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Abstract

We investigate sums of products of Bernoulli numbers including poly-Bernoulli

numbers. A relation among these sums and explicit expressions of sums of two and

three products are given. As a corollary, we obtain fractional parts of sums of two and

three products for negative indices.

1 Introduction and main results

Bernoulli numbers Bn (n = 0, 1, 2, . . .) are defined by the following generating function:

t

et − 1
=

∞
∑

n=0

Bn

n!
tn.

The following identity on sums of two products of Bernoulli numbers is known as Euler’s
formula:

n
∑

i=0

(

n

i

)

BiBn−i = −nBn−1 − (n − 1)Bn (n ≥ 1). (1)

When n is an even integer, the identity (1) can be written as

n−1
∑

i=1

(

2n

2i

)

B2iB2n−2i = −(2n + 1)B2n (n ≥ 2), (2)
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because Bn = 0 for any odd integer n ≥ 3. Many generalizations of (1) and (2) have
been considered. As a generalization of (2), Dilcher [7] gave closed formulas of sums of N
products of Bernoulli numbers for any positive integer N . Chen [6] gave generalizations
of (1) for sums of N products of Bernoulli polynomials, generalized Bernoulli numbers and
Euler polynomials by using special values of certain zeta functions at non-positive integers.
Other types of sums of products have been also studied; see, for example, [1, 2, 8, 12, 13, 14].

The reason why these formulas are valid is that the generating function of Bernoulli
numbers satisfies simple differential equations. For example, Euler’s formula (1) is derived
by comparing the coefficients of the following identity:

F (t)2 = −tF ′(t) + (1 − t)F (t), (3)

where F (t) = t/(et − 1).
For any integer k, Kaneko [10] introduced poly-Bernoulli numbers of index k (denoted

by B
(k)
n ) by the following generating function:

Lik(1 − e−t)

1 − e−t
=

∞
∑

n=0

B
(k)
n

n!
tn, (4)

where Lik(x) is the k-th polylogarithm defined by Lik(x) =
∑∞

n=1 xn/nk. The list of poly-

Bernoulli numbers B
(k)
n with −5 ≤ k ≤ 5 and 0 ≤ n ≤ 7 are given by Arakawa and Kaneko

[3]. The numbers B
(k)
n are rational numbers, in particular, are positive integers for k ≤ 0

(e.g., [10, Section 1]). When k = 1, the left-hand side of (4) is equal to tet/(et − 1) because
of Li1(x) = − log(1 − x). Since

tet

et − 1
=

∞
∑

n=0

(−1)nBn

n!
tn, (5)

we have B
(1)
n = (−1)nBn for n ≥ 0 (actually B

(1)
n = Bn except for n = 1). Poly-Bernoulli

numbers of positive index are related to multiple zeta functions. To be more precise, special
values of certain multiple zeta functions at non-positive integers are described in terms of
poly-Bernoulli numbers (cf. [4]). For combinatorial interpretations of poly-Bernoulli numbers
of negative index, see Brewbaker [5] and Launois [11].

In this paper we investigate the following type of sums of products of Bernoulli numbers
including poly-Bernoulli numbers:

S(k)
m (n) :=

∑

i1+···+im=n
i1,...,im≥0

(

n

i1, . . . , im

)

Bi1 · · ·Bim−1
B

(k)
im

(m ≥ 1, n ≥ 0), (6)

where
(

n

i1,...,im

)

are multinomial coefficients defined by

(

n

i1, . . . , im

)

=
n!

i1! · · · im!
.
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Table 1: S
(k)
2 (n)

k\n 0 1 2 3 4 5 6

−4 1 31
2

781
6

855 147479
30

26025 5474701
42

−3 1 15
2

229
6

165 19559
30

2435 367669
42

−2 1 7
2

61
6

27 2039
30

165 16381
42

−1 1 3
2

13
6

3 119
30

5 253
42

0 1 1
2

1
6

0 − 1
30

0 1
42

1 1 0 −1
6

0 1
10

0 − 5
42

2 1 −1
4

−1
9

1
8

17
450

−1
8

− 23
1470

3 1 −3
8

− 1
108

13
96

− 733
13500

− 131
1440

65953
617400

4 1 − 7
16

43
648

115
1152

− 70271
810000

− 233
9600

26855027
259308000

Clearly, it holds that S
(k)
1 (n) = B

(k)
n . We list S

(k)
2 (n) and S

(k)
3 (n) with −4 ≤ k ≤ 4 and

0 ≤ n ≤ 6 in Tables 1 and 2. We note that the numbers S
(k)
m (n) appear as the coefficients of

the following generating function:

(

t

et − 1

)m−1
Lik(1 − e−t)

1 − e−t
=

∞
∑

n=0

S(k)
m (n)

tn

n!
. (7)

The left-hand side of (7) satisfies a certain differential equation like (3) (see Proposition 5),
thus this type of sums (6) is one of natural extensions of the classical sums of products of
Bernoulli numbers.

Now we state our main results of this paper.

Theorem 1. For k ∈ Z and m ≥ 1, we have

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

S
(k−l)
m+1 (n)

=











n(n − 1) · · · (n − m + 1)
m
∑

l=1

[

m

l

]

B
(k)
n−m+l , if n ≥ m;

0, if 0 ≤ n ≤ m − 1,

(8)

where
[

m

l

]

are (unsigned) Stirling numbers of the first kind.

The definition of Stirling numbers of the first kind
[

m

l

]

will be given in Section 2. Although

Theorem 1 only gives relations among sums of products S
(k)
m (n), explicit formulas of S

(k)
m (n)

can be obtained for m = 2 and 3.
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Table 2: S
(k)
3 (n)

k\n 0 1 2 3 4 5 6

−4 1 15 689
6

1335
2

33361
10

30315
2

2708995
42

−3 1 7 185
6

223
2

3601
10

6473
6

128515
42

−2 1 3 41
6

27
2

241
10

79
2

2515
42

−1 1 1 5
6

1
2

1
10

−1
6

− 5
42

0 1 0 −1
6

0 1
10

0 − 5
42

1 1 −1
2

0 1
4

− 1
10

−1
4

5
21

2 1 −3
4

11
36

1
6

−107
300

11
360

209
392

3 1 −7
8

115
216

− 11
288

− 6619
18000

899
2700

134563
493920

4 1 −15
16

869
1296

− 755
3456

− 273653
1080000

279877
648000

− 10347133
207446400

Theorem 2. For k ≥ 1 and n ≥ 0, it holds that

S
(0)
2 (n) = B(1)

n , (9)

S
(k)
2 (n) = B(1)

n − n

k
∑

j=1

B(j)
n , (10)

S
(−k)
2 (n) = B(1)

n + n
k−1
∑

j=0

B(−j)
n . (11)

When k = 1 in (10), we have

n
∑

i=0

(

n

i

)

(−1)n−iBiBn−i = −(n − 1)Bn. (12)

The identity (12) is equivalent to (1) because Bn = 0 for any odd integer n ≥ 3. Therefore
Theorem 2 can be regarded as a generalization of Euler’s formula (1).

Theorem 3. For k ≥ 1 and n ≥ 1, it holds that

S
(0)
3 (n) = − (n − 1)Bn, (13)

S
(k)
3 (n) =(−1)n(1 − 2−k)Bn−1 − (n − 1)Bn

+ n(n − 1)
k
∑

j=1

(1 − 2j−k−1)
(

B(j)
n + B

(j)
n−1

)

,
(14)

S
(−k)
3 (n) =n(2k − 1)(−1)n−1Bn−1 − (n − 1)Bn

+ n(n − 1)
k−2
∑

j=0

(2k−1−j − 1)
(

B(−j)
n + B

(−j)
n−1

)

.
(15)
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As a corollary, for a negative index −k, we obtain the following formulas on fractional
parts of S

(−k)
2 (n) and S

(−k)
3 (n).

Corollary 4. For k ≥ 1 and n ≥ 0, we have

S
(−k)
2 (n) ≡ Bn (mod 1), (16)

S
(−k)
3 (n) ≡

{

n(2k − 1)Bn−1 (mod 1), if n is odd;

−(n − 1)Bn (mod 1), if n is even.
(17)

Here α ≡ β (mod 1) means α − β ∈ Z for rational numbers α and β.

The classical von Staudt-Clausen theorem (e.g., [9, Section 7.9]) states that

Bn ≡ −
∑

p:prime
(p−1)|n

1

p
(mod 1)

for any even integer n ≥ 2. Therefore, by using Corollary 4, we can determine the fractional
parts of S

(−k)
2 (n) and S

(−k)
3 (n) if k ≥ 1 and n ≥ 0 are given.

2 Proof of Theorem 1

We first recall (unsigned) Stirling numbers of the first kind. Let m be a positive integer. For
0 ≤ l ≤ m, Stirling numbers of the first kind

[

m

l

]

are defined as

x(x + 1) · · · (x + m − 1) =
m
∑

l=0

[

m

l

]

xl. (18)

It follows immediately that
[

m

0

]

= 0 and
[

m

m

]

= 1 for all m ≥ 1. For l ≥ m + 1 and l ≤ −1,
we define

[

m

l

]

= 0. Then the recurrence relation
[

m + 1

l

]

=

[

m

l − 1

]

+ m

[

m

l

]

(19)

holds for all m ≥ 1 and l ∈ Z.
We set the generating function of poly-Bernoulli numbers of index k as Fk(t), i.e.,

Fk(t) :=
Lik(1 − e−t)

1 − e−t
.

For k = 1, 0 and −1, they have simple expressions; F1(t) = tet/(et − 1), F0(t) = et and
F−1(t) = e2t.

Now let us prove Theorem 1. The n-th coefficient of tm dl

dtl
Fk(t) is equal to







n(n − 1) · · · (n − m + 1)B
(k)
n−m+l

n!
, if n ≥ m;

0, if 0 ≤ n ≤ m − 1.

Therefore it suffices to show the following proposition to get Theorem 1.
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Proposition 5. For k ∈ Z and m ≥ 1 we have

([

m

m

]

dm

dtm
+

[

m

m − 1

]

dm−1

dtm−1
+ · · · +

[

m

1

]

d

dt

)

Fk(t)

=
1

(et − 1)m

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

Fk−l(t).

(20)

Proof. We prove the proposition by induction on m. Since d
dt

Fk(t) = Fk−1(t)/t, we can easily
prove that

d

dt
Fk(t) =

1

et − 1
(Fk−1(t) − Fk(t)) (k ∈ Z). (21)

Hence the case m = 1 holds.
We assume that (20) holds for a certain m. By (19), we have

([

m + 1

m + 1

]

dm+1

dtm+1
+

[

m + 1

m

]

dm

dtm
+ · · · +

[

m + 1

1

]

d

dt

)

Fk(t)

=
d

dt

([

m

m

]

dm

dtm
+ · · · +

[

m

1

]

d

dt

)

Fk(t) + m

([

m

m

]

dm

dtm
+ · · · +

[

m

1

]

d

dt

)

Fk(t).

(22)

By the inductive assumption and (21), the right-hand side of (22) is equal to

d

dt

(

1

(et − 1)m

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

Fk−l(t)

)

+
m

(et − 1)m

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

Fk−l(t)

=
−met

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

Fk−l(t)

+
1

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

(Fk−l−1(t) − Fk−l(t))

+
m

(et − 1)m

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

Fk−l(t)

=
−m − 1

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

Fk−l(t)

+
1

(et − 1)m+1

m
∑

l=0

(−1)m−l

[

m + 1

l + 1

]

Fk−l−1(t)

=
1

(et − 1)m+1

m+1
∑

l=0

(−1)(m+1)−l

(

(m + 1)

[

m + 1

l + 1

]

+

[

m + 1

l

])

Fk−l(t).
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As a consequence, by using the relation (19) again, we obtain

([

m + 1

m + 1

]

dm+1

dtm+1
+

[

m + 1

m

]

dm

dtm
+ · · · +

[

m + 1

1

]

d

dt

)

Fk(t)

=
1

(et − 1)m+1

m+1
∑

l=0

(−1)(m+1)−l

[

(m + 1) + 1

l + 1

]

Fk−l(t).

Therefore (20) also holds for m + 1 and this completes the proof.

3 Explicit formulas of S
(k)
2 (n) and S

(k)
3 (n)

In this section, we prove Theorem 2, Theorem 3 and Corollary 4.

Proof of Theorem 2. First we prove (9). We recall F0(t) = et. By setting m = 2 and k = 0

in (7), we obtain that the generating function of S
(0)
2 (n) is equal to tet/(et − 1). Then (9)

follows from (5).
Next we prove the positive index case (10). Since the negative index case (11) can be

proved similarly, we omit its proof. By (21), we have

k
∑

j=1

d

dt
Fj(t) =

1

et − 1
(F0(t) − Fk(t)).

Since F0(t) = et, it holds that

t

et − 1
Fk(t) =

tet

et − 1
− t

k
∑

j=1

d

dt
Fj(t).

By comparing the coefficients of both sides, we obtain (10).

Proof of Theorem 3. By setting m = 3 and k = 0 in (7), we obtain that the generating

function of S
(0)
3 (n) is t2et/(et − 1)2. This is exactly the same as the generating function of

S
(1)
2 (n), therefore (13) follows from the relation (12).

We prove the positive index case (14). We also omit the proof of the negative index case
(15) because it can be proved similarly. Setting m = 2 in Proposition 5, we have

(

d2

dt2
+

d

dt

)

Fk(t) =
1

(et − 1)2
((2Fk(t) − Fk−1(t)) − (2Fk−1(t) − Fk−2(t))) . (23)

By this equation, we get

2Fl(t)

(et − 1)2
−

Fl−1(t)

(et − 1)2
=

2F0(t) − F−1(t)

(et − 1)2
+

l
∑

j=1

(

d2

dt2
+

d

dt

)

Fj(t). (24)
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In fact, this can be proved by replacing k with j in (23) and summing over j from 1 to l.
Furthermore we multiply both sides of (24) by 2l−1 and sum over l from 1 to k. Then we
obtain

2k Fk(t)

(et − 1)2
=

F0(t)

(et − 1)2
+

(

k
∑

l=1

2l−1

)

2F0(t) − F−1(t)

(et − 1)2

+
k
∑

l=1

2l−1

l
∑

j=1

(

d2

dt2
+

d

dt

)

Fj(t)

=
(2k+1 − 1)F0(t) − (2k − 1)F−1(t)

(et − 1)2

+
k
∑

j=1

(

k
∑

l=j

2l−1

)

(

d2

dt2
+

d

dt

)

Fj(t).

Hence we have

2k

(

t

et − 1

)2

Fk(t) =(2k+1 − 1)
t

et − 1

tet

et − 1
− (2k − 1)

tet

et − 1

tet

et − 1

+ t2
k
∑

j=1

(2k − 2j−1)

(

d2

dt2
+

d

dt

)

Fj(t).

(25)

By comparing the coefficients of both sides, we obtain for n ≥ 1

2kS
(k)
3 (n) =(2k+1 − 1)

n
∑

i=0

(

n

i

)

(−1)n−iBiBn−i − (2k − 1)
n
∑

i=0

(

n

i

)

(−1)nBiBn−i

+ n(n − 1)
k
∑

j=1

(2k − 2j−1)
(

B(j)
n + B

(j)
n−1

)

.

By (1), (12) and the fact (−1)n(n − 1)Bn = (n − 1)Bn for all n ≥ 1, it holds that

(2k+1 − 1)
n
∑

i=0

(

n

i

)

(−1)n−iBiBn−i − (2k − 1)
n
∑

i=0

(

n

i

)

(−1)nBiBn−i

= −(2k+1 − 1)(n − 1)Bn − (−1)n(2k − 1)(−nBn−1 − (n − 1)Bn)

= −n(2k − 1)(−1)n−1Bn−1 − (n − 1)2kBn.

Therefore we obtain

2kS
(k)
3 (n) = − n

(

2k − 1
)

(−1)n−1Bn−1 − (n − 1)2kBn

+ n(n − 1)
k
∑

j=1

(2k − 2j−1)(B(j)
n + B

(j)
n−1).

(26)

Dividing both sides of (26) by 2k, we get (14).
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Proof of Corollary 4. The congruence (16) immediately follows from (11) and the fact B
(−k)
n

are integers for k ≥ 0.
The congruence (17) holds for n = 0 because S

(−k)
3 (0) = 1 for any k ≥ 1. We assume

that n ≥ 1. By (15), the fractional part of S
(−k)
3 (n) is

n(2k − 1)(−1)n−1Bn−1 − (n − 1)Bn. (27)

If n is odd, then (−1)n−1Bn−1 = Bn−1 and (n − 1)Bn = 0. Thus we have S
(−k)
3 (n) ≡

n(2k−1)Bn−1 (mod 1). If n ≥ 4 is even, then Bn−1 = 0. Thus we have S
(−k)
3 (n) ≡ −(n−1)Bn

(mod1) for even n ≥ 4. This congruence also holds for n = 2 because the first term of (27)
becomes 2k − 1 ∈ Z, and this completes the proof of (17).

Remark 6. For m ≥ 4 we may give explicit formulas of S
(k)
m (n) by the method similar

to the proof of Theorem 2 and Theorem 3. However, these formulas seem to be complicated
to describe.
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