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Abstract

A partition π of the set [n] = {1, 2, . . . , n} is a collection {B1, B2, . . . , Bk} of
nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. In this paper,
we find an explicit formula for the generating function for the number of partitions of
[n] with exactly k blocks according to the number of peaks (valleys) in terms of Cheby-
shev polynomials of the second kind. Furthermore, we calculate explicit formulas for
the total number of peaks and valleys in all the partitions of [n] with exactly k blocks,
providing both algebraic and combinatorial proofs.

1 Introduction

A partition Π of the set [n] = {1, 2, . . . , n} is a collection {B1, B2, . . . , Bk} of nonempty
disjoint subsets of [n], called blocks, whose union equals [n]. We assume that blocks are listed
in increasing order of their minimal elements, that is, minB1 < min B2 < · · · < min Bk. The
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set of all partitions of [n] with k blocks is denoted by P (n, k). The cardinality of P (n, k)
is the well-known Stirling number of the second kind [13], which is usually denoted by Sn,k.
Any partition Π can be written in the canonical sequential form π1π2 · · ·πn, where i ∈ Bπi

for
all i (see, e.g., [7]). Throughout, we will identify each partition with its canonical sequential
form. For example, if Π = {1, 4}, {2, 5, 7}, {3}, {6} is a partition of [7], then its canonical
sequential form is π = 1231242 and in such a case we write Π = π.

Several authors have studied different subword patterns on the set of partitions of [n].
For example, Mansour and Munagi [9] studied the number of partitions of [n] according to
the number levels, rises, and descents. Recall that a level (respectively, rise, descent) of a
word π = π1π2 · · · πn is an index i such that πi = πi+1 (respectively, πi < πi+1, πi > πi+1).
A general question concerns counting the elements in a subset of P (n, k) which have no
occurrences of a particular pattern. On this subject, the reader is referred to the works of
Sagan [12], Mansour and Severini [10], Chen et al. [1], and Jeĺınek and Mansour [4], as well
as to the references therein.

Let [k]n denote the set of all words of length n over the alphabet [k]. Given π =
π1π2 · · ·πn ∈ [k]n, a peak (respectively, valley) is an entry πj, 1 ≤ j ≤ n − 2, of π such
that πj < πj+1 > πj+2 (respectively, πj > πj+1 < πj+2); that is, a peak is a rise followed im-
mediately by a descent and a valley is a descent followed immediately by a rise. In this case,
we say that a peak or valley occurs at j in π. We denote the number of peaks (respectively,
valleys) in π by peak(π) (respectively, valley(π)).

That there are 2n−1 permutations of [n] without peaks (valleys) was shown [5] and later
extended [6] by Kitaev. Comparable results on words are given by Heubach and Mansour [2],
where they find an explicit formula for the generating function for the number of elements
of [k]n according to the number of peaks (valleys) (see [3] for further results). See also the
paper by Mansour [8] for analogous results on Dyck paths.

The aim of this paper is to find an explicit formula for the generating function for the
number of partitions of [n] with exactly k blocks, expressed canonically, according to the
number of peaks (valleys), where k is fixed. The case of peaks (respectively, valleys) is
treated in Section 2 (respectively, Section 3). Our main approach is to first compute the
generating functions for the number of peaks (or valleys) for words over [k] of length n and
then relate this to the corresponding generating functions for partitions of [n] with exactly k

blocks via the restricted growth function of the partition. All the explicit solutions obtained
in Sections 2 and 3 involve Chebyshev polynomials of the second kind, see [11]. We also
derive explicit formulas for the total number of peaks and valleys in all the partitions of [n]
with exactly k blocks, providing both algebraic and combinatorial proofs.

2 Counting peaks

Let Wk(x, q) be the generating function for the number of words of length n over the alphabet
[k] according to the number of peaks, that is,

Wk(x, q) =
∑

n≥0



xn
∑

π∈[k]n

qpeak(π)



 .
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Lemma 2.1. The generating function Wk(x, q) satisfies the recurrence relation

Wk(x, q) =
x(q − 1) + (1 − x(q − 1))Wk−1(x, q)

1 − x(1 − q)(1 − x) − x(x + q(1 − x))Wk−1(x, q)
,

with the initial condition W0(x, q) = 1.

Proof. Let us write an equation for Wk(x, q). Since each word in [k]n may or may not contain
the letter k, we have

Wk(x, q) = Wk−1(x, q) + W ∗
k (x, q),

where W ∗
k (x, q) is the generating function for the number of words π of length n over the

alphabet [k] according to the number of peaks such that π contains the letter k. Such words
π may be decomposed as either k, π′k, kπ′′, π′kπ′′′, or π′kkπ′′′′, where π′ is a nonempty word
over the alphabet [k − 1], π′′ is a nonempty word over the alphabet [k], π′′′ is a nonempty
word over the alphabet [k] which starts with a letter a < k, and π′′′′ is a word over the
alphabet [k]. The corresponding generating functions for the number of words of these
forms are given by x, x(Wk−1(x, q) − 1), x(Wk(x, q) − 1), x2(Wk−1(x, q) − 1)Wk(x, q) and
xq(Wk−1(x, q) − 1)(Wk(x, q) − xWk(x, q) − 1), respectively. Summing these five generating
functions, we obtain

W ∗
k (x, q) = x(q − 1) − x(q − 1)Wk−1(x, q) + x((1 − q)(1 − x)

+ (x + q(1 − x))Wk−1(x, q))Wk(x, q),

which implies

Wk(x, q) = x(q − 1) + (1 − x(q − 1))Wk−1(x, q) + x((1 − q)(1 − x)

+ (x + q(1 − x))Wk−1(x, q))Wk(x, q),

which is equivalent to

Wk(x, q) =
x(q − 1) + (1 − x(q − 1))Wk−1(x, q)

1 − x(1 − q)(1 − x) − x(x + q(1 − x))Wk−1(x, q)
,

as claimed.

In order to write the explicit formula for the generating function Wk(x, q), we need the
following lemma.

Lemma 2.2. Let an be any sequence defined by the recurrence relation an = A+Ban−1

C+Dan−1
with

the initial condition a0 = 1 such that α = BC − AD 6= 0. Then for all n ≥ 0,

an =
A
(

A+B√
α

Un−1(
B+C
2
√

α
) − Un−2(

B+C
2
√

α
)
)

√
α
(

A+B√
α

Un(B+C
2
√

α
) − Un−1(

B+C
2
√

α
)
)

− B
(

A+B√
α

Un−1(
B+C
2
√

α
) − Un−2(

B+C
2
√

α
)
) ,

where Um is the m-th Chebyshev polynomial of the second kind.
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Proof. We proceed by induction on n. Since U0(t) = 1, U−1(t) = 0 and U−2(t) = −1, the
lemma holds for n = 0. Let

gn =
A + B√

α
Un−1(

B + C

2
√

α
) − Un−2(

B + C

2
√

α
).

Assume the lemma holds for n and let us prove it for n + 1:

an+1 =
A + Ban

C + Dan

=
A + B Agn√

αgn+1−Bgn

C + D Agn√
αgn+1−Bgn

=
A
√

αgn+1

C
√

αgn+1 − (BC − DA)gn

=
Agn+1

Cgn+1 −
√

αgn

.

Using the fact that the Chebyshev polynomials of the second kind satisfy the recurrence
relation

Um(t) = 2tUm−1(t) − Um−2(t), (1)

we get gn = B+C√
α

gn+1 − gn+2, which implies

an+1 =
Agn+1

Cgn+1 − (B + C)gn+1 +
√

αgn+2

=
Agn+1√

αgn+2 − Bgn+1

and completes the induction step.

Combining Lemmas 2.1 and 2.2, we obtain the following result.

Theorem 2.3. The generating function Wk(x, q) for the number of words of length n over
the alphabet [k] according to the number of peaks is given by

Wk(x, q) =
x(q − 1) (Uk−1(t) − Uk−2(t))

Uk(t) − Uk−1(t) − (1 − x(q − 1)) (Uk−1(t) − Uk−2(t))
,

where t = 1 + x2

2
(1 − q) and Um is the m-th Chebyshev polynomial of the second kind.

Remark 2.4. The mapping on [k]n given by

π1π2 · · ·πn 7→ (k + 1 − π1)(k + 1 − π2) · · · (k + 1 − πn)

implies that the generating function for the number of words of length n over the alphabet
[k] according to the number of valleys is also given by Wk(x, q).

Theorem 2.3 for q = 0 gives

Wk(x, 0) =
−x (Uk−1(t) − Uk−2(t))

Uk(t) − Uk−1(t) − (1 + x) (Uk−1(t) − Uk−2(t))
,

which, by (1), implies the following corollary.
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Corollary 2.5. The generating function Wk(x, 0) for the number of words of length n over
the alphabet [k] without peaks is given by

Wk(x, 0) =
Uk−1(t) − Uk−2(t)

(1 − x)Uk−1(t) − Uk−2(t)
,

where t = 1 + x2

2
and Um is the m-th Chebyshev polynomial of the second kind.

Now we consider the number of peaks (valleys) in all the words of length n over the
alphabet [k]. Theorem 2.3 gives

lim
q→1

Wk(x, q) = lim
q→1

x (Uk−1(1) − Uk−2(1))
d
dq

(Uk(t) − 2Uk−1(t) + Uk−2(t)) |q=1 +x (Uk−1(1) − Uk−2(1))
.

Since Uk(1) = k + 1 and d
dq

Uk(1 + x2

2
(1 − q)) |q=1= −x2

(

k+2
3

)

, we get

lim
q→1

Wk(x, q) = lim
q→1

x

−kx2 + x
=

1

1 − kx
,

which agrees with the generating function for the number of words of length n over the
alphabet [k]. To find the q-partial derivative of Wk(x, q) at q = 1 using Theorem 2.3, first
let

f(q) = x(q − 1)(Uk−1(t) − Uk−2(t))

and
g(q) = (Uk(t) − Uk−1(t)) − (1 − x(q − 1))(Uk−1(t) − Uk−2(t)),

where t = 1+ x2

2
(1−q). It is readily verified that f(1) = g(1) = 0, f ′(1) = x, g′(1) = x−kx2,

f ′′(1) = −2x3
(

k

2

)

, and g′′(1) = 2x4
(

k+1
3

)

− 2x3
(

k

2

)

, where primes denote differentiation with
respect to q. Then applying L’Hôpital’s rule twice to

lim
q→1

(

f ′(q)g(q) − f(q)g′(q)

g2(q)

)

yields

d

dq
Wk(x, q) |q=1=

(

k
(

k

2

)

−
(

k+1
3

))

x3

(1 − kx)2
=

(

2
(

k

3

)

+
(

k

2

))

x3

(1 − kx)2
,

which implies the following result.

Corollary 2.6. The number of peaks (valleys) in all the words of length n over the alphabet
[k] is given by

(n − 2)kn−3

(

2

(

k

3

)

+

(

k

2

))

.

Now we turn our attention to finding an explicit formula for the generating function
PPk(x, q) for the number of partitions of [n] with exactly k blocks according to the number
of peaks, that is,

PPk(x, q) =
∑

n≥0

xn
∑

π∈P (n,k)

qpeak(π).
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Lemma 2.7. For all k ≥ 1,

PPk(x, q) = xk

k
∏

j=1

(1 + x(1 − q)Wj(x, q) + q(Wj(x, q) − 1)).

Proof. If π is any partition of [n] with exactly k blocks, then π may be written as π = π′kπ′′,
where π′ is a partition of [n′] with exactly k − 1 blocks and π′′ is a word of length n′′ over
the alphabet [k] such that n′ + n′′ + 1 = n. Since π′′ is either empty, starts with the letter
k, or starts with a letter less than k, we get

PPk(x, q) = xPPk−1(x, q)(1 + xWk(x, q) + q(Wk(x, q) − xWk(x, q) − 1)).

The desired result now follows by induction on k, upon noting the initial condition
PP0( x, q) = 1.

Combining Lemma 2.7 and Theorem 2.3 yields the following result.

Theorem 2.8. For all k ≥ 1, the generating function for the number of partitions of [n]
with exactly k blocks according to the number of peaks is given by

PPk(x, q) = xk(1 − q)k

k
∏

j=1

1 + x + x2(1 − q) − Uj(t)−Uj−1(t)

Uj−1(t)−Uj−2(t)

1 + x(1 − q) − Uj(t)−Uj−1(t)

Uj−1(t)−Uj−2(t)

,

where t = 1 + x2

2
(1 − q) and Um is the m-th Chebyshev polynomial of the second kind.

The above theorem for q = 0 implies that the generating function for the number of
partitions of [n] with exactly k blocks without peaks is given by

PPk(x, 0) = xk

k
∏

j=1



1 +
x2

1 + x − Uj(t′)−Uj−1(t′)

Uj−1(t′)−Uj−2(t′)



 ,

which, by (1), is equivalent to

PPk(x, 0) = xk

k
∏

j=1

Uj−1(t
′) − (1 + x)Uj−2(t

′)

(1 − x)Uj−1(t′) − Uj−2(t′)
,

where t′ = 1 + x2

2
and Um is the m-th Chebyshev polynomial of the second kind. Table 1

below presents the number of partitions of [n] with exactly k blocks without peaks.

Corollary 2.9. The generating function for the number of partitions of [n] without peaks is
given by

1 +
∑

k≥1

PPk(x, 0) =
∑

k≥0

xk

k
∏

j=1

Uj−1(t
′) − (1 + x)Uj−2(t

′)

(1 − x)Uj−1(t′) − Uj−2(t′)
,

where t′ = 1 + x2

2
and Um is the m-th Chebyshev polynomial of the second kind.
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k\n 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 2 4 8 15 27 48 85 150 264 464
3 0 0 1 3 9 27 75 197 503 1263 3132 7695
4 0 0 0 1 4 16 64 236 818 2736 8934 28622
5 0 0 0 0 1 5 25 125 575 2479 10275 41409

Table 1: The number of partitions of [n] with exactly k blocks without peaks, for n =
1, 2, . . . , 12 and k = 1, 2, . . . , 5

Now we turn our attention to finding a formula for the total number of peaks in all the
partitions of [n] with exactly k blocks. Theorem 2.8 gives

PPk(x, 1) = xk

k
∏

j=1

lim
q→1

(1 − q)
(

1 + x + x2(1 − q) − Uj(t)−Uj−1(t)

Uj−1(t)−Uj−2(t)

)

1 + x(1 − q) − Uj(t)−Uj−1(t)

Uj−1(t)−Uj−2(t)

= xk

k
∏

j=1

−
(

1 + x − Uj(1)−Uj−1(1)

Uj−1(1)−Uj−2(1)

)

−x − d
dq

(

Uj(t)−Uj−1(t)

Uj−1(t)−Uj−2(t)

)

|q=1

.

Using Uk(1) = k + 1 and d
dq

Uk(1 + x2

2
(1 − q)) |q=1= −x2

(

k+2
3

)

, we obtain

PPk(x, 1) = xk

k
∏

j=1

−x

−x + jx2
=

xk

∏k

j=1(1 − jx)
,

which is in accord with the generating function for the number of partitions of [n] with
exactly k blocks; see, e.g., [13]. Also, Theorem 2.8 gives

d

dq
PPk(x, q) |q=1= PPk(x, 1)

k
∑

j=1

lim
q→1

(

d
dq

hj(q)

hj(q)

)

,

where hj(q) =
(1−q)(1+x+x2(1−q)−uj)

1+x(1−q)−uj
and uj =

Uj(t)−Uj−1(t)

Uj−1(t)−Uj−2(t)
, with t = 1+ x2

2
(1−q). Let u′

j(q) =
d
dq

uj(q) and u′′
j (q) = d2

dq2 uj(q). Since uj(1) = 1, limq→1 hj(q) = 1
1−jx

and limq→1 u′
j(q) = −jx2,

we have

lim
q→1

d

dq
hj(q) =

x(j − 1)

1 − jx
− x lim

q→1

1 − uj(q) − (1 − q)u′
j(q)

(1 + x(1 − q) − uj(q))2

=
x(j − 1)

1 − jx
− 1

2(1 − jx)
lim
q→1

(1 − q)u′′
j (q)

1 + x(1 − q) − uj(q)

=
x(j − 1)

1 − jx
− 1

2(1 − jx)

u′′
j (1)

(x − jx2)
.
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It is not hard to check that limq→1 u′′
j (q) = −2

(

j+1
3

)

x4 − 2
(

j

3

)

x4, which implies

lim
q→1

d

dq
hj(q) =

x(j − 1)

1 − jx
+

x3
(

j+1
3

)

+ x3
(

j

3

)

(1 − jx)2
.

Hence, we have

d

dq
PPk(x, q) |q=1= PPk(x, 1)

k
∑

j=1

(

x3
(

j+1
3

)

+ x3
(

j

3

)

(1 − jx)
+ x(j − 1)

)

.

Since PPk(x, 1) =
∑

n≥1 S(n, k)xn and
∑k

j=1 x(j − 1) = x
(

k

2

)

, we get the following result,

upon writing
(

j+1
3

)

+
(

j

3

)

as j
(

j

2

)

−
(

j+1
3

)

.

Corollary 2.10. The number of peaks in all the partitions of [n] with k blocks is given by

(

k

2

)

Sn−1,k +
k
∑

j=2

(

j

(

j

2

)

−
(

j + 1

3

))

fn,j,

where fn,j =
∑n−k

i=3 ji−3Sn−i,k and Si,j is the Stirling number of the second kind.

3 Counting valleys

In this section, we find an explicit formula for the generating function V Pk(x, q) for the
number of partitions of [n] with exactly k blocks according to the number of valleys, that is,

V Pk(x, q) =
∑

n≥0



xn
∑

π∈P (n,k)

qvalley(π)



 .

In order to achieve this, let W ′
k(x, q) (respectively, W ′′

k (x, q)) be the generating function for
the number of words π of length n over the alphabet [k] (respectively, [k − 1]) according to
the number of valleys in kπ(k + 1) (respectively, kπk).

Lemma 3.1. For all k ≥ 2,

W ′
k(x, q) =

W ′′
k (x, q)

1 − xW ′′
k (x, q)

and
W ′′

k (x, q) = W ′′
k−1(x, q) + x(W ′′

k−1(x, q)W ′
k−1(x, q) − 1) + xq,

with W ′
1(x, q) = 1

1−x
and W ′′

1 (x, q) = 1.
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Proof. The initial conditions W ′
1(x, q) = 1

1−x
and W ′′

1 (x, q) = 1 hold directly from the defi-
nitions. Each word kπ(k + 1) such that π is a word over the alphabet [k] can be written as
either kπ(k + 1), where π is a word over the alphabet [k − 1], or as kπ′kπ′′(k + 1), where π′

is a word over the alphabet [k − 1] and π′′ is a word over the alphabet [k]. Note that the
number of valleys in the word kπ(k + 1) equals the number of valleys in kπk for any word π

over the alphabet [k − 1]. Therefore, for all k ≥ 2,

W ′
k(x, q) = W ′′

k (x, q) + xW ′′
k (x, q)W ′

k(x, q),

which implies

W ′
k(x, q) =

W ′′
k (x, q)

1 − xW ′′
k (x, q)

.

Similarly, each word kπk such that π is a word over the alphabet [k − 1] can be written
either as kπk such that π is a word over the alphabet [k − 2] or as kπ′(k − 1)π′′k such that
π′ is a word over the alphabet [k − 2] and π′′ is a word over the alphabet [k − 1]. Note that
the number of valleys in the word kπ(k − 1) equals the number of valleys in (k − 1)π(k − 1)
for any word π over the alphabet [k − 2]. Therefore, for all k ≥ 2,

W ′′
k (x, q) = W ′′

k−1(x, q) + x(W ′′
k−1(x, q)W ′

k−1(x, q) − 1) + xq,

where xq accounts for the word k(k − 1)k, which yields the result above.

Lemma 3.2. For all k ≥ 1,

W ′′
k (x, q) =

x(q − 1)Ak

Ak+1 − (1 − x2(q − 1))Ak

,

where Ak = (1 + x(1 − x)(q − 1))Uk−2(t) − Uk−3(t), t = 1 + x2

2
(1 − q), and Um is the m-th

Chebyshev polynomial of the second kind.

Proof. Lemma 3.1 gives

W ′′
k (x, q) = x(q − 1) +

W ′′
k−1(x, q)

1 − xW ′′
k−1(x, q)

, (2)

with initial condition W ′′
1 (x, q) = 1. Assume that W ′′

k (x, q) =
A′

k

B′

k

for all k ≥ 1. Then we have

A′
k

B′
k

= x(q − 1) +
A′

k−1

B′
k−1 − xA′

k−1

,

which implies A′
k = x(q − 1)B′

k−1 + (1 − x2(q − 1))A′
k−1 and B′

k = B′
k−1 − xA′

k−1, with
A′

1 = B′
1 = 1, A′

2 = 1 + x(1 − x)(q − 1), and B′
2 = 1 − x. Therefore,

A′
k = 2tA′

k−1 − A′
k−2, A′

1 = 1, A′
2 = 1 + x(1 − x)(q − 1). (3)

Hence, by (1) and induction on k, we have A′
k = Ak. From the recurrence A′

k = x(q −
1)B′

k−1 + (1 − x2(q − 1))A′
k−1, we get

B′
k =

1

x(q − 1)

(

A′
k+1 − (1 − x2(q − 1))A′

k

)

,

which completes the proof.
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Lemma 3.1 and (2) imply W ′
k(x, q) = W ′′

k+1(x, q)−x(q− 1). Thus, by Lemma 3.2, we get

W ′
k(x, q) =

x(q − 1)(2tAk+1 − Ak+2)

Ak+2 − (1 − x2(q − 1))Ak+1

,

which, by (3), implies the following result.

Lemma 3.3. For all k ≥ 1,

W ′
k(x, q) =

x(q − 1)Ak

Ak+2 − (1 − x2(q − 1))Ak+1

,

where Ak = (1 + x(1 − x)(q − 1))Uk−2(t) − Uk−3(t), t = 1 + x2

2
(1 − q), and Um is the m-th

Chebyshev polynomial of the second kind.

¿From the fact that each partition π of [n] with exactly k blocks may be expressed
uniquely as π = 1π(1)2π(2) · · · kπ(k) such that π(j) is a word over the alphabet [j], it follows
that the generating function V Pk(x, q) is given by

V Pk(x, q) = xkVk(x, q)
k−1
∏

j=1

W ′
j(x, q), (4)

where Vk(x, q) is the generating function for the number of words π over the alphabet [k]
according to the number of valleys in kπ.

Lemma 3.4. For all k ≥ 1,

Vk(x, q) =
k
∏

j=1

1

1 − xW ′′
j (x, q)

.

Proof. Since each word kπ, where π is a word over the alphabet [k], can be written either as
kπ, where π is a word over the alphabet [k − 1], or as kπ′kπ′′, where π′ is a word over the
alphabet [k − 1] and π′′ is a word over the alphabet [k], we get

Vk(x, q) = V ′
k(x, q) + xW ′′

k (x, q)Vk(x, q), (5)

where V ′
k(x, q) is the generating function for the number of words π over the alphabet [k−1]

according to the number of valleys in kπ. Similarly, each word kπ, where π is a word over
the alphabet [k−1], can be written either as kπ, where π is a word over the alphabet [k−2],
or as kπ′(k − 1)π′′, where π′ is a word over the alphabet [k − 2] and π′′ is a word over the
alphabet [k − 1]. Also, the number of valleys in kπ (kπ(k − 1)) equals the number of valleys
in (k − 1)π ((k − 1)π(k − 1)) for any word π over the alphabet [k − 2]. Therefore,

V ′
k(x, q) = V ′

k−1(x, q) + xW ′′
k−1(x, q)Vk−1(x, q). (6)

Hence, by (5) and (6), we get Vk(x, q)−Vk−1(x, q) = xW ′′
k (x, q)Vk(x, q) for all k ≥ 1. Applying

this recurrence relation k times, we have Vk(x, q) =
∏k

j=1
1

1−xW ′′

j (x,q)
, as claimed.
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Now we can state the main result of this section.

Theorem 3.5. The generating function V Pk(x, q) for the number of partitions of [n] with
exactly k blocks is given by

V Pk(x, q) =
xk

(1 − x)Uk−1(t) − Uk−2(t)

k−1
∏

j=1

Uj−1(t) − (1 − x(q − 1))Uj−2(t)

(1 − x)Uj−1(t) − Uj−2(t)
,

where t = 1 + x2

2
(1 − q) and Um is the m-th Chebyshev polynomial of the second kind.

Proof. Lemma 3.4 and (4) yield

V Pk(x, q) = xk

k
∏

j=1

1

1 − xW ′′
j (x, q)

k−1
∏

j=1

W ′
j(x, q).

Thus, by Lemmas 3.2 and 3.3, we have

V Pk(x, q) =
xk(Ak+1 − (1 − x2(q − 1))Ak)

Ak+1 − Ak

·

·
k−1
∏

j=1

(

x(q − 1)Aj

Aj+1 − Aj

· Aj+1 − (1 − x2(q − 1))Aj

Aj+2 − (1 − x2(q − 1))Aj+1

)

=
xk(A2 − (1 − x2(q − 1))A1

Ak+1 − Ak

k−1
∏

j=1

x(q − 1)Aj

Aj+1 − Aj

,

where Ak = (1 + x(1 − x)(q − 1))Uk−2(t) − Uk−3(t). Using the initial conditions A1 = 1,
A2 = 1 + x(1 − x)(q − 1) and the fact that

Aj+1 − Aj = x(q − 1)((1 − x)Uj−1(t) − Uj−2(t)),

we get

V Pk(x, q) =
xk+1(q − 1)

Ak+1 − Ak

k−1
∏

j=1

x(q − 1)Aj

Aj+1 − Aj

=
xk

(1 − x)Uk−1(t) − Uk−2(t)

k−1
∏

j=1

(1 + x(1 − x)(q − 1))Uj−2(t) − Uj−3(t)

(1 − x)Uj−1(t) − Uj−2(t)
,

which, by the recurrence Um(t) = 2tUm−1(t) − Um−2(t), is equivalent to

V Pk(x, q) =
xk

(1 − x)Uk−1(t) − Uk−2(t)

k−1
∏

j=1

Uj−1(t) − (1 − x(q − 1))Uj−2(t)

(1 − x)Uj−1(t) − Uj−2(t)
,

as claimed.
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k\n 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 3 6 11 20 36 64 113 199 350 615
3 0 0 1 5 16 45 121 315 799 1992 4913 12029
4 0 0 0 1 7 31 119 430 1484 4935 15984 50838
5 0 0 0 0 1 9 51 249 1136 4914 20343 81510

Table 2: The number of partitions of [n] with exactly k blocks without valleys, for n =
1, 2, . . . , 12 and k = 1, 2, . . . , 5

The generating function for the number of partitions of [n] without valleys is given by

1 +
∑

k≥1

V Pk(x, 0)

=
∑

k≥0

(

xk

(1 − x)Uk−1(t′) − Uk−2(t′)

k−1
∏

j=1

Uj−1(t
′) − (1 + x)Uj−2(t

′)

(1 − x)Uj−1(t′) − Uj−2(t′)

)

,

where t′ = 1 + x2

2
and Um is the m-th Chebyshev polynomial of the second kind. Table 2

presents the number of partitions of [n] with exactly k blocks without valleys.
Theorem 3.5, together with the fact Uj(1) = j + 1, yields

V Pk(x, 1) =
xk

(1 − x)Uk−1(1) − Uk−2(1)

k−1
∏

j=1

Uj−1(1) − Uj−2(1)

(1 − x)Uj−1(1) − Uj−2(1)

=
xk

∏k

j=1(1 − jx)
,

which is the generating function for the number of partitions of [n] with exactly k blocks;
see, e.g., [13]. Also, Theorem 3.5 gives

d
dq

V Pk(x, q) |q=1

V Pk(x, 1)

=
k−1
∑

j=1

limq→1
d
dq

Uj−1(t)−(1−x(q−1))Uj−2(t)

(1−x)Uj−1(t)−Uj−2(t)

1
1−jx

− (1 − x)U ′
k−1(1) − U ′

k−2(1)

1 − kx

=
k−1
∑

j=1

(U ′
j−1(1) + xUj−2(1) − U ′

j−2(1))(1 − jx) − ((1 − x)U ′
j−1(1) − U ′

j−2(1))

1 − jx

− (1 − x)U ′
k−1(1) − U ′

k−2(1)

1 − kx
,

12



which, by the fact that U ′
j(1) := d

dq
Uj(t) |q=1= −x2

(

j+2
3

)

, implies that the generating function

for the number of valleys in all the partitions of [n] with exactly k blocks is given by

d

dq
V Pk(x, q) |q=1

=
xk

∏k

j=1(1 − jx)

(

k−1
∑

j=1

(

x(j − 1) − x2

(

j

2

))

+
k
∑

j=1

x2
(

j

2

)

− x3
(

j+1
3

)

1 − jx

)

=
xk

∏k

j=1(1 − jx)

(

x

(

k − 1

2

)

− x2

(

k

3

)

+
k
∑

j=1

x2
(

j

2

)

− x3
(

j+1
3

)

1 − jx

)

.

This yields the following explicit formula.

Corollary 3.6. The number of valleys in all the partitions of [n] with exactly k blocks is
given by

(

k − 1

2

)

Sn−1,k −
(

k

3

)

Sn−2,k +
k
∑

j=2

((

j

2

)

f ′
n,j −

(

j + 1

3

)

fn,j

)

,

where fn,j =
∑n−k

i=3 ji−3Sn−i,k, f ′
n,j =

∑n−k

i=2 ji−2Sn−i,k, and Si,j is the Stirling number of the
second kind.

4 Combinatorial proofs

In this section, we provide direct combinatorial proofs of Corollaries 2.6, 3.6, and 2.10. We
start with Corollary 2.6.

Proof of Corollary 2.6.

Proof. To show that there are (n− 2)kn−3
(

2
(

k

3

)

+
(

k

2

))

total peaks (valleys), it is enough to

show for each i, 1 6 i 6 n−2, that there are a total of kn−3
(

2
(

k

3

)

+
(

k

2

))

peaks at i within all

the words w1w2 · · ·wn in [k]n. There are 2
(

k

3

)

kn−3 such peaks at i for which wi 6= wi+2 within
all the members of [k]n. To see this, note that for any three distinct numbers a < b < c

in [k], there are 2kn−3 words of length n in the alphabet [k] whose (i + 1)st letter is c and
whose ith and (i + 2)nd letters comprise the set {a, b}. Upon letting a = b in the preceding,
one sees that there are a total of

(

k

2

)

kn−3 peaks at i for which wi = wi+2.

Let π = π1π2 · · ·πn be any partition represented by its canonical sequence. Recall that a
rise (descent) is said to occur at i if πi < πi+1 (πi > πi+1). We will call a rise or a descent at
i non-trivial if neither i nor i + 1 are the smallest elements of their respective blocks. The
following lemma provides an explicit formula for the total number of non-trivial rises in all
of the members of P (n, k).

Lemma 4.1. The number of non-trivial rises (descents) in all of the partitions of [n] with
exactly k blocks is given by

k
∑

j=2

(

j

2

)

f ′
n,j,
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where f ′
n,j =

∑n−k

i=2 ji−2Sn−i,k.

Proof. Given i and j, where 2 6 i 6 n − k and 2 6 j 6 k, consider all the members of
P (n, k) which may be decomposed uniquely as

π = π′jαβ, (7)

where π′ is a partition with j − 1 blocks, α is a word of length i in the alphabet [j] whose
last two letters form a rise, and β is possibly empty. For example, if i = 5, j = 3, and
π = 122323113342 ∈ P (12, 4), then π′ = 122, α = 23113, and β = 342. The total number
of non-trivial rises can then be obtained by finding the number of partitions which may be
expressed as in (7) for each i and j and then summing over all possible values of i and j.
And there are

(

j

2

)

ji−2Sn−i,k members of P (n, k) which may be expressed as in (7) since there

are ji−2 choices for the first i − 2 letters of α,
(

j

2

)

choices for the final two letters in α (as
the last letter must exceed its predecessor), and Sn−i,k choices for the remaining letters π′jβ

which necessarily constitute a partition of an (n − i)-set into k blocks.

If π is a partition of [n] and i ∈ [n], then we will say that i is minimal if i is the
smallest element of a block within π, i.e., if the ith slot of the canonical representation of
π corresponds to the left-most occurrence of a letter. We now provide direct combinatorial
proofs of Corollaries 3.6 and 2.10.

Proof of Corollary 3.6.

Proof. By Lemma 4.1, the first sum
∑k

j=2

(

j

2

)

f ′
n,j counts the total number of non-trivial rises

within all of the members of P (n, k). From these, we subtract all non-trivial rises at r, r ≥ 2,
where r − 1 either goes in the same block as r (

∑k

j=2

(

j

2

)

fn,j total such rises) or goes in a

block to the left of r (
∑k

j=2

(

j

3

)

fn,j total such rises). Thus, the second sum
∑k

j=2

(

j+1
3

)

fn,j

counts all non-trivial rises at r in which r − 1 fails to appear in a block to the right of r,
upon noting

(

j

2

)

+
(

j

3

)

=
(

j+1
3

)

. Therefore, the difference between the two sums counts all
valleys at m in which m + 2 is not minimal.

We’ll call valleys at m where m+2 is minimal trivial. So to complete the proof, we must
show that the total number of trivial valleys at m, m ≥ 1, is given by

(

k−1
2

)

Sn−1,k−
(

k

3

)

Sn−2,k,

which we rewrite as 2
(

k

3

)

Sn−2,k+
(

k−1
2

)

Sn−2,k−1 using the fact that Sn−1,k = kSn−2,k+Sn−2,k−1.

First, there are
(

k

3

)

Sn−2,k trivial valleys at m, where m is not minimal. To see this, pick
three numbers a < b < c in [k] and let t denote the smallest element of the cth block of
λ ∈ P (n−2, k). Increase all members of [t, n−2] = {t, t+1, . . . , n−2} by two within λ, leaving
all numbers within their current blocks. Then add t to block b and t+1 to block a to obtain a
member of P (n, k) in which a trivial valley occurs at t, where t is not minimal. For example,
if n = 10, k = 5, a = 1, b = 3, and c = 4, with λ = {1, 4}, {2, 3}, {5}, {6, 8}, {7} belonging
to P (8, 5), then t = 6 and the resulting member λ′ = {1, 4, 7}, {2, 3}, {5, 6}, {8, 10}, {9} of
P (10, 5) has a trivial valley at 6.

There are also
(

k

3

)

Sn−2,k trivial valleys at m, where m is minimal and not occurring as
a singleton block. To see this, pick numbers a < b < c in [k] and let t denote the smallest
element of the bth block of λ ∈ P (n−2, k). Increase all members of [t, n−2] by two within λ

and add t to block c and t+1 to block a. The resulting member of P (n, k) will have a trivial
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valley at t with the singleton block {t} not occurring. Finally, there are
(

k−1
2

)

Sn−2,k−1 trivial
valleys at m in which the block {m} occurs. To see this, pick a < b in [k−1] and let t denote
the smallest element of the bth block of λ ∈ P (n−2, k−1). Increase all members of [t, n−2]
by two within λ. Then add t + 1 to block a as well as the singleton block {t}. The resulting
member of P (n, k) will have a trivial valley at t with the singleton block {t} occurring. For
example, if n = 9, k = 4, a = 1, and b = 3, with λ = {1, 4}, {2, 3, 6}, {5, 7} ∈ P (7, 3), then
t = 5 and the resulting member λ′ = {1, 4, 6}, {2, 3, 8}, {5}, {7, 9} of P (9, 4) has a trivial
valley at 5.

Proof of Corollary 2.10.

Proof. By reasoning similar to that used in the proof of Lemma 4.1, there are a total of
∑k

j=2 j
(

j

2

)

fn,j non-trivial descents at r + 1 in which r is not minimal in all the members of
P (n, k). Reasoning as in the proof of Corollary 3.6 above, we see that there are a total of
∑k

j=2

(

j+1
3

)

fn,j non-trivial descents at r + 1 in which either r either goes in the same block
as r + 1 or goes in a block to the right of r + 1, where r itself is not minimal. Thus, the
difference between the two sums counts all peaks at r where r + 1 is not minimal.

So to complete the proof, we’ll show that the total number of peaks at r, where r + 1
is minimal, is given by

(

k

2

)

Sn−1,k. To see this, we first observe that peaks at r where r + 1
is minimal are synonymous with descents at r + 1 where r + 1 is minimal. To show that
(

k

2

)

Sn−1,k counts all descents at i for some i where i is the smallest member of its block in
some member of P (n, k), first choose two numbers a < b in [k]. Given λ ∈ P (n − 1, k), let
t denote the smallest member of block b. Increase all members of [t + 1, n − 1] in λ by one
(leaving them within their blocks) and then add t + 1 to block a. This produces a descent
between the first element of block b and an element of block a within some member of P (n, k).
For example, if n = 7, k = 4, a = 1, and b = 3, then λ = {1, 5}, {2}, {3, 4}, {6} ∈ P (6, 4)
would give rise to the descent between 3 and 4 in {1, 4, 6}, {2}, {3, 5}, {7} ∈ P (7, 4).
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