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Abstract

We define a generalization of the Stirling numbers of the first and second kinds

and develop a new rook theory model to give combinatorial interpretations to these

numbers. These rook-theoretic interpretations are used to give a direct combinatorial

proof that two associated matrices are inverses of each other. We also give combinato-

rial interpretations of the numbers in terms of certain collections of permutations and

in terms of certain collections of set partitions. In addition, many other well-known

identities involving Stirling numbers are generalized using this new model.

1 Introduction

Define N = {1, 2, 3, . . .} and N0 = N∪{0}. Let Q[x] be the polynomial ring over the rational
numbers Q. The Stirling numbers of the first and second kind are the connection coefficient
between power basis {xn}n≥0 and the falling factorial basis {(x) ↓n}n≥0 where (x) ↓0= 1 and
(x) ↓n= x(x− 1) · · · (x−n+ 1) for n ≥ 1. That is, the Stirling numbers of the first kind sn,k

are defined by the equation

(x) ↓n=
n∑

k=1

sn,kx
k, (1.1)

and the Stirling numbers of the second kind Sn,k are defined by the equation

xn =
n∑

k=1

Sn,k(x) ↓k . (1.2)
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They are also defined by the recursions

sn+1,k = sn,k−1 − nsn,k (1.3)

where s0,0 = 1 and sn,k = 0 if either k < 0 or k > n, and

Sn+1,k = Sn,k−1 + kSn,k (1.4)

where S0,0 = 1 and Sn,k = 0 if either k < 0 or k > n. If we let cn,k = (−1)n−ksn,k, then the
cn,k’s satisfy the recursion

cn+1,k = cn,k−1 + ncn,k (1.5)

where c0,0 = 1 and cn,k = 0 if either k < 0 or k > n. There are several combinatorial
interpretations of the Sn,k’s and cn,k’s. For example, Sn,k is the number of set partitions
of {1, . . . , n} into k nonempty parts and cn,k equals the number permutations σ in the
symmetric group Sn that have k cycles. The Sn,k’s and cn,k’s also have nice interpretations
in terms of rook theory. Let F (0, 1, . . . , n − 1) be a rook board whose columns heights are
0, 1, . . . , n − 1 reading from right to left. Then Sn,k equals number of ways to place n − k

rooks on F (0, 1, . . . , n − 1) so that no two rooks are in the same row or column, and cn,k

equals number of ways to place n− k rooks on F (0, 1, . . . , n− 1) so that no two rooks are in
the same column.

The goal of this paper is to develop the combinatorics of what we call the poly-Stirling
numbers. Let ps1x

s1 + ps2x
s2 + · · · + psy

xsy ∈ N[x] where 0 ≤ si < sj whenever i < j. We

define the numbers s
p(x)
n,k and S

p(x)
n,k by the following recursions, respectively:

s
p(x)
0,0 = 1 and s

p(x)
n,k = 0 if k < 0 or k > n, and (1.6)

s
p(x)
n+1,k = s

p(x)
n,k−1 − p(n)s

p(x)
n,k if 0 ≤ k ≤ n + 1 and n ≥ 0,

and

S
p(x)
0,0 = 1 and S

p(x)
n,k = 0 if k < 0 or k > n, and (1.7)

S
p(x)
n+1,k = S

p(x)
n,k−1 + p(k)S

p(x)
n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.

If we replace s
p(x)
n,k with (−1)n−kc

p(x)
n,k , then we have the recursion

c
p(x)
0,0 = 1 and c

p(x)
n,k = 0 if k < 0 or k > n, and (1.8)

c
p(x)
n+1,k = c

p(x)
n,k−1 + p(n)c

p(x)
n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.

We will call the sequence of numbers in Equation (1.7) the poly-Stirling numbers of the

second kind for p(x), the sequence of numbers in Equation (1.6) the poly-Stirling numbers

of the first kind for p(x), and the sequence of numbers in Equation (1.8) the signless poly-

Stirling numbers of the first kind for p(x).

We develop a new rook theory model to interpret the numbers S
p(x)
n,k and c

p(x)
n,k . We then use

this model to prove various identities for the poly-Stirling numbers. We also give alternative
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combinatorial interpretations of c
p(x)
n,k in terms of certain collections of permutations and S

p(x)
n,k

in terms of certain collections of sets partitions. For example, we shall show that Sxm

n,k is the

number of m-tuples of set partitions (P (1), . . . , P (m)) of {1, . . . , n} into k parts such that the
set of minimal elements in the parts of P (i) is the same for all i. Similarly, we show that
(−1)n−ksxm

n,k is the number of m-tuples of permutations (σ(1), . . . , σ(m)) of {1, . . . , n} into k

cycles such that set of minimal elements in the cycles of σ(i) is the same for all i.
It is also the case that for any p(x) ∈ N[x], the matrices ||sp(x)

n,k || and ||Sp(x)
n,k || are inverses

of each other. This follows from general inversion formula due Milne [4] or can be directly
verified by using recursions (1.6) and (1.7). We use our combinatorial interpretations the

S
p(x)
n,k ’s and s

p(x)
n,k ’s to give a direct combinatorial proof of this fact.

The outline of this paper is as follows. In Section 2, we will develop a rook theory model
which we call m-partition rook boards. This allows us to give combinatorial interpretations
of the poly-Stirling numbers S

p(x)
n,k and c

p(x)
n,k in the special case where p(x) = xm. We shall call

such poly-Stirling numbers xm-Stirling numbers. We shall show that various simple identities
satisfied by the xm-Stirling numbers are just special cases of more general formulas for the
appropriate analogues of rook and file numbers for m-partition Ferrers boards. In Section 3,
we use the theory of m-partition boards to show that the matrices defined by the xm-Stirling
numbers of the first and second kind are inverses of one another. In Section 4, we will
generalize the results in Section 2 in order to discuss poly-Stirling numbers in full generality,
first describing the case where p(0) = 0 and then describing the case where p(0) 6= 0.

2 m-Partition Boards & Rook Placements

Let B = F (b1, b2, . . . , bn) be a Ferrers board with column heights b1, b2, . . . , bn, reading from
left to right, where 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn are nonnegative integers. For any positive integer
m, we may define B(m), called the m-partition of B, to be the board B where each column
is partitioned into m subcolumns. We will define, for any board B, C(j)(B

(m)) to be the jth

column of B(m), reading from left to right and C(l,j)(B
(m)) to be the lth subcolumn, reading

from left to right, of the jth column of B. Finally, the cell which is in the tth row from the
bottom of C(l,j)(B

(m)) will be denoted by c(t, l, j). An example of these types of boards can
be seen in Figure 1, where B = F (0, 1, 3, 4, 4) and m = 2.

Garsia and Remmel [1] define two kinds of rook placements in the board B(m): nonat-
tacking placements and file placements. We let Nk,(m)(B

(m)) denote the set of placements of
mk rooks in B(m) such that the following three conditions hold.

(i.) If any subcolumn C(i,j)(B
(m)) contains a rook, then for every 1 ≤ l ≤ m, the subcolumn

C(l,j)(B
(m)) must contain a rook. That is, if any subcolumn of the jth column contains

a rook, then every subcolumn of the jth column must contain a rook.

(ii.) There is a most one rook in any one subcolumn.

(iii.) For any 1 ≤ l ≤ m and any row t, there is at most one rook in row t that lies in
a subcolumn of the form C(l,j)(B

(m)). That is, there is at most one rook in the lth

subcolumn of any column.
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Figure 1: The board B(2), with B = F (0, 1, 3, 4, 4).

We shall call an element of Nk,(m)(B
(m)) a nonattacking placement of mk rooks in B(m).

Another way to think of nonattacking rook placements is that as you place rooks from left
to right, each rook r that lies in a cell c(t, l, j) cancels all the cells in the same row t that lie
in subcolumns corresponding to l to its right. Then a placement of rooks satisfying (i) and
(ii) above is a placement of nonattacking rooks if no rook lies in a cell which is canceled by
another rook to its left. For example, on the left in Figure 2 we have pictured a nonattacking
rook placement P ∈ Nk,(m)(B

(m)) where B = F (0, 1, 3, 4, 4), m = 2, and k = 2. Here we
denote each rook by an “X” and we have placed dots in the cells that are canceled by these
rooks. Note that since rooks only cancel cells that correspond to the same subcolumn, we
do allow the possibility of having rooks in the same row in a given column.

We let Fk,(m)(B
(m)) denote the set of placements of mk rooks in B(m) such that the

following two conditions hold.

(i.) If any subcolumn C(i,j)(B
(m)) contains a rook, then for every 1 ≤ l ≤ m, the subcolumn

C(l,j)(B
(m)) must contain a rook.

(ii.) There is at most one rook in any subcolumn.

We call such placements file rook placements. For example, on the right in Figure 2 we have
pictured a file placement Q ∈ Fk,(m)(B

(m)) where B = F (0, 1, 3, 4, 4), m = 2, and k = 2.
We then define

rk,(m)(B
(m)) := |Nk,(m)(B

(m))| and

fk,(m)(B
(m)) := |Fk,(m)(B

(m))|,

and we call rk,(m)(B
(m)) the kth m-rook number of B(m) and fk,(m)(B

(m)) the kth m-file number

of B(m).
Next we shall prove some basic properties of the m-rook numbers and m-file numbers for

Ferrers boards. First we show that these numbers satisfy some simple recursions.

Theorem 2.1. Suppose that B = F (b1, . . . , bn) and B̄ = F (b1, . . . , bn, bn+1) are Ferrers

boards. Then for all 0 ≤ k ≤ n + 1,

rk,(m)(B̄
(m)) = rk,(m)(B

(m)) + (bn+1 − (k − 1))mrk−1,(m)(B
(m)) (2.1)
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Figure 2: Nonattacking and file rook placements in the board B(2), with B = F (0, 1, 3, 4, 4).

and

fk,(m)(B̄
(m)) = fk,(m)(B

(m)) + bm
n+1fk−1,(m)(B

(m)). (2.2)

Proof. For (2.1), we will classify the nonattacking rook placements Nk,(m)(B̄
(m)) according

to whether they have rooks in the last column. That is, if P ∈ Nk,(m)(B̄
(m)) has no rooks

in the last column, then P can be viewed as an element of Nk,(m)(B
(m)) so that such rook

placements are counted by rk,(m)(B
(m)). If P ∈ Nk,(m)((B̄

(m)) has rooks in the last column,
then let P∗ denote the rook placement in Nk−1,(m)(B̄

(m)) that results from P by removing
all the rooks in the last column. Now if we are given such a P∗, we claim that there are
(bn+1 − (k − 1))m ways to extend P∗ to a rook placement in Nk,(m)(B̄

(m)). That is, in each
subcolumn C(l,n+1), there will k − 1 cells which are canceled by rooks in P∗. Thus, we have
bn+1 − (k − 1) choices of where to put a rook in C(l,n+1) to extend P∗. It follows that the
number of nonattacking rook placements in Nk,(m)(B̄

(m)) that have rooks in the last column
is counted by (bn+1 − (k − 1))mrk−1,(m)(B

(m)).
The recursion (2.2) can be proved in the same way. That is, fk,(m)(B

(m)) counts those
file placements in Fk,(m)(B̄

(m)) that have no rooks in the last column. If Q∗ is file placement
in Fk−1,(m)(B̄

(m)) which has no rooks in the last column, then there are bm
n+1 ways to extend

Q∗ to a rook placement in Fk,(m)(B̄
(m)) by adding rooks in the last column because for file

placements, there are no restrictions on where we can add rooks in any subcolumn C(l,n+1).
Thus, the number of file placements in Fk,(m)(B̄

(m)) that have rooks in the last column is
counted by bm

n+1fk−1,(m)(B
(m)).

2.1 m-Partition Boards & xm-Stirling Numbers

Now we consider the special case of the poly-Stirling numbers where the polynomial p(x) =
xm. In such a case, we shall refer to such numbers as xm-Stirling numbers. In particular,
the xm-Stirling numbers of the first kind, sxm

n,k, are defined by the following recursions:

sxm

0,0 = 1 and sxm

n,k = 0 if k < 0 or k > n and (2.3)

sxm

n+1,k = sxm

n,k−1 − nmsxm

n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.
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We now define sxm

n,k = (−1)n−kcxm

n,k. Thus, the integers cxm

n,k, called the signless xm-Stirling

numbers of the first kind, satisfy the recursions:

cxm

0,0 = 1 and cxm

n,k = 0 if k < 0 or k > n and (2.4)

cxm

n+1,k = cxm

n,k−1 + nmcxm

n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.

Finally, the xm-Stirling numbers of the second kind, Sxm

n,k , satisfy the following recursions:

Sxm

0,0 = 1 and Sxm

n,k = 0 if k < 0 or k > n and (2.5)

Sxm

n+1,k = Sxm

n,k−1 + kmSxm

n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.

Now if we let B = F (0, 1, . . . , n − 1) and B̄ = F (0, 1, . . . , n − 1, n) in Theorem 2.1, then
we see that

rn+1−k,(m)(B̄
(m)) = rn−(k−1),(m)(B

(m)) + kmrn−k,(m)(B
(m)) (2.6)

and
fn+1−k,(m)(B̄

(m)) = fn−(k−1),(m)(B
(m)) + nmfn−k,(m)(B

(m)) (2.7)

Thus, we have the following theorem which gives our promised rook theory interpretation
for the xm-Stirling numbers.

Theorem 2.2. Let m ∈ N and B = F (0, 1, . . . , n − 1). Then

Sxm

n,k = rn−k,(m)(B
(m)), (2.8)

cxm

n,k = fn−k,(m)(B
(m)), (2.9)

and

sxm

n,k = (−1)n−kfn−k,(m)(B
(m)). (2.10)

It follows from a general inversion theorem of Milne [4] that the xm-Stirling numbers of the
first and second kind are inverses of each other. We will use our rook theory interpretations
of the xm-Stirling numbers to give a direct combinatorial proof of this fact in the next section.
Moreover, notice that when m = 1, then the xm-Stirling numbers defined here match exactly
with the standard notion of Stirling numbers of the first and second kind. In the case where
m = 2, these numbers are discussed in both Riordan [5] and Stanley [6] where they are
referred to as triangle central factorial numbers.

Next we shall prove two general product formulas for m-rook and m-file numbers. These
formulas will then be specialized to give the analogues of (1.1) and (1.2) for the xm-Stirling
numbers.

Theorem 2.3. Let m ∈ N, n ∈ N0, x ∈ R, and suppose that B = F (b1, b2, . . . , bn) is a

Ferrers board. Then
n∏

i=1

(xm + bm
i ) =

n∑

k=0

fn−k,(m)(B
(m))(xm)k. (2.11)
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Figure 3: An example of the board B
(2)
5 , with B = F (0, 1, 3, 4, 4), along with a corresponding

example of a file placement.

Proof. We will prove that this result holds for the case where x is any nonnegative integer.
The stated result then follows as a corollary to the Fundamental Theorem of Algebra.

Given a positive integer m, we define the board B
(m)
x to be the board B(m) with x rows

appended below, each with n columns partitioned into m subcolumns. We refer to this part
of the board as the x-part and the part that corresponds to B(m) will be called the upper

part of B
(m)
x . We will say that these two parts are separated by the high bar. An example

of this type of board can be seen in the lefthand side of Figure 3, where B = F (0, 1, 3, 4, 4),

m = 2, and x = 5. For B
(m)
x , we will label the cells in the upper part of this board exactly

as we would in the board B(m). For the x-part of B
(m)
x , we will label the rows, from top to

bottom, with 1, 2, . . . , x. If a rook r is placed in column C(l,j)(B
(m)
x ) in the x-part in the row

labeled with i, then we say that r lies in the cell cx(i, l, j).

We let Fn,(m)(B
(m)
x ) denote the set of all placements of mn rooks in B

(m)
x such that the

following two conditions hold.

(i.) There is a rook in every subcolumn.

(ii.) If any of the m rooks placed in a given column lie above the high bar, then all m rooks
in that column must lie above the high bar.

We call this type of placement a file placement in B
(m)
x . An illustration of this type of

placement can be seen in the righthand side of Figure 3.
Given x ∈ N, we count the number of file placements in B

(m)
x in two different ways. First,

see that for each i, we have bm
i ways to place the m rooks above the high bar and xm ways

to place m rooks below the bar in column i. Thus, we have
∏n

i=1(x
m + bm

i ) file placements

of mn rooks in B
(m)
x . On the other hand suppose that we fix a file placement Q of m(n− k)

rooks in B(m). Then we can count the number of ways to extend Q to file placement of mn

rooks in B
(m)
x by adding rooks below the bar in each of the k columns that have no rooks.

There are xm ways to place the rooks below the high bar for each such column. Thus, the
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number of file placements of mn rooks in B
(m)
x is

n∑

k=0

∑

Q∈Fn−k,(m)(B
(m))

(xm)k =
n∑

k=0

fn−k,(m)(B
(m))(xm)k.

Note that in the special case of Theorem 2.3 where B = F (0, 1, . . . , n − 1), we see that
(2.11) reduces to

n∏

i=1

(xm + (i − 1)m) =
n∑

k=o

cxm

n,k(x
m)k. (2.12)

Since Theorem 2.3 shows that (2.12) holds for all integers x ≥ 0 and (2.12) is a polynomial
identity if follows that (2.12) holds for all x. If we replace xm by −xm in (2.12) and then
multiply by (−1)n, the we obtain the following corollary.

Corollary 2.4. For m ∈ N and n ∈ N0,

n∏

i=1

(xm − (i − 1)m) =
n∑

k=o

sxm

n,k(x
m)k. (2.13)

Next we prove a product formula for m-rook numbers.

Theorem 2.5. Let m ∈ N and n, x ∈ N0 and suppose that B = F (0, 1, 2, . . . , n − 1). Then

(xm)n =
n∑

k=0

rn−k,(m)(B
(m)) xm(xm − 1m) · · · (xm − (k − 1)m). (2.14)

Our proof will be a modification a general product formula proved by M. and Remmel
[3]. Given B, m, and x, we will construct an augmented board B

aug,(m)
x . First we start

with the board B
(m)
x . Then B

aug,(m)
x is formed by adding columns of heights 0, 1 . . . , n − 1,

reading from left to right, that consist of m subcolumns below the x-part of B
(m)
x . We call

the extra cells that we added to B
(m)
x to form B

aug,(m)
x the lower augmented part of B

aug,(m)
x

and call the line that separates the x-part and the lower augmented part of B
aug,(m)
x the low

bar. For example, we have pictured such an augmented board on the left in Figure 4, where
B = F (0, 1, 3, 3, 4), m = 2, and x = 3.

Next we define the set of nonattacking rook placements, Nn,(m)(B
aug,(m)
x ), of mn rooks

in B
aug,(m)
x to be the set of placements P in B

aug,(m)
x such that the following three conditions

hold.

(i.) There is at most one rook in each subcolumn.

(ii.) For any given column C(j)(B
aug,(m)
x ), either all m rooks in that column are placed above

the high bar, below the low bar, or in the x-part of B
aug,(m)
x .

(iii.) No rook lies in a cell which is canceled by another rook.
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Figure 4: An example of the board B
aug,(2)
3 , with B = F (0, 1, 3, 3, 4) along with a corre-

sponding example of a nonattacking rook placement.

Here rooks that are placed in either the x-part or the lower augmented part of B
aug,(m)
x

do not cancel any cells; however, rooks placed in the upper part of B
aug,(m)
x do cancel cells.

If a rook r is placed in a cell c(t, l, j) in the upper part, then r will cancel all the cells in
B(m) of the form c(t, s, j) for s > l plus the lowest cells in the lower augmented part in the
subcolumn C(s,j) for s > l that have not been canceled by a rook that lies in subcolumn C(p,j)

of B(m) to the left of r. To better illustrate this cancelation, we have pictured an element of
Nn,(m)(B

aug,(m)
x ) in the righthand side of Figure 4. We have placed dots in those cells that

are canceled by the rooks in column 2 and ∗’s in the cells that are canceled by the rooks in
column 4. The other rooks do not cancel any cells.

Finally we define the weight of a placement P ∈ Nn,(m)(B
aug,(m)
x ), w(P), to be (−1)la(P)

where la(P) equals the number of columns in P which contain rooks which lie in the lower

augmented part of B
aug,(m)
x . We are now in a position to prove the previously stated theorem.

Proof. We claim that (2.14) arises from two different ways of computing the sum

∑

P∈Nn,(m)(B
aug,(m)
x )

w(P). (2.15)

First we see that in column 1, there are xm ways to place m rooks, and thus for the second
column, we have no canceled cells. Hence there are 1m ways to place m rooks above the high
bar, xm ways to place rooks in the x-part of B

aug,(m)
x , and 1m way to place a rook below the low

bar. Thus the sum of the weights of the rooks in the second column is 1m+xm−1m = xm. In
general, if we have placed rooks in columns C(1)(B

aug,(m)
x ), . . . , C(t−1)(B

aug,(m)
x ) where exactly

s of the columns have rooks above the high bar, then there will be t − 1 − s uncanceled
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cells above the high bar and t − 1 − s uncanceled cells below the low bar in subcolumn
C(l,t)(B

aug,(m)
x ). Then in column t, there are (t − 1 − s)m ways to place m rooks above the

high bar, xm ways to place m rooks in the x-part, and (t − 1 − s)m ways to place m rooks
below the low bar. In such a case, the weights of the rooks in the tth column will contribute
(t − 1 − s)m + xm − (t − 1 − s)m = xm to (2.15). It then follows that

(xm)n =
∑

P∈Nn,(m)(B
aug,(m)
x )

w(P).

Now suppose that we fix a placement P of m(n−k) rooks in B(m). Then we want to count

the number of ways extend P to a placement in Nn,(m)(B
aug,(m)
x ). Let C(ti)(B

aug,(m)
x ) be the ith

column, reading left to right, which has no rooks in that column. By construction, t1 = 1 so
that there are xm ways to add rooks below the bar in column C(t1)(B

aug,(m)
x ). For 1 < i ≤ k,

there will be ti − (i − 1) columns to the left of C(ti)(B
aug,(m)
x ) which have rooks above the

high bar and these rooks will cancel ti − (i− 1) cells in each subcolumn of C(ti)(B
aug,(m)
x ) in

the lower augmented part of the B
aug,(m)
x . Thus, there will be ti − (ti − (i − 1)) = (i − 1)

uncanceled cells in each subcolumn of C(ti)(B
aug,(m)
x ) in the lower augmented part of the

B
aug,(m)
x . We then see that if we sum the weights over all possible ways to place the m rooks

in column C(ti)(B
aug,(m)
x ) we will get xm − (i − 1)m. It follows that

∑

P∈Nn,(m)(B
aug,(m)
x )

w(P) =
n∑

k=0

∑

P∈Nn−k,(m)(B
(m))

xm(xm − 1m) · · · (xm − (k − 1)m)

=
n∑

k=0

rn−k,(m)(B
(m)) xm(xm − 1m) · · · (xm − (k − 1)m).

We note that it is possible to prove formulas which are similar to (2.14) for any Ferrers
board F (b1, b2, . . . , bn). That is, the author and J. Remmel [3] developed a rook theory
model which allows one to prove more general product identities in rook theory. Suppose
we are given any two sequences of nonnegative integers B = {bi}

n
i=1 and A = {ai}

n
i=1, and

two functions, sgn, sgn : [n] → {−1, +1}. Let B = F (b1, b2, . . . , bn) be a skyline board. M.
and Remmel’s a rook theory model is defined with an appropriate notion of rook numbers
rk(B,A) such that the following product formula holds:

n∏

i=1

(x + sgn(i)bi) =
n∑

k=0

rn−k(B,B,A)
k∏

j=1

(x +
∑

s≤j

sgn(s)as). (2.16)

Thus by replacing x by xm and picking A and B appropriately, we can obtain identities of
the form

n∏

i=1

(xm + cm
i ) =

n∑

k=0

rn−k(B,A)
k−1∏

j=0

(xm − jm), (2.17)
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of which (2.14) is a special case. (The m-rook theory model presented in this paper suffices to
develop the rook-theoretic interpretations for the poly-Stirling numbers, although the more
general rook theory model found in M. and Remmel [3] is more complicated.)

Theorem 2.5 yields the following corollary involving the Sxm

n,k ’s.

Corollary 2.6. For m ∈ N and n ∈ N0,

(xm)n =
n∑

k=0

Sxm

n,k xm(xm − 1m) · · · (xm − (k − 1)m). (2.18)

Another simple identity satisfied by the xm-Stirling numbers of the second kind, which
is a generalization of a well-known formula, is the following.

Theorem 2.7. For any k ≥ 1,

∑

n≥k

Sxm

n,kt
n =

tk

(1 − t)(1 − 2mt) · · · (1 − kmt)
. (2.19)

Proof. Let φk(t) =
∑

n≥k Sxm

n,kt
n. From our combinatorial interpretation we see that the only

way to place (n − 1)m rooks in B(m) where B = F (0, 1, . . . , n − 1) is to place every rook at
the top of its column. Thus Sxm

n,1 = 1 for all n and hence φ1(t) = t
(1−t)

. Then we know that

φk(t) =
∑

n≥k

Sxm

n,kt
n

=
∑

n≥k

(Sxm

n−1,k−1 + kmSxm

n−1,k)t
n

=
∑

n≥k

Sxm

n−1,k−1t
n +

∑

n≥k

kmSxm

n−1,kt
n

= tφk−1(t) + kmtφk(t).

Thus, φk(t) = t
(1−kmt)

φk−1(t), and our result follows by induction.

2.2 Set and Cycle Structure Interpretations of xm-Stirling Num-
bers

Stirling numbers are intimately related to set partitions and cycle structures. We will show in
this section that xm-Stirling numbers have combinatorial interpretations relating to m-tuples
of set partitions and cycles.

Let [n] := {1, 2, 3, . . . , n}. For m ≥ 1, let P
(m)
n,k = (P (1), P (2), . . . P (m)) be an m-tuple of

unordered set partitions of [n] into k parts and Π
(m)
n,k := {P (m)

n,k | the parts of Pi and Pj have

the same minimal elements for every 1 ≤ i < j ≤ m}. We set Π
(m)
0,0 := {∅}.

11



Theorem 2.8. Let n be a nonnegative integer and let m ∈ N. Then Sxm

n,k = |Π(m)
n,k | for every

0 ≤ k ≤ n.

Proof. Fix m ∈ N. First we note that |Π(m)
n,k | = 0 whenever k < 0 or k > n, and Π

(m)
0,0 = {∅},

so |Π(m)
0,0 | = Sxm

0,0 = 1. For n = 1, |Π(m)
1,0 | = Sxm

1,0 = 0 and |Π(m)
1,1 | = Sxm

1,1 = 1 since Π
(m)
1,1 is just

the m-tuple ({1}, . . . , {1}). Proceeding by induction, we will pick n > 1 and assume that

|Π(m)
n,k | = Sxm

n,k for every 0 ≤ k ≤ n.

Suppose that P
(m)
n+1,k ∈ Π

(m)
n+1,k. If {n+1} is in a part by itself in P (i) ∈ P

(m)
n+1,k, then {n+1}

is in a part by itself in P (j) ∈ P
(m)
n+1,k for every j = 1, 2, . . . ,m. Thus, we can transform an

m-tuple P
(m)
n,k−1 7→ P

(m)
n+1,k by adding the part {n+1} to every partition of P

(m)
n,k−1. Similarly, if

{n+1} is not in a part by itself for some P (i) ∈ P
(m)
n+1,k, then {n+1} is not in a part by itself

in any P (j) ∈ P
(m)
n+1,k for j = 1, 2, . . . ,m. Thus, we can transform an m-tuple P

(m)
n,k 7→ P

(m)
n+1,k

by adding n + 1 to any of the k parts of each partition in P
(m)
n,k , of which there are km ways

of doing this.
Thus,

|Π(m)
n+1,k| = |Π(m)

n,k−1| + km|Π(m)
n,k |

= Sxm

n,k−1 + kmSxm

n,k

= Sxm

n+1,k.

As an example of this type of object, notice that we can compute S
(2)
3,2 = 5, and thus

there are the following five elements in the set Π
(2)
3,2. That is, there are five pairs (2-tuples)

of set partitions of {1, 2, 3} into 2 parts such that every pair in the partition has common
minimal elements. Specifically,

({1}{2, 3}, {1}{2, 3}),
({1}{2, 3}, {1, 3}{2}),
({1, 3}{2}, {1}{2, 3}),
({1, 3}{2}, {1, 3}{2}),
({1, 2}{3}, {1, 2}{3}).

For m ≥ 1, let C
(m)
n,k = (σ(1), σ(2), . . . , σ(m)) be an m-tuple of permutations of [n] with k

cycles and define Ω
(m)
n,k = {C(m)

n,k | the cycles of σ(i) and σ(j) have the same minimal elements

for every 1 ≤ i < j ≤ m}. Set Ω
(m)
0,0 := {∅}.

Theorem 2.9. Let n be a nonnegative integer and let m ∈ N. Then cxm

n,k = |Ω(m)
n,k | for every

0 ≤ k ≤ n.

12



Proof. Fix m ∈ N. First we note that |Ω(m)
n,k | = 0 whenever k < 0 or k > n, and Ω

(m)
0,0 = {∅},

so |Ω(m)
0,0 | = cxm

0,0 = 1. For n = 1, |Ω(m)
1,0 | = cxm

1,0 = 0 and |Ω(m)
1,1 | = cxm

1,1 = 1 since Ω
(m)
1,1 is just

the m-tuple ((1), . . . , (1)). Proceeding by induction, we will pick n > 1 and assume that

|Ω(m)
n,k | = cxm

n,k for every 0 ≤ k ≤ n.

Suppose that C
(m)
n+1,k ∈ Ω

(m)
n1,k. If (n+1) is a cycle in Ci ∈ C

(m)
n+1,k, then (n+1) is a cycle in

Cj ∈ C
(m)
n+1,k for every j = 1, 2, . . . ,m. Thus, we can transform an m-tuple C

(m)
n,k−1 7→ C

(m)
n+1,k

by adding the cycle (n + 1) to every collection of cycles of C
(m)
n,k−1. Similarly, if (n + 1) is not

a cycle for some Ci ∈ C
(m)
n+1,k, then (n+1) is not cycle in any Cj ∈ C

(m)
n+1,k for j = 1, 2, . . . ,m.

Thus, we can transform an m-tuple C
(m)
n,k 7→ C

(m)
n+1,k by inserting n + 1 immediately after one

of the elements in each of the cycle structures in C
(m)
n,k , of which there are nm ways of doing

this.
Thus,

|Ω(m)
n+1,k| = |Ω(m)

n,k−1| + nm|Ω(m)
n,k |

= cxm

n,k−1 + nmcxm

n,k

= cxm

n+1,k.

3 A Combinatorial Proof That ||Sxm

n,k||||s
xm

n,k|| = I

In this section, we will use our combinatorial interpretations of the xm-Stirling numbers of
the first and second kind to give an involution-type combinatorial proof of the fact that

||Sxm

n,k ||||s
xm

n,k|| = I.

Theorem 3.1. The lower triangular matrices defined by ||Sxm

n,k || and ||sxm

n,k|| are inverses of

one another.

Proof. Consider the sum

S(n) =
n∑

k=0

k∑

j=0

Sxm

n,ks
xm

k,j . (3.1)

By definition, sxm

n,k = (−1)n−kcxm

n,k, so we have

S(n) =
n∑

k=0

k∑

j=0

(−1)k−jSxm

n,kc
xm

k,j . (3.2)

Now, we can think of this sum as representing a certain weighting over pairs of rook
placements (U, V ) ∈ (Nn−k,(m)(B

(m)
n ),Fk−j,(m)(B

(m)
k )). Specifically, if for any Ferrers board

13



B we define w(U) = (1)k = 1 for every U ∈ Nk,(m)(B) and w̃(V ) = (−1)k for every
V ∈ Fk,(m)(B), then (3.2) becomes

S(n) =
n∑

k=0

k∑

j=0

∑

(U,V )∈(Nn−k,(m)(B
(m)
n ),Fk−j,(m)(B

(m)
k

))

w(U)w̃(V ). (3.3)

We now consider the involution I with the following properties:

(i.) If for (U, V ) ∈ (Nn−k,(m)(B
(m)
n ),Fk−j,(m)(B

(m)
k )) U has m rooks in its last column, then

I(U, V ) = (U∗, V ∗) ∈ (Nn−k−1,(m)(B
(m)
n ),Fk−j,(m)(B

(m)
k+1)), where

a. U∗ is the placement U with the rooks in the last column removed, and

b. if U had a rook in C(l,n) in the wth available cell, after cancelation, from the bottom

of the board B(m)
n , then V ∗ is the placement V copied into the larger board, B

(m)
k+1,

with a rook placed in the cell c(w, l, k) of B
(m)
k+1.

(ii.) If for (U∗, V ∗) ∈ (Nn−k−1,(m)(B
(m)
n ),Fk−j+1,(m)(B

(m)
k+1)), U∗ has no rooks in its last

column but V ∗ does, then we reverse the above step.

(iii.) If for (U, V ) ∈ (Nn−k,(m)(B
(m)
n ),Fk−j,(m)(B

(m)
k )) neither U nor V has m rooks in the

last column, then remove the minimum number of columns, s, from both boards such
that at least one of the two placements remaining now has m rooks in the last column.
We now have a new pair (Û , V̂ ) ∈ (Nn−k,(m)(B

(m)
n−s),Fk−j,(m)(B

(m)
k−s)). We now repeat

the above steps of I on (Û , V̂ ) to get a pair (Û∗, V̂ ∗). We then add s empty column
back to each board.

An example of parts 1 and 2 of the involution can be seen in the lefthand side of
Figure 5, where both (U, V ) and (U∗, V ∗) are shown. In this figure we have (U, V ) ∈

(N2,(3)(B
(3)
5 ),F2,(3)(B

(3)
3 )), and (U∗, V ∗) ∈ (N1,(3)(B

(3)
5 ),F3,(3)(B

(3)
4 )). In the righthand side

of Figure 5, an illustration of the third part of our involution is shown. Here (U, V ) ∈

(N2,(3)(B
(3)
5 ),F2,(3)(B

(3)
3 )) with neither containing a rook in the last column, but V contain-

ing rooks in the second column from the right, that is, s = 1. Once we remove the last
column of each board, we get new placements (Û , V̂ ) and from there, since V̂ contains rooks
in its last column, we can invoke part 2 of I to give us (Û∗, V̂ ∗). We now add one empty
column back to each board to complete the involution.

It is clear from I’s definition that I(I(U, V )) = (U, V ). Moreover, if w(U)w̃(V ) = +1,
then w(U∗)w̃(V ∗) = −1 and also if w(U)w̃(V ) = −1, then w(U∗)w̃(V ∗) = +1, thus I is a
sign-reversing involution. We can now see, through I, that unless I(U, V ) = (U, V ) each
pair of placements will have a counterpart (U∗, V ∗) such that w(U)w̃(V ) + w(U)w̃(V ∗) = 0.
Thus,

S(n) =
n∑

k=0

k∑

j=0

∑

(U,V )∈(Nn−k,(m)(B
(m)
n ),Fk−j,(m)(B

(m)
k

))

I(U,V )=(U,V )

w(U)w̃(V ).
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Figure 5: An example of Parts 1 and 2 of the involution I on the left side and an example
of Part 3 on the right.

However, the only fixed points of I are those placement pairs which have no rooks in either
placement. So, for a fixed n, k must equal n and j must equal k, or equivalently, w(U)w̃(V ) =
(1)(−1)k−j = 1 = χ(n = j).

4 Poly-Stirling Numbers

4.1 Notation

In this section we wish to generalize the rook model setting of m-partition boards discussed
in Section 2. Throughout this section, we shall fix a Ferrers board B = F (b1, b2, . . . , bn) and
a polynomial p(x) = ps1x

s1 + ps2x
s2 + · · · + psy

xsy ∈ N[x], with 0 ≤ si < sj for all i < j. We
will then define a set of y m-partition boards B(p(x)) := {B(s1), B(s2), . . . , B(sy)}, where B(0)

is a degenerate board with n columns. The best way think of B(0) is that this board contains
special columns of height 0 into which we allow rooks to be placed, and a more detailed
description of the placement rules for such boards will be given in a subsequent section. We
will call B(p(x)) the polyboard associated with B and p(x), and we will refer to the board
B(sz) as the zth subboard of B(p(x)). In Figure 6, we see an example of a polyboard where
B = F (1, 2, 3, 5, 5) and p(x) ∈ N[x] is of the form p0 + p1x + p2x

2. Note that the coefficients
of p(x) are irrelevant when constructing B(p(x)).

We wish to consider rook placements in these polyboards, and so we first define Cz
(j)(B(p(x)))

to be the jth column of B(sz), and we will refer to the collection of the jth columns of the
y boards in B(p(x)) to be the jth column of B(p(x)), denoted by C(j)(B(p(x))). We also
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Figure 6: An example of the polyboard B(p(x)), with B = F (1, 2, 3, 5, 5) and p(x) = p0 +
p1x + p2x

2.

let Cz
(l,j)(B(p(x))) be the lth subcolumn of the jth column of B(sz). If a rook r is placed in

column Cz
(l,j)(B(p(x))) in the tth row from the bottom of B(sz), then we say that r lies in

the cell c(z, t, l, j). As a convention, we will say that Cz
(l,j)(B(p(x))) lies to the right (left) of

Cz′

(l′,j′)(B(p(x))) whenever j > j′ (j < j′), and accordingly, we will refer to the rook which

lies in the leftmost column of B(p(x)) as the leftmost rook in the board.

4.2 Poly-Rook & Poly-File Numbers

Given B(p(x)), we shall define both nonattacking and file rook placements in the polyboard.
This is best done by analyzing two different cases: p(0) = 0 and p(0) 6= 0. We begin by
studying the case where p(0) = 0, that is, our polyboard has no degenerate board.

4.2.1 Case I: p(0) = 0

We now consider placements of nonattacking rooks in B(p(x)). These are placements of
rooks such that the following two conditions hold.

(i.) if any rook is placed in the jth column of a subboard, then that may be the only subboard
which contains a rooks in its jth column, and

(ii.) within any particular subboard, the nonattacking placement rules from Section 2 apply
to that board.

We shall call such a placement of rooks into B(p(x)), in which k columns total among all of
the subboards of B(p(x)) contain rooks, a k-placement of nonattacking rooks in B(p(x)). In
such a k-placement, cancelation will occur in the following manner:

(i.) If r is the leftmost rook placed in the jth column of the zth subboard of B(p(x)), then r

cancels as described in Section 2 within the zth subboard. The rook r will also cancel
the lowest cell in each subcolumn to its right in every other subboard in the board
B(p(x)), and every cell in the jth column of all other subboards.

(ii.) If r′ is any other rook which has been placed in the wth subboard of B(p(x)), then r′

cancels as described in Section 2 within the wth subboard. The rook r′ will also cancel
the lowest cell in each subcolumn to its right, which has not yet been canceled by a
rook to its left, in every other subboard in the board B(p(x)), and every cell in the jth

column of all other subboards which has yet to be canceled by a rook to its left.
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Figure 7: An example of a nonattacking k-placement in the polyboard B(p(x)), with B =
F (1, 2, 3, 5, 5), k = 3, and p(x) = p1x + p3x

3.

An example of such a placement and the corresponding cancelation can be seen in Figure 7,
where B = F (1, 2, 3, 5, 5), k = 3, and p(x) = p1x + p3x

3. In this figure, a cell labeled with
an “i” has been canceled by the rook labeled as “Xi”.

We also consider file placements in the polyboard. These are placements of rooks such
that the following two conditions hold.

(i.) if any rook is placed in the jth column of a subboard, then that may be the only subboard
which contains rooks in its jth column, and

(ii.) within any particular subboard, the file placement rules from Section 2 apply to that
board.

For these placements, any rook which is placed in the jth column of a subboard will cancel
all cells in the jth columns of all other subboards. An example of this type of placement can
be seen in Figure 8, where again B = F (1, 2, 3, 5, 5), k = 3, and p(x) = p1x + p3x

3.

4.2.2 Case II: p(0) 6= 0

We now consider the nonattacking and file placements of rooks in B(p(x)) in the case where
our polynomial p(x) ∈ N[x] has a nonzero constant term. For nonattacking configurations,
the same placements rules apply as in the case where p(0) = 0, and we will call such a
placement of rooks into B(p(x)) in which k columns of B(p(x)) contain rooks a k-placement of

nonattacking rooks in B(p(x)). The difference between these two cases lies in the cancelation,
which is described here:

(i.) Suppose a rook r is the leftmost rook placed in the C(j)(B(p(x))).
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Figure 8: An example of a file k-placement in the polyboard B(p(x)), with B =
F (1, 2, 3, 5, 5), k = 3, and p(x) = p1x + p3x

3.

a. If r is placed in the jth column of the board B(0), it cancels no cells in B(0) and it
cancels the lowest cell in each subcolumn to its right in each of the other boards.
It will also cancel every cell in the jth column of every other subboard of B(p(x)).

b. If r is not placed in the board B(0), it cancels only the cell in the jth column in
B(0) and among the remaining boards it will cancel as described in the case where
p(0) = 0.

(ii.) Suppose r′ is any other rook which has been placed in the Cw
(i)(B(p(x))).

a. If r′ is placed in the board B(0), it cancels no cells in B(0) and it cancels the lowest
cell in each subcolumn to its right, which has yet to be canceled by a rook to its
left, in each of the other boards. It will also cancel every cell in the ith column
of every other subboard of B(p(x)) which has yet to be canceled by a rook to its
left.

b. If r′ is not placed in the board B(0), it cancels only the cell in the ith column in
B(0) and among the remaining boards it will cancel as described in the case where
p(0) = 0.

An example of such a placement and the corresponding cancelation can be seen in Figure 9,
where B = F (1, 2, 3, 5, 5), k = 3, and p(x) = p0 + p1x + p3x

3. In this figure, a cell labeled
with an “i” has been canceled by the rook labeled as “Xi”.

We also consider file placements in the polyboard. These are placements of rooks such
that the following two conditions hold.

(i.) If any rook is placed in the jth column of a subboard, then that may be the only
subboard which contains rooks in its jth column.
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Figure 10: An example a file k-placement in the polyboard B(p(x)), with B = F (1, 2, 3, 5, 5),
k = 3, and p(x) = p0 + p1x + p3x

3.

(ii.) Within any particular subboard, the file placement rules from Section 2 apply to that
board.

For these placements, any rook which is placed in the jth column of a subboard will cancel
all cells in the jth columns of all other subboards. An example of this type of placement can
be seen in Figure 10, where again B = F (1, 2, 3, 5, 5), k = 3, and p(x) = p0 + p1x + p3x

3.
Now, given any p(x) ∈ N[x], we let Nk,p(x)(B(p(x))) denote the set of colored nonattacking

k-placements in the polyboard B(p(x)) such that that the following two conditions hold.

(i.) The rooks placed in the columns of B(sz) are colored with distinct colors, c1, . . . , cpsz
.

(ii.) If any rook placed in the jth column of a subboard is colored with color cw, then every
rook placed in the jth column must be colored with cw as well.

We also define Fk,p(x)(B(p(x))) to be the set of colored file k-placements in B(p(x)) under
the exact same coloring conditions as Nk,p(x)(B(p(x))).
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We then define

rk,p(x)(B(p(x))) := |Nk,p(x)(B(p(x)))| and

fk,p(x)(B(p(x))) := |Fk,p(x)(B(p(x)))|,

and we call rk,p(x)(B(p(x))) the kth poly-rook number of B(p(x)) with respect to p(x) and
fk,p(x)(B(p(x))) the kth poly-file number of B(m) with respect to p(x).

Next we shall prove some basic properties of the poly-rook and poly-file numbers for
polyboards. We begin by showing that these numbers satisfy some simple recursions.

Theorem 4.1. Suppose that B = F (b1, . . . , bn) and B̄ = F (b1, . . . , bn, bn+1) are Ferrers

boards and let p(x) ∈ N[x]. Then for all 0 ≤ k ≤ n + 1,

rk,p(x)(B̄(p(x)) = rk,p(x)(B(p(x))) + p(bn+1 − (k − 1))rk−1,p(x)(B(p(x))) (4.1)

and

fk,p(x)(B̄(p(x)) = fk,p(x)(B(p(x))) + p(bn+1)fk−1,p(x)(B(p(x))). (4.2)

Proof. For (4.1), we classify the colored nonattacking k-placements in Nk,p(x)(B̄(p(x))) ac-
cording to whether they have rooks in the last column. That is, if P ∈ Nk,p(x)(B̄(p(x))) has
no rooks in the last column, then P can be viewed as an element of Nk,p(x)(B(p(x))) so that
such rook placements are counted by rk,p(x)(B(p(x))). If P ∈ Nk,p(x)((B̄(p(x))) has rooks in
the last column, then let P∗ denote the rook placement in Nk−1,p(x)(B̄(p(x))) that results
from P by removing all the rooks in the last column. Now if we are given such a P∗, we claim
that there p(bn+1− (k−1)) ways to extend P∗ to a rook placement in Nk,p(x)(B̄(p(x))). That
is, in each subcolumn C(l,n+1), there will k − 1 cells which are canceled by rooks P∗. Thus
we have bn+1 − (k− 1) choices of where to put a rook in C(l,n+1) to extend P∗. It follows that
the number of colored nonattacking rook placements in Nk,p(x)(B̄(p(x))) that have rooks in
the last column is counted by p(bn+1 − (k − 1))rk−1,p(x)(B(p(x))).

Showing that recursion (4.2) holds can be proved in a similar fashion.

It is also worth noting here that Theorem 2.1 follows directly from this theorem by letting
p(x) = xm for m ∈ N.

4.3 Polyboards & Poly-Stirling Numbers

We return to the various types of poly-Stirling numbers defined by Equations (1.6), (1.7),
and (1.8) in Section 1. In particular, the poly-Stirling numbers of the first kind with respect

to p(x), s
p(x)
n,k , are defined by the following recursion:

s
p(x)
0,0 = 1 and s

p(x)
n,k = 0 if k < 0 or k > n and

s
p(x)
n+1,k = s

p(x)
n,k−1 − p(n)s

p(x)
n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.
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We now define s
p(x)
n,k = (−1)n−kc

p(x)
n,k . Thus, the integers c

p(x)
n,k , called the signless poly-Stirling

numbers of the first kind with respect to p(x), satisfy the recursion:

c
p(x)
0,0 = 1 and c

p(x)
n,k = 0 if k < 0 or k > n and

c
p(x)
n+1,k = c

p(x)
n,k−1 + p(n)c

p(x)
n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.

Finally, the poly-Stirling numbers of the second kind with respect to p(x), S
p(x)
n,k , satisfy the

following recursion:

S
p(x)
0,0 = 1 and S

p(x)
n,k = 0 if k < 0 or k > n and

S
p(x)
n+1,k = S

p(x)
n,k−1 + p(k)S

p(x)
n,k if 0 ≤ k ≤ n + 1 and n ≥ 0.

Now if we let B = F (0, 1, . . . , n − 1) and B̄ = F (0, 1, . . . , n − 1, n) in Theorem 4.1, then
we see that

rn+1−k,p(x)(B̄(p(x))) = rn+1−k,p(x)(B(p(x))) + p(k)rn−k,p(x)(B(p(x))) (4.3)

and
fn+1−k,p(x)(B̄(p(x))) = fn+1−k,p(x)(B(p(x))) + p(n)fn−k,p(x)(B(p(x))). (4.4)

Thus, we have the following theorem which gives our promised rook theory interpretation
for the poly-Stirling numbers.

Theorem 4.2. Let B = F (0, 1, . . . , n − 1) and let p(x) = N[x]. Then

S
p(x)
n,k = rn−k,p(x)(B(p(x))), (4.5)

c
p(x)
n,k = fn−k,p(x)(B(p(x))), (4.6)

and

s
p(x)
n,k = (−1)n−kfn−k,p(x)(B(p(x))). (4.7)

Corollary 4.3. Given p(x) ∈ N[x], ||Sp(x)
n,k || = ||sp(x)

n,k ||−1.

It is again a direct result of general inversion theorem due to Milne [4] that the matrices
formed by poly-Stirling numbers of the first and second kind are inverses of each other;
however, we could use our rook theoretic interpretations to give a direct combinatorial proof
of this fact using an involution similar to the one given in the proof of Theorem 3.1.

Next we shall prove two general product formulas for poly-rook and poly-file numbers.
We will first define two rook settings in order to make these assertions possible, and then
these formulas will be specialized to give the analogues of (1.1) and (1.2) for the poly-Stirling
numbers. These settings will be generalizations of m-partition boards, augmented boards,
and polyboards. We begin with the case of file placements.
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Consider the y-tuple of boards Bx(p(x)) = {B(s1)
x , B

(s2)
x , . . . , B

(sy)
x } for some x ∈ N, where

B
(su)
x is defined in Section 2. If s1 = 0, then the board B

(0)
x will be look like two copies of

the board B(0), one which lies above the bar and one which lies below. That is, the x-part
of B

(0)
x is also degenerate. We will refer to the upper parts of each board as such, and if

we talk about the upper part of Bx(p(x)), then we are referring to the set of upper parts
of each board in Bx(p(x)), and we use the same convention when talking about the x-part
of Bx(p(x)). We then say that the upper part of Bx(p(x)) is separated from the x-part of
Bx(p(x)) by the bar of Bx(p(x)). Let Fn,p(x)(Bx(p(x))) denote the set of colored placements
in Bx(p(x)) such that that the following four conditions hold.

(i.) Every column of Bx(p(x)) must contain a rook.

(ii.) If any rook is placed in the jth column of a subboard of Bx(p(x)), then that may be
the only subboard which contains rooks in its jth column.

(iii.) Within any particular subboard, the file placement rules from Section 2 apply to that
board.

(iv.) The same coloring rules apply as before.

We define that any rook placed in the upper part of the jth column of a subboard of Bx(p(x))
will cancel the upper parts of the jth columns of every other subboard in Bx(p(x)), and any
rook placed in the x-part of the jth column of a subboard of Bx(p(x)) will cancel the x-parts of
the jth columns of every other subboard in Bx(p(x)). An example of this type of placement
and the corresponding cancelation can be seen in Figure 11, where B = F (1, 2, 3, 5, 5),
p(x) = p0 + p1x + p3x

3, and x = 5.

Theorem 4.4. Suppose n ∈ N0 and p(x) = ps1x
s1 + ps2x

s2 + · · · + psy
xsy ∈ N[x]. If

B = F (b1, b2, . . . , bn) is a Ferrers board, then

n∏

i=1

(p(x) + p(bi)) =
n∑

k=0

fn−k,p(x)(B(p(x)))(p(x))k. (4.8)

Proof. Given a rook board B = F (b1, b2, . . . , bn) and p(x) ∈ N[x], we fix x ∈ N to show that
(4.8) represents two ways to count |Fn,p(x)(Bx(p(x)))|. We first consider the number of ways
that we can place rooks in each column, starting with the leftmost column and working to
the right. In the first column of Bx(p(x)) there will be xs1 + xs2 + · · · + xsy ways to place
rooks below the high bar, and there will be bs1

1 + bs2
1 + · · · + b

sy

1 ways to place rooks above
the high bar. However, the total number of placements is different since we are considering
colored placements, and thus the total number of colored placements of rooks below the bar
is ps1x

s1 + ps2x
s2 + · · · + psy

xsy = p(x) and the total number of placements above the bar is
ps1b

s1
1 + ps2b

s2
1 + · · · + psy

b
sy

1 = p(b1). So, the total number of placements in the first column
of Bx(p(x)) is p(x) + p(b1). In general, in the jth column of the Bx(p(x)), there will be p(x)
total colored placements below in the x-parts and p(bj) colored placements above the bar,
and thus
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Figure 11: An example of a file rook placement in B5(p(x)), with B = F (1, 2, 3, 5, 5) and
p(x) = p0 + p1x + p3x

3.

|Fn,p(x)(Bx(p(x)))| =
n∏

i=1

(p(x) + p(bi)).

Next, suppose that we first fix a placement P ∈ Fn−k,p(x)(B(p(x)))) above the bar. We
claim that there are (p(x))k ways to extend P to a placement Q ∈ Fn,p(x)(Bx(p(x))) such
that Q ∩ B(p(x)) = P. That is, we want to count the number of ways to extend P to a
placement Q ∈ Fn,p(x)(Bx(p(x))) by placing additional colored rooks below the bar in those
columns which contain no rooks from P. Here, we see that for each empty column, there are
exactly p(x) ways to place colored rooks in that column. As there are k such columns, we
have

|Fn,p(x)(Bx(p(x)))| =
n∑

k=0

∑

P∈Fn−k,p(x)(B(p(x)))

(p(x))k

=
n∑

k=0

fn−k,p(x)(B(p(x))) (p(x))k.

Note that in the special case of Theorem 4.4 where B = F (0, 1, . . . , n − 1), we see that
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Equation (4.8) reduces to

n∏

i=1

(p(x) + p(i − 1)) =
n∑

k=0

c
p(x)
n,k (p(x))k. (4.9)

If in Equation (4.9) we replace p(x) with −p(x) and multiply both sides by (−1)n, we obtain
the following corollary:

Corollary 4.5. For n ∈ N0 and p(x) ∈ N[x],

n∏

i=1

(p(x) − p(i − 1)) =
n∑

k=0

s
p(x)
n,k (p(x))k. (4.10)

Now we will prove a product formula for poly-rook numbers. Consider the y-tuple of

boards Baug
x (p(x)) = {Baug,(s1)

x , B
aug,(s2)
x , . . . , B

aug,(sy)
x } for some x ∈ N, where B

aug,(su)
x is

defined in Section 2. We call Baug
x (p(x)) the augmented polyboard with respect to B and p(x).

In the case where s1 = 0, B
aug,(0)
x will be the same as B

(0)
x . That is, B

aug,(0)
x will consist of

a degenerate board and a degenerate x-part, but no lower augmented part. We will refer to
the upper parts of each board as such, and if we talk about the upper part of Baug

x (p(x)),
then we are referring to the set of upper parts of each board in Baug

x (p(x)), and we use
the same convention when talking about the x-part of Bx(p(x)) and the lower augmented

part of Baug
x (p(x)). We then say that the upper part of Baug

x (p(x)) is separated from the
x-part of Baug

x (p(x)) by the high bar of Baug
x (p(x)) and the x-part is separated from the lower

augmented part by the low bar of Baug
x (p(x)). We allow placements in Baug

x (p(x)) such that
that the following four conditions hold.

(i.) Every column of Baug
x (p(x)) must contain a rook.

(ii.) If any rook is placed in the jth column of a subboard of Bx(p(x)), then that may be
the only subboard which contains rooks in its jth column.

(iii.) Within any particular subboard, the file placement rules from Section 2 apply to that
board.

(iv.) No rook lies in a cell which is canceled by another rook.

Here cancelation in this board is defined as follows.

(i.) Suppose r is a rook placed in the first column of Baug
x (p(x)).

a. If r is placed above the high bar in the subboard Baug,sw
x , then above the high bar,

r will cancel within the upper part of Baug
x (p(x)) as described previously (that is,

as if there is no x-part or lower augmented part). It will also cancel the lowest cell
to its right in each subcolumn of the lower augmented part in each of the other
remaining subboards.
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b. If r is placed in the x-part in the subboard Baug,sw
x , then r will cancel the x-parts

in the first column of every other subboard in Baug
x (p(x)).

(ii.) Suppose r′ is any other rook which has been placed in the jth column of Baug
x (p(x)).

a. If r′ is placed above the high bar in the subboard Baug,su
x , then again, r′ cancels

above the high bar in all boards as it would if there were no x-part or lower
augmented part. It will also cancel the lowest remaining uncanceled cells to its
right in each subcolumn of the lower augmented part in the remaining subboards
which have yet to be canceled by a rook to their left.

b. If r′ is placed in the x-part, then r′ will cancel the x-parts in the jth column of
every other subboard in Baug

x (p(x)).

c. If r′ is placed in the lower augmented part, then r′ cancels all uncanceled cells in
the lower augmented parts of the jth columns of the remaining subboards.

Now for any p(x) ∈ N[x], we then let Nn,p(x)(Bx(p(x))) denote the set of colored place-
ments in Baug

x (p(x)) such that the above placement and cancelation rules hold as do the same
coloring rules as before. An example of these placement and cancelation rules are illustrated
in Figure 12, where B = F (1, 2, 3, 5, 5), p(x) = p0 +p1x+p3x

3, and x = 3. Finally, we assign
to each colored placement of rooks P ∈ Nn,p(x)(Bx(p(x))) a weight ν(P) = (−1)LA(P), where
LA(P) is the number of columns in P which contain rooks which lie in the lower augmented
part of Baug

x (p(x)). We are now in a position to prove another product formula, this one
involving the poly-rook numbers.

Theorem 4.6. Suppose n ∈ N0 and p(x) = ps1x
s1 + ps2x

s2 + · · · + psy
xsy ∈ N[x]. If

B = F (0, 1, . . . , n − 1) then

(p(x))n =
n∑

k=0

rn−k,p(x)(B(p(x)))(p(x) − p(0))(p(x) − p(1)) · · · (p(x) − p(k − 1)). (4.11)

Proof. Given a rook board B = F (b1, b2, . . . , bn) and p(x) ∈ N[x], we fix x ∈ N to show that
(4.11) represents two ways to enumerate the sum

S(B, p(x)) :=
∑

P∈Nn,p(x)(B
aug
x (p(x)))

ν(P). (4.12)

First we see that in column 1, there are xs1 + xs2 + · · · + xsy ways to place uncolored
rooks, and so there are p(x) total ways to place colored rooks in the first column of our
augmented polyboard. Thus for the second column, we have no canceled cells. Hence there
are 1s1 + 1s2 + · · ·+ 1sy = p(1) ways to place colored rooks above the high bar, p(x) colored
placements in the x-part, and 1s1 + 1s2 + · · · + 1sy = p(1) colored placements in the lower
augmented part. The total weight of these placements is p(1)+p(x)−p(1) = p(x). In general,

if we have placed rooks in columns C(1)(B
aug,(m)
x ), . . . , C(t−1)(B

aug,(m)
x ) where exactly s of the
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Figure 12: An example of a nonattacking rook placement in B
aug
3 (p(x)), with B =

F (1, 2, 3, 5, 5) and p(x) = p0 + p1x + p3x
3.
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columns have rooks above the high bar, then there will be t − 1 − s uncanceled cells above
the high bar and t−1−s uncanceled cells below the low bar in every subcolumn of column t.
That is, in column t there are (t−1−s)s1 +(t−1−s)s2 + · · ·+(t−1−s)sy = p(t−1−s) ways
to place colored rooks above the high bar, p(x) ways to place colored rooks in the x-part,
and (t− 1− s)s1 +(t− 1− s)s2 + · · ·+(t− 1− s)sy = p(t− 1− s) ways to place colored rooks
below the low bar. In such a case, the weights of the rooks in the tth column will contribute
p(t− 1− s) + p(x)− p(t− 1− s) = p(x) to (4.12). It then follows that S(B, p(x)) = (p(x))n.

Now suppose that we fix a placement P of rooks in n − k columns of B(p(x)). Then
we want to count the number of ways extend P to a placement in Nn,p(x)(B

aug
x (p(x))). Let

C(ti)(B
aug
x (B(p(x)))) be the ith column, reading left to right, which has no rooks in that

column. By construction, t1 = 1 so that there are p(x) ways to add rooks below the bar
in column C(ti)(B

aug
x (B(p(x)))). For 1 < i ≤ k, there will be ti − (i − 1) columns to

the left of C(ti)(B
aug
x (B(p(x)))) which have rooks above the high bar and these rooks will

cancel ti − (i − 1) cells in each subcolumn of C(ti)(B
aug
x (B(p(x)))) in the lower augmented

part of the Baug
x (B(p(x))) and they will cancel no cells in the x-part. Thus, there will be

ti − (ti − (i− 1)) = (i− 1) uncanceled cells in each subcolumn of C(ti)(B
aug
x (B(p(x)))) in the

lower augmented part of the Baug
x (B(p(x))). We then see that if we sum the weights over all

possible ways to place colored rooks in column C(ti)(B
aug
x (B(p(x)))) will get p(x)− p(i− 1).

It follows that

S(B, p(x)) =
n∑

k=0

∑

P∈Nn−k,(m)(B
(m))

k∏

j=1

(p(x) − p(j − 1))

=
n∑

k=0

rn−k,p(x)(B(p(x)))
k∏

j=1

(p(x) − p(j − 1)).

We now have the following product formula involving poly-Stirling numbers of the second
kind.

Corollary 4.7. For n ∈ N0 and p(x) ∈ N[x],

(p(x))n =
n∑

k=0

S
p(x)
n,k

k∏

j=1

(p(x) − p(j − 1)). (4.13)

Following the method in Section 2, we can also now prove the following generalization of
a well-known formula involving the Stirling numbers of the second kind.

Corollary 4.8. For k ∈ N and p(x) ∈ N[x],

∑

n≥k

S
p(x)
n,k tn =

tk

(1 − p(1)t)(1 − p(2)t) · · · (1 − p(k)t)
.
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4.4 Set and Cycle Structure Interpretations of p(x)-Stirling Num-
bers

In this section, we show that p(x)-Stirling numbers have combinatorial interpretations in
terms of certain collections of m-tuples of set partitions and cycles. Fix a polynomial p(x) =
p0 + p1x + · · · + pmxm where pi ∈ N0 and pm 6= 0. For each i such that pi > 0, fix a set of
colors c1,i, . . . , cpi,i.

We shall start with giving a combinatorial interpretation of S
p(x)
n,k in terms of certain

collections of unordered set partitions in the case where p(0) 6= 0. For m > 0, let P̄
(m)
n,k =

(P̄ (1), . . . , P̄ (m)) be an m-tuple of unordered set partitions of {0, 1, . . . , n} into k + 1 parts

and let Π̄
(m)
n,k = {P̄ (m)

n,k | such that the parts P̄ (i) and P̄ (j) have the same minimal elements

for every 1 ≤ i < j ≤ m}. We set P̄n,0 = Π̄n,0 = ({0, . . . , n}) for all n ≥ 0.

We define Θ
p(x)
0,0 = {∅} and Θ

p(x)
n,k = {∅} if k < 0 or k > n. For n ≥ 1 and 0 ≤ k ≤ n, let

Θ
p(x)
n,k denote the set of sequences (P̄

(0)
n,k , . . . , P̄

(m)
n,k ) such that the following conditions hold.

(i.) If pi = 0, then P̄
(i)
n,k = {∅}.

(ii.) If i > 0 and pi 6= 0, then P̄
(i)
n,k consists of an i-tuple of unordered set partitions

(Q(1,i), . . . , Q(i,i)) ∈ Π̄
(i)
n,k. In addition, we will color certain elements in the unordered

set partitions that appear in P̄
(i)
n,k according to the following rules.

a. The elements in any unordered set partition that occurs in P̄
(i)
n,k which lie in the

part that contains 0 or are the minimal element in its part are not colored.

b. For each 1 ≤ s ≤ n, if s is not in the part containing 0 and is not a minimal element
in its part, then s is colored with the same color from c1,i, . . . , cpi,i in each of the
unordered set partitions (Q(1,i), . . . , Q(i,i)).

(iii.) P̄0,k consists of the set partition ({0, . . . , n}) where some of the elements 1, . . . , n
may be colored with one of the colors c1,0, . . . , cp0,0.

(iv.) For each 1 ≤ s ≤ n, if there exists a j ≥ 1 such that s is a colored element in one

of the unordered set partitions occurring P̄
(j)
n,k, then s is in the part that contains 0 in

all unordered set partitions that occur in P̄
(i)
n,k if i 6= j and pi 6= 0. Moreover, s is not

colored in P0,k.

(v.) The set of common minimal elements in P̄
(i)
n,k are the same for all 1 ≤ i ≤ m where

pi 6= 0.

(vi.) If s > 0 is not one of the common minimal elements in (P̄
(0)
n,k , . . . , P̄

(m)
n,k ), and if s is

not always in the set with 0, then in exactly one of the i-tuples P̄
(i)
n,k where pi 6= 0, all

occurrences of s must be colored.

Theorem 4.9. Let n ∈ N0 and let p(x) = p0 +p1x+ · · ·+pmxm ∈ N0[x] where p0 6= 0. Then

S
p(x)
n,k = |Θp(x)

n,k | for every 0 ≤ k ≤ n.
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Proof. First observe that |Θp(x)
n,k | = 0 whenever k < 0 or k > n, and Θ

p(x)
0,0 = {∅} so that

|Θp(x)
0,0 | = S

p(x)
0,0 = 1. We now see that for all n ≥ 0,

S
p(x)
n+1,0 = S

p(x)
n,−1 + p(0)S

p(x)
n,0

Thus, it follows by induction that S
p(x)
n,0 = p(0)n for all n ≥ 0. Now suppose that (P̄

(0)
n,0 , . . . , P̄

(m)
n,0 ) ∈

Θ
p(x)
n,0 . Then for every j such that pj 6= 0, all unordered set partitions that appear P̄

(j)
n,0 are

just {0, . . . , n}. Thus if j ≥ 1 and pj 6= 0, then no elements are colored in P̄
(j)
n,0. This means

that each of 1, 2, . . . , n must be colored in P̄
(0)
n,0 . Since there are pn

0 ways to color the elements

of P̄
(0)
n,0 , it follows that |Θp(x)

n,0 | = p(0)n in this case.
For n = 1,

S
p(x)
1,1 = S

p(x)
0,0 + p(1)S

p(x)
0,1 = 1.

In this case our definitions ensure that if (P̄
(0)
n,0 , . . . , P̄

(m)
n,0 ) ∈ Θ

p(x)
1,1 , then for every j such that

pj 6= 0, every unordered set partition that occurs in P̄
(j)
n,0 is just {0}, {1}. Thus no elements

are allowed to be colored and hence |Θp(x)
1,1 | = 1.

Proceeding by induction, we pick n > 1 and assume that |Θp(x)
n,k | = S

p(x)
n,k for every

0 ≤ k ≤ n. Now suppose that k ≥ 1 and (P̄
(0)
n+1,k, . . . , P̄

(m)
n+1,k) ∈ Θ

p(x)
n+1,k. Then if {n + 1} is a

part in one of the unordered set partitions that occur in (P̄
(1)
n+1,k, . . . , P̄

(m)
n+1,k), then {n + 1} is

a part in every unordered set partition that occurs in (P̄
(1)
n+1,k, . . . , P̄

(m)
n+1,k). Moreover it must

be the case that n + 1 is not colored in P̄
(0)
n+1,k. It then follows that if we remove {n + 1}

from every unordered set partition which occurs in (P̄
(1)
n+1,k, . . . , P̄

(m)
n+1,k) and we remove n + 1

from P̄
(0)
n+1,k, then we will obtain an element of Θ

p(x)
n,k−1.

If {n+1} is never a part in any of the unordered set partitions which occur in (P̄
(0)
n+1,k, . . . , P̄

(m)
n+1,k),

then for all j > 0 such that pj 6= 0, n + 1 is not a minimal element in its part in any of

the unordered set partitions that occur in P̄
(j)
n+1,k for any j with pj 6= 0. This means that

we can remove n + 1 from all such unordered set partitions and end up with an element
of Θ

p(x)
n,k . However, if we start with an element (Q̄

(0)
n,k, . . . , Q̄

(m)
n,k ), we can create an element

(P̄
(0)
n+1,k, . . . , P̄

(m)
n+1,k) ∈ Θ

p(x)
n+1,k by picking an i > 0 such that pi 6= 0 and a color cs,i where

1 ≤ s ≤ pi, and adding n + 1 colored with cs,i to one of the existing parts, other than

the part that contains 0, in each of the unordered set partitions in Q̄
(i)
n,k. Since we have k

choices for each of the unordered set partitions in the i-tuple Q̄
(i)
n,k, there will be pik

i ways
to do this. Then for each j 6= i, we are forced to put n + 1 the part containing 0 in each
of the unordered set partitions which occurs in Q̄

(j)
n,k. Moreover, n + 1 must be uncolored in

Q̄
(0)
n,k. The only other way that we can create an element (P̄

(0)
n+1,k, . . . , P̄

(m)
n+1,k) ∈ Θ

p(x)
n+1,k from

(Q̄
(0)
n,k, . . . , Q̄

(m)
n,k ) is to color n + 1 in Q̄

(0)
n,k with one of the colors c1,0, . . . , cp0,0. In that case,

we must add n + 1 to the part containing 0 in all unordered set partitions that occur in
the i-tuple Q̄

(i)
n,k where i > 0 and pi 6= 0. Thus we have an additional p0 ways to create an
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element (P̄
(0)
n+1,k, . . . , P̄

(m)
n+1,k) ∈ Θ

p(x)
n+1,k from (Q̄

(0)
n,k, . . . , Q̄

(m)
n,k ). It follows that

|Θp(x)
n+1,k| = |Θp(x)

n,k−1| + (
m∑

j=0

pjk
j)|Θp(x)

n,k |

= S
p(x)
n,k−1 + p(k)S

p(x)
n,k

= S
p(x)
n+1,k.

As an example of this type of object, notice that we can compute S
(x2+2x+1)
3,2 = 14, and

thus there are fourteen elements, listed below, in the set Θ
(x2+2x+1)
3,2 . That is, there are 14

triples of set partitions of {0, 1, 2, 3} into 2 + 1 = 3 parts such which satisfy the above
conditions. For clarity, suppose that we can color elements from our partition corresponding
to P̄

(0)
3,2 with the color yellow (Y ), elements from the partition corresponding to P̄

(1)
3,2 with

either the color red (R) or the color blue (B), and elements corresponding to P̄
(2)
3,2 with the

color green (G). We will denote an element E colored with the color C by EC .

{0, 1, 2, 3} | {0, 1}{2}{3} | ({0, 1}{2}{3}, {0, 1}{2}{3}),
{0, 1, 2Y , 3} | {0, 2}{1}{3} | ({0, 2}{1}{3}, {0, 2}{1}{3}),
{0, 1Y , 2, 3} | {0, 1}{2}{3} | ({0, 2}{1}{3}, {0, 2}{1}{3}),
{0, 1Y , 2, 3} | {0, 1}{2}{3} | ({0, 2}{1}{3}, {0, 2}{1}{3}),

{0, 1Y , 2, 3} | {0, 1}{2}{3} | ({0}{1, 2G}{3}, {0}{1, 2G}{3}),
{0, 1Y , 2, 3} | {0, 3}{1}{2} | ({0}{1}{2, 3G}, {0}{1}{2, 3G}),
{0, 1Y , 2, 3} | {0, 3}{1}{2} | ({0}{1}{2, 3G}, {0}{1, 3G}{2}),
{0, 1Y , 2, 3} | {0, 3}{1}{2} | ({0}{1, 3G}{2}, {0}{1}{2, 3G}),
{0, 1Y , 2, 3} | {0, 3}{1}{2} | ({0}{1, 3G}{2}, {0}{1, 3G}{2}),
{0, 1Y , 2, 3} | {0}{1, 3B}{2} | ({0, 3}{1}{2}, {0, 3}{1}{2}),
{0, 1Y , 2, 3} | {0}{1, 3R}{2} | ({0, 3}{1}{2}, {0, 3}{1}{2}),
{0, 1Y , 2, 3} | {0}{1}{2, 3B} | ({0, 3}{1}{2}, {0, 3}{1}{2}),
{0, 1Y , 2, 3} | {0}{1}{2, 3R} | ({0, 3}{1}{2}, {0, 3}{1}{2}),
{0, 1Y , 2, 3Y } | {0, 3}{1}{2} | ({0, 3}{1}{2}, {0, 3}{1}{2}).

Now if p0 = 0, then for all n ≥ 0,

S
p(x)
n+1,0 = S

p(x)
n,−1 + p(0)S

p(x)
n,0 = 0.

In this case, we let Θ̄
p(x)
n,k be the set of elements of (P(0)

n,k, . . . ,P
(m)
n,k ) ∈ Θ

p(x)
n,k so no element

s ≥ 1 that lies in P(0)
n,0 is colored. By our argument in the proof of Theorem 4.9, this forces

Θ̄
p(x)
n,0 = {∅} for all n > 0 so that S

p(x)
n,0 = |Θ̄p(x)

n,0 |. Then, essentially the same argument that
we used to prove Theorem 4.9 will prove the following theorem.

Theorem 4.10. Let n ∈ N0 and let p(x) = p1x + · · · + pmxm ∈ N0[x]. Then S
p(x)
n,k = |Θ̄p(x)

n,k |
for every 0 ≤ k ≤ n.
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Next we will give a combinatorial interpretation of c
p(x)
n,k in terms of certain collection of

permutations in the case where p(0) 6= 0.

Let C̄
(m)
n,k be the set of m-tuples of permutations of {0, 1, . . . , n} into k + 1 cycles and let

Γ̄
(m)
n,k denote the sequences (σ(1), . . . , σ(m)) ∈ C̄

(m)
n,k such that the set of minimal elements of

the cycles of σ(i) are the same for all i.
We define ∆

p(x)
0,0 = {∅} and ∆

p(x)
n,k = ∅ if k < 0 or k > n. For n ≥ 1 and 0 ≤ k ≤ n, let

∆
p(x)
n,k denote the set of sequences (C̄

(0)
n,k, . . . , C̄

(m)
n,k ) such that the following conditions hold.

(i.) If pi = 0, then C̄
(i)
n,k = {∅}.

(ii.) If i > 0 and pi 6= 0, then C̄
(i)
n,k is an i-tuple of permutations (σ(1,i), . . . , σ(i,i)) ∈ Γ̄

(i)
n,k.

In addition, we will color certain of the elements that occur in the permutations in
C̄

(i)
n,k according to the following rules.

a. For each 1 ≤ j ≤ i, the minimal elements in each cycle σ(j,i) are not colored and 1
is not colored.

b. For each 1 ≤ s ≤ n, if s is not a minimal element in its cycle and is not in the
cycle that contains 0, then s is colored with a fixed color from c1,i, . . . , cpi,i in each
of the permutations (σ(1,i), . . . , σ(i,i)). In addition, if s is in a cycle (0, b1, . . . , br)
that contains 0 and s is colored, then s cannot be b1 and s is colored with a fixed
color from c1,i, . . . , cpi,i in each of the permutations (σ(1,i), . . . , σ(i,i)).

(iii.) C̄0,k consists of the cycle (0, . . . , n) where some of the elements 1, . . . , n may be
colored with one of the colors c1,0, . . . , cp0,0

(iv.) For each 1 ≤ s ≤ n, if there exists a j such that s is a colored in some permutation

in C̄
(j)
n,k, then s is in the cycle of the form (0, a1, . . . , ar) in all C̄

(i)
n,k such that i 6= j and

pi 6= 0 where s is not colored. Moreover, if s = at, then any occurrence of 1, . . . , s − 1
in that cycle must be among a1, . . . , at−1. If j 6= 0, then s is also not colored in C̄

(0)
n,k.

(v.) The set of common minimal elements in a cycle of the permutations that occur in

C̄
(i)
n,k are the same for all 1 ≤ i ≤ m where pi 6= 0 and they are never colored.

(vi.) If s > 0 is not one of the common minimal elements in (C̄
(0)
n,k, . . . , C̄

(m)
n,k ), , and if s is

not always in the set with 0, then then in exactly one of the i-tuples C̄
(i)
n,k where pi 6= 0,

all occurrences of s must be colored.

Theorem 4.11. Let n ∈ N0 and let p(x) = p0 + p1x + · · · + pmxm ∈ N0[x] where p0 6= 0

Then c
p(x)
n,k = |∆p(x)

n,k | for every 0 ≤ k ≤ n.

Proof. First observe that |∆p(x)
n,k | = 0 whenever k < 0 or k > n, and ∆

p(x)
0,0 = {∅} so that

|∆p(x)
0,0 | = c

p(x)
0,0 = 1.

For n = 1,
c
p(x)
1,1 = c

p(x)
0,0 + p(0)S

p(x)
0,1 = 1.
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In this case our definitions ensure that if (C̄
(0)
1,1 , . . . , C̄

(m)
1,1 ) ∈ ∆

p(x)
1,1 , then for every j such that

pj 6= 0, every permutation that occurs in C̄
(j)
1,1 is just (0)(1). Thus, no elements are allowed

to be colored and hence |∆p(x)
1,1 | = 1. Next

c
p(x)
1,0 = c

p(x)
0,−1 + p(0)S

p(x)
0,0 = p0.

In this case our definitions ensure that if (C̄
(0)
1,0 , . . . , C̄

(m)
1,0 ) ∈ ∆

p(x)
1,0 , then for every j such that

pj 6= 0, every permutation that occurs in C̄
(j)
1,0 is just (0, 1). Now 1 cannot be colored in any

permutation that occurs in C̄
(i)
1,0 for any i > 0 where pi 6= 0. Thus the only element that can

be colored is the 1 which occurs in the permutation (0, 1) in C̄
(0)
1,0 . Since we can color the 1

in p0 ways, it follows that |∆p(x)
1,0 | = p(0).

Note that for all n ≥ 1,
c
p(x)
n+1,0 = c

p(x)
n,−1 + p(n)c

p(x)
n,0

Thus, it follows by induction that c
p(x)
n,0 = p(0)p(1) · · · p(n− 1) for all n ≥ 1. Now assume by

induction that |∆p(x)
n,0 | = p(0)p(1) · · · p(n − 1) and suppose that (C̄

(0)
n,0, . . . , C̄

(m)
n,0 ) ∈ ∆

p(x)
n,0 . By

definition, C̄
(0)
n,0 consists of the n + 1-cycle (0, 1, . . . , n) and for all i > 0 where pi 6= 0, C̄

(i)
n,0

consists of an i-tuple (σ(1,i), . . . , σ(i,i)) where each σ(j,i) is an n + 1-cycle (0, α
(j,i)
1 , . . . , α

(j,i)
n ).

We can then create an element of ∆
p(x)
n+1,0 from (C̄

(0)
n,0, . . . , C̄

(m)
n,0 ) in two different ways. First

we can add a colored version of n + 1 at the end of the cycle (0, 1, . . . , n) in C̄
(0)
n,0. Then we

are forced by condition (iv.) of our general definition of ∆
p(x)
n,k to add an uncolored version

of n + 1 at the end of every cycle in C̄
(i)
n,0 for all i such that pi 6= 0. There are p0 ways to do

this depending on which color we use for n + 1 when we add n + 1 at then end of the cycle
in C̄

(0)
n,0. The other way we can create an element of ∆

p(x)
n+1,0 from (C̄

(0)
n,0, . . . , C̄

(m)
n,0 ) is to pick

an i > 0 where pi 6= 0 and a color ct,i from c1,i, . . . , cpi,i and insert n + 1 colored with ct,i

immediately after some element from 1, . . . , n in the each of the cycles σ(1,i), . . . , σ(i,i) that
occur in C̄

(i)
n,0. Note we cannot insert this colored version of n + 1 immediately after 0 in

any of the cycles by condition (ii.)b. of our definition of ∆
p(x)
n,k . We are then forced to add

an uncolored version of n + 1 at the end of every cycle that occurs in C̄
(j)
n,0 where j 6= i. It

follows that there are n different ways to insert the colored version of n + 1 in each of the
cycles σ(1,i), . . . , σ(i,i) so that there are a total of pin

i ways to do this. It follows that there
p0 +

∑n

i=1 pin
i = p(n) ways to create a new element of ∆

p(x)
n+1,0 from (C̄

(0)
n,0, . . . , C̄

(m)
n,0 ). Finally,

it is easy to check that if we start with an element of ∆
p(x)
n+1,0 and remove n + 1 from each of

the (n + 2)-cycles that occur in that element, we we end up with an element of ∆
p(x)
n,0 . Thus,

it follows that
|∆p(x)

n+1,0| = p(n)|∆p(x)
n,0 | = p(0) · · · p(n)

as desired.
Proceeding by induction, we will pick n > 1 and assume that |∆p(x)

n,k | = c
p(x)
n,k for every

0 ≤ k ≤ n. Now suppose that k ≥ 1 and (C̄
(0)
n+1,k, . . . , C̄

(m)
n+1,k) ∈ ∆

p(x)
n+1,k. Then if (n + 1)

is a cycle in one of the permutations that occur in (C̄
(1)
n+1,k, . . . , C̄

(m)
n+1,k), then (n + 1) is a
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cycle in every permutation that occurs in (C̄
(1)
n+1,k, . . . , C̄

(m)
n+1,k). Moreover, it must be the

case that n + 1 is not colored in C̄
(0)
n+1,k. It then follows that if we remove the cycle (n + 1)

from every permutation which occurs in (C̄
(1)
n+1,k, . . . , C̄

(m)
n+1,k) and we remove n + 1 from the

(n + 2)-cycle in C̄
(0)
n+1,k, then we will obtain an element of ∆

p(x)
n,k−1. If (n + 1) is never a

cycle in any of the permutations which occur in (C̄
(0)
n+1,k, . . . , C̄

(m)
n+1,k), then for all j > 0 such

that pj 6= 0, n + 1 is not a minimal element in its cycle in any of the permutations that

occur in P(j)
n+1,k. This means that we can remove n + 1 from every permutation that occurs

in (C̄
(0)
n+1,k, . . . , C̄

(m)
n+1,k), and end up with an element of ∆

p(x)
n,k . We can create an element

of ∆
p(x)
n+1,k from (C̄

(0)
n,k, . . . , C̄

(m)
n,k ) ∈ ∆

p(x)
n,k in two different ways. First, we can add a colored

version of n+1 at the end of the cycle (0, 1, . . . , n) in C̄
(0)
n,k so that we are forced by condition

(iv.) of our definitions of ∆
p(x)
n+1,k to add an uncolored version of n + 1 at the end of every

cycle in C̄
(i)
n,k for all i such that pi 6= 0. There are p0 ways to do this depending on which color

we use for n + 1 when we add n + 1 at then end of the cycle in C̄
(0)
n,k. The other way we can

create an element of ∆
p(x)
n+1,k from (C̄

(0)
n,k, . . . , C̄

(m)
n,k ) is to pick an i > 0 where pi 6= 0 and a color

ct,i from c1,i, . . . , cpi,i and insert n + 1 colored with ct,i immediately after some element from
1, . . . , n in the cycle structures of the permutations σ(1,i), . . . , σ(i,i). Note we cannot insert
this colored version of n + 1 immediately after 0 in any of the cycles by condition (ii.)b. of

our definition of ∆
p(x)
n,k . We are then forced to add an uncolored version of n + 1 at the end

of every cycle that occurs in C̄
(j)
n,0 where j 6= i. It follows that there are n different ways to

insert the colored version of n + 1 in each of the cycles of σ(1,i), . . . , σ(i,i) so that there are a
total of pin

i ways to do this. It follows that there p0 +
∑n

i=1 pin
i = p(n) ways to create a

new element of ∆
p(x)
n+1,k from (C̄

(0)
n,k, . . . , C̄

(m)
n,k ), and so

|∆p(x)
n+1,k| = |∆p(x)

n,k−1| + p(n)|∆p(x)
n,0 |

= c
p(x)
n,k−1 + p(n)c

p(x)
n,k

= c
p(x)
n+1,k

as desired.

Now if p0 = 0, then for all n ≥ 0,

c
p(x)
n+1,0 = p(0) · · · p(n) = 0.

In this case, we let ∆̄
p(x)
n,k be the set of elements of (C̄

(0)
n,k, . . . , C̄

(m)
n,k ) ∈ ∆

p(x)
n,k so that no element

s ≥ 1 that occurs in n+1-cycle in C̄
(0)
n,k is colored. By our argument in the proof of Theorem

4.11, this forces ∆̄
p(x)
n,0 = {∅} for all n > 0 so that c

p(x)
n,0 = |∆̄p(x)

n,0 |. Then, essentially the same
argument that we used to prove Theorem 4.11 will prove the following theorem.

Theorem 4.12. Let n ∈ N0 and let p(x) = p1x + · · · + pmxm ∈ N0[x]. Then c
p(x)
n,k = |∆̄p(x)

n,k |
for every 0 ≤ k ≤ n.
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5 Q-Analogues of Poly-Stirling Numbers

For any positive integer x we can define the q-analogue of x to be

[x]q = 1 + q + q2 + · · · + qx−1 =
1 − qx

1 − q
.

There are two natural q-analogues of the numbers described in Section 4, namely, we can
take the q-analogue of p(x) to be either p([x]q) or [p(x)]q. Thus, for example, we can define

the q-analogues of s
p(x)
n,k and S

p(x)
n,k by the following recursions:

s
p(x)
0,0 (q) = 1 and s

p(x)
n,k (q) = 0 if k < 0 or k > n, and (5.1)

s
p(x)
n+1,k(q) = s

p(x)
n,k−1(q) − p([n]q)s

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0,

and

S
p(x)
0,0 (q) = 1 and S

p(x)
n,k (q) = 0 if k < 0 or k > n, and (5.2)

S
p(x)
n+1,k(q) = S

p(x)
n,k−1(q) + p([k]q)S

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0.

However, we can define a second q-analogue of s
p(x)
n,k and S

p(x)
n,k by the following recursions:

s̄
p(x)
0,0 (q) = 1 and s̄

p(x)
n,k (q) = 0 if k < 0 or k > n, and (5.3)

s̄
p(x)
n+1,k(q) = s̄

p(x)
n,k−1(q) − [p(n)]qs̄

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0,

and

S̄
p(x)
0,0 (q) = 1 and S̄

p(x)
n,k (q) = 0 if k < 0 or k > n, and (5.4)

S̄
p(x)
n+1,k(q) = S̄

p(x)
n,k−1(q) + [p(k])]qS̄

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0.

It can be shown how to find appropriate q-statistics related to the m-boards considered
in Section 2 to give combinatorial interpretations of both s

p(x)
n,k (q) and S

p(x)
n,k (q) and s̄

p(x)
n,k (q)

and S̄
p(x)
n,k (q). This will be the subject of future papers.
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