
dt.
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Note that (see (13))
∫ n

a

g(x)β dx ∼ ng(n)β.

Therefore as g(x)β is either increasing or decreasing,

n
∑

i=1

g(i)β =

∫ n

a

g(x)β dx+ h(n) ∼ ng(n)β. (38)

Equation (38), g(An)
β ∼ l′βg(n)β and Lemma 15 give

n
∑

i=1

g(Ai)
β ∼ nl′βg(n)β.

That is
∑

Ai≤An

g(Ai)
β ∼ ψ(An)g(An)

β.

Consequently

ψ(An) ∼
∑

Ai≤An
g(Ai)

β

g(An)β
. (39)

If An ≤ x < An+1 we have (β > 0)

ψ(An)
P

Ai≤An
g(Ai)β

g(An)β

≤ ψ(x)
P

Ai≤x g(Ai)β

g(x)β

≤ ψ(An)
P

Ai≤An
g(Ai)β

g(An+1)β

.

Now, both sides have limit 1 (see (39) and (27)). Therefore

ψ(x) ∼
∑

Ai≤x
g(Ai)

β

g(x)β
.

That is, equation (35). If β < 0, the proof of (35) is the same.
Consequently if g(x) = f(x) and β = 1 we find that

ψ(x) ∼ x

f(x)
⇔
∑

Ai≤x

f(Ai) ∼ x.

Example 17. Let us consider the sequence pn of prime numbers, in this case we have
(Prime Number Theorem) pn ∼ n log n and ψ(x) = π(x) ∼ x/(log x). Let us consider the

sequence cn,k of numbers with k prime factors, in this case we have cn,k ∼ (k−1)!n logn
(log log n)k−1 (see

Example 11) and (Landau’s Theorem) (see [1, 2]) ψ(x) ∼ x(log log x)k−1

(k−1)! log x
.

In the following general theorem we obtain information on ψ(x) if f(An) ∼ lf(n).
Theorem 16 is a particular case of this Theorem.
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Theorem 18. If f(An) ∼ lf(n) then

An ∼ nsf(n) ⇔ ψ(x) ∼ l
1
s
x

1
s

f(x)
1
s

⇔ ψ(x) ∼ l
1
s

s

∫ x

a

t−1+ 1
s

f(t)
1
s

dt

⇔
∑

Ai≤x

f(Ai)
1
s ∼ l

1
sx

1
s .

Besides if g(x) is a function of slow increase and g(An) ∼ l′g(n) then

ψ(x) ∼
∑

Ai≤x
g(Ai)

β

g(x)β
(40)

for all β.

Proof. The proof that

An ∼ nsf(n) ⇔ ψ(x) ∼ l
1
s
x

1
s

f(x)
1
s

is the same as in Theorem 16. Now, see equation (12),

∫ x

a

t−1+ 1
s

sf(t)
1
s

dt ∼ x
1
s

f(x)
1
s

.

Therefore

ψ(x) ∼ l
1
s
x

1
s

f(x)
1
s

⇔ ψ(x) ∼ l
1
s

s

∫ x

a

t−1+ 1
s

f(t)
1
s

dt.

The proof of the equation (40) is the same as in Theorem 16. If g(x) = f(x) and β = 1/s
then we find that

ψ(x) ∼ l
1
s
x

1
s

f(x)
1
s

⇔
∑

Ai≤x

f(Ai)
1
s ∼ l

1
sx

1
s .

Example 19. Let us consider the following sequence of positive integers (see Theorem 22)

An =
n
∑

i=1

pki ∼
nk+1

k + 1
logk n

where k is a positive integer. In this case we have s = k + 1, f(x) = logk x

k+1
and l = (k + 1)k.

Consequently

ψ(x) ∼ (k + 1)
x

1
k+1

(log x)
k

k+1

.

Let us consider the sequence Pn of the An powers. For example, if An = pn is the sequence
of prime numbers, Pn is the sequence of prime powers . Let λ(x) be the number of Pn that
do not exceed x.
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Theorem 20. If An satisfies (23) then

λ(x) ∼ ψ(x). (41)

Proof. The Ai ≤ x are A1, A2, . . . , Aψ(x). Let us write

Aαi

i = x, (i = 1, 2, . . . , ψ(x)).

Therefore

αi =
log x

logAi
, (i = 1, 2, . . . , ψ(x)).

We have the following inequalities

ψ(x) ≤ λ(x) ≤
ψ(x)
∑

i=1

[αi] ≤
ψ(x)
∑

i=1

αi = log x

ψ(x)
∑

i=1

1

logAi
. (42)

Equation (28) gives
1

logAn
∼ 1

s log n
. (43)

Note that (see (15))
∫ x

2

1

log t
dt ∼ x

log x
.

Now,

1

logA1

+

ψ(x)
∑

i=2

1

s log i
=

1

logA1

+
1

s

ψ(x)
∑

i=2

1

log i

=
1

s

∫ ψ(x)

2

1

log t
dt+O(1) ∼ ψ(x)

s logψ(x)
. (44)

Equations (43), (44) and Lemma 15 give

ψ(x)
∑

i=1

1

logAi
∼ ψ(x)

s logψ(x)
. (45)

Equations (42) and (45) give

ψ(x) ≤ λ(x) ≤ h(x)
ψ(x) log x

s logψ(x)
,

where h(x) → 1. That is

1 ≤ λ(x)

ψ(x)
≤ h(x)

log x

s logψ(x)
. (46)

Finally, equations (31) and (46) give (41).

10



Corollary 21. The following limit holds.

lim
x→∞

∑ψ(x)
i=1 (αi − [αi])

ψ(x)
= 0.

That is, the mean fractional part has limit zero.

Theorem 22. If An satisfies (23) then the following asymptotic formulas hold

n
∑

i=1

Aαi ∼ nsα+1f(n)α

sα + 1
∼ n

sα + 1
Aαn, (α > 0), (47)

∑

Ai≤x

Aαi ∼ ψ(x)

sα + 1
xα, (α > 0). (48)

Proof. Let us consider the sum

1 + 2 + · · · + (n′ − 1) +
n
∑

i=n′

(isf(i))α , (49)

where n′ is a positive integer on interval [a,∞). Note that (see (23))

Aαi ∼ (isf(i))α . (50)

Note that the function xsf(x) is increasing and therefore we have

n
∑

i=n′

(isf(i))α =

∫ n

n′

xsαf(x)α dx+O (nsαf(n)α) . (51)

On the other hand (see (12))

∫ n

n′

xsαf(x)α dx ∼ nsα+1f(n)α

sα + 1
. (52)

Equations (49), (51) and (52) give

1 + 2 + · · · + (n′ − 1) +
n
∑

i=n′

(isf(i))α ∼ nsα+1f(n)α

sα + 1
∼ n

sα + 1
Aαn. (53)

Finally, (53), (50) and Lemma 15 give (47).
If we substitute n = ψ(An) into equation (47) and proceed as in Theorem 14 and Theo-

rem 16 then we obtain (48).

Remark 23. Equations (47) and (48) when An = pn is the sequence of prime numbers
were obtained by Sálat and Znám [6], more precise formulas when α is a positive integer
were obtained by Jakimczuk [3]. Equations (47) and (48) when An = cn,k is the sequence of
numbers with k prime factors were obtained by Jakimczuk [2].
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Jakimczuk [4] proved the following theorem.

Theorem 24. If An satisfies (23) then the following formulas hold

n
∑

i=1

logAi = s n log n− s n+ n log f(n) + o(n),

lim
n→∞

n
√
A1A2 . . . An

An
=

1

es
.

Proof. See [4]. In that proof we supposed that

lim
x→∞

∫ x

a

tf ′(t)

f(t)
dt = ∞.

Consequently (L’Hospital’s rule)

lim
x→∞

∫ x

a

tf ′(t)
f(t)

dt

x
= 0. (54)

This supposition is unnecessary since if the integral converges then (54) also holds.

Definition 25. The function of slow increase f(x) is a universal function if and only if for
all sequence An that satisfies (23) we have f(An) ∼ lf(n) where l depends of the sequence
An.

Example 26. Equation (28) implies that f(x) = log x is an universal function, in this
case l = s. Equation (29) implies that f(x) = log log x is an universal function, in this case
l = 1 does not depend of the sequence An.

Remark 27. Note that if f(x) and g(x) are universal functions then f(x)α (α > 0),
Cf(x) (C > 0) and f(x)g(x) are universal functions. If f(x)/g(x) is a function of slow
increase then is an universal function.

Theorem 28. If f(x) is an universal function and An satisfies (23) then we have

ψ(x) ∼
∑

Ai≤x
f(Ai)

β

f(x)β

for all β.

Proof. The proof is the same as in Theorem 16 and Theorem 18.

Example 29. Since f(x) = log x is an universal function, we have for all sequences An
satisfying (23) that

ψ(x) ∼
∑

Ai≤x
logβ Ai

logβ x
.

In particular, if β = 1 we have

ψ(x) ∼
∑

Ai≤x
logAi

log x
.
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Theorem 30. There exist functions of slow increase that are not universal functions.

Proof. We shall prove that the following function of slow increase

g(x) = e
log x

log log x ,

is not an universal function. We shall prove that there exists a sequence An that satisfies
(23) and

lim
n→∞

g(An)

g(n)
= ∞.

Since An satisfies (23) we can write

An = h1(n)nsf(n),

where h1(n) → 1. Therefore

g(An)

g(n)
= exp





log h1(n) + s log n+ log f(n)

log log n+ log s+ log
(

1 + log f(n)
s logn

+ log h1(n)
s logn

) − log n

log log n



 . (55)

If s > 1 (55) becomes (see (2))

g(An)

g(n)
= exp

(

h2(n)
s log n

log log n
− log n

log log n

)

,

where h2(n) → 1. That is

g(An)

g(n)
= exp

(

h3(n)
(s− 1) log n

log log n

)

,

where h3(n) → 1. Consequently we have

lim
n→∞

g(An)

g(n)
= ∞.

This proves the theorem. In particular this limit is true if f(x) = g(x).
To complete, we shall examine the case s = 1. In this case (55) becomes (note that

limx→0
log(1+x)

x
= 1)

g(An)

g(n)
= exp

(

log h1(n) + log n+ log f(n)

log log n+ h4(n) log f(n)
logn

+ h4(n) log h1(n)
logn

− log n

log log n

)

= exp

(

log n+ log f(n)

log log n+ h4(n) log f(n)
logn

+ h4(n) log h1(n)
logn

− log n

log log n
+ o(1)

)

= exp

(

log log n log f(n) − h4(n) log f(n) − h4(n) log h1(n)

(log log n)2 + h4(n) log log n log f(n)
logn

+ h4(n) log log n log h1(n)
logn

+ o(1)

)

= exp

(

h5(n)
log f(n)

log log n
+ o(1)

)

,
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where h4(n) → 1 and h5(n) → 1.

For example, if f(x) = g(x) then limn→∞
g(An)
g(n)

= ∞. If f(x) = logα x (α > 0) then

limn→∞
g(An)
g(n)

= eα. If f(x) = log log x then limn→∞
g(An)
g(n)

= 1.
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