Full Description of Ramanujan Cubic Polynomials

Roman Wituła
Institute of Mathematics
Silesian University of Technology
Kaszubska 23
Gliwice 44-100
Poland
roman.witula@polsl.pl
Dedicated to Vladimir Shevelev - for his inspiration

Abstract

We give a full description of the Ramanujan cubic polynomials, introduced and first investigated by V. Shevelev. We also present some applications of this result.

1 Introduction

Shevelev [2] called the cubic polynomial

$$
\begin{equation*}
x^{3}+p x^{2}+q x+r \tag{1}
\end{equation*}
$$

a Ramanujan cubic polynomial (RCP), if it has real roots x_{1}, x_{2}, x_{3} and the condition

$$
\begin{equation*}
p r^{1 / 3}+3 r^{2 / 3}+q=0 \tag{2}
\end{equation*}
$$

is satisfied. It should be noticed, that if x_{1}, x_{2}, x_{3} are roots of RCP of the form (1), then the following formulas hold (see [2, 5]):

$$
\begin{align*}
x_{1}^{1 / 3}+x_{2}^{1 / 3}+x_{3}^{1 / 3} & =\left(-p-6 r^{1 / 3}+3(9 r-p q)^{1 / 3}\right)^{1 / 3} \tag{3}\\
\left(x_{1} x_{2}\right)^{1 / 3}+\left(x_{1} x_{3}\right)^{1 / 3}+\left(x_{2} x_{3}\right)^{1 / 3} & =\left(q+6 r^{2 / 3}-3\left(9 r^{2}-p q r\right)^{1 / 3}\right)^{1 / 3} \tag{4}
\end{align*}
$$

and Shevelev's formula [2]:

$$
\begin{equation*}
\left(\frac{x_{1}}{x_{2}}\right)^{1 / 3}+\left(\frac{x_{2}}{x_{1}}\right)^{1 / 3}+\left(\frac{x_{1}}{x_{3}}\right)^{1 / 3}+\left(\frac{x_{3}}{x_{1}}\right)^{1 / 3}+\left(\frac{x_{2}}{x_{3}}\right)^{1 / 3}+\left(\frac{x_{3}}{x_{2}}\right)^{1 / 3}=\left(\frac{p q}{r}-9\right)^{1 / 3} \tag{5}
\end{equation*}
$$

We note that (3) easily implies all three Ramanujan equalities

$$
\begin{align*}
& \left(\frac{1}{9}\right)^{1 / 3}-\left(\frac{2}{9}\right)^{1 / 3}+\left(\frac{4}{9}\right)^{1 / 3}=(\sqrt[3]{2}-1)^{1 / 3} \tag{6}\\
& \left(\cos \frac{2 \pi}{7}\right)^{1 / 3}+\left(\cos \frac{4 \pi}{7}\right)^{1 / 3}+\left(\cos \frac{8 \pi}{7}\right)^{1 / 3}=\left(\frac{5-3 \sqrt[3]{7}}{2}\right)^{1 / 3}, \tag{7}\\
& \left(\cos \frac{2 \pi}{9}\right)^{1 / 3}+\left(\cos \frac{4 \pi}{9}\right)^{1 / 3}+\left(\cos \frac{8 \pi}{9}\right)^{1 / 3}=\left(\frac{3 \sqrt[3]{9}-6}{2}\right)^{1 / 3} \tag{8}
\end{align*}
$$

since the following decompositions of polynomials hold: (19), which implies (6) after some algebraic transformations for every $r \in \mathbb{R} \backslash\{0\}$ (the equality (6) we obtain by setting $r=$ 8/729), (28), which implies (7) and at last (10), which implies (8).

In [2] many interesting and fundamental properties of RCP's are presented.
The object of this paper is to prove the following fact
Theorem 1. All RCP's have the following form

$$
\begin{align*}
& x^{3}-\frac{P(\gamma-1)}{(\gamma-1)(\gamma-2)} r^{1 / 3} x^{2}-\frac{P(2-\gamma)}{(1-\gamma)(2-\gamma)} r^{2 / 3} x+r= \\
& \quad=\left(x-\frac{r^{1 / 3}}{2-\gamma}\right)\left(x-(\gamma-1) r^{1 / 3}\right)\left(x-\frac{2-\gamma}{1-\gamma} r^{1 / 3}\right), \tag{9}
\end{align*}
$$

where $r \in \mathbb{R} \backslash\{0\}, \gamma \in \mathbb{R} \backslash\{1,2\}$, and

$$
\begin{equation*}
P(\gamma):=\gamma^{3}-3 \gamma+1=\left(\gamma-2 \cos \frac{2 \pi}{9}\right)\left(\gamma-2 \cos \frac{4 \pi}{9}\right)\left(\gamma-2 \cos \frac{8 \pi}{9}\right) \tag{10}
\end{equation*}
$$

Corollary 2. From formulas (3), (4) and (5) for the sums of the real cube root of the roots of polynomial (9), the following equalities can be generated

$$
\begin{align*}
& \gamma^{3}-9(\gamma-1)^{2}+3\left(\gamma^{2}-3 \gamma+3\right) \sqrt[3]{(\gamma-1)(\gamma-2)}= \\
&=\left(\sqrt[3]{1-\gamma}-\sqrt[3]{(2-\gamma)(1-\gamma)^{2}}+\sqrt[3]{(2-\gamma)^{2}}\right)^{3} \tag{11}\\
& \gamma^{3}-9 \gamma+9-3\left(\gamma^{2}-3 \gamma+3\right) \sqrt[3]{(\gamma-1)(\gamma-2)}= \\
&=\left(\sqrt[3]{2-\gamma}-\sqrt[3]{(1-\gamma)(2-\gamma)^{2}}-\sqrt[3]{(1-\gamma)^{2}}\right)^{3} \tag{12}
\end{align*}
$$

which, after replacing $\gamma:=3-\gamma$, is equivalent to (11);

$$
\begin{align*}
\left(\frac{1}{\sqrt[3]{(2-\gamma)(1-\gamma)}}+\sqrt[3]{(2-\gamma)(1-\gamma)}\right. & -\sqrt[3]{\frac{1-\gamma}{(2-\gamma)^{2}}}+\sqrt[3]{\frac{2-\gamma}{(1-\gamma)^{2}}}+ \\
& \left.+\sqrt[3]{\frac{(1-\gamma)^{2}}{2-\gamma}}-\sqrt[3]{\frac{(2-\gamma)^{2}}{1-\gamma}}\right)^{3}=9-\frac{P(\gamma-1) P(2-\gamma)}{(\gamma-1)^{2}(2-\gamma)^{2}} \tag{13}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\left(\gamma^{2}-3 \gamma+3\right)^{3}=9(\gamma-1)^{2}(2-\gamma)^{2}-P(\gamma-1) P(2-\gamma) . \tag{14}
\end{equation*}
$$

The above relations essentially supplement the set of identities presented in [1]. Furthermore, (11)-(14) entail Ramanujan's equalities (6)-(8), as well as all the other expressions of this type discussed in $[2,4,5]$.

In the second part of this paper we will discuss an important Shevelev parameter $\frac{p q}{r}$ of RCP's having the form (1). We note, that from (17) the following Shevelev inequality follows:

$$
\begin{equation*}
\frac{p q}{r} \leq \frac{9}{4} \tag{15}
\end{equation*}
$$

We remark that for every $a \in \mathbb{R}, a \leq \frac{9}{4}$, there exist at most six different sets of RCP's, depending only on values r and having the same value of $\frac{p q}{r}$, equal to a. In the sequel, there exist only two sets of RCP's, depending on $r \in \mathbb{R}$, having the value $\frac{p q}{r}=2$ (see the descriptions (40) and (41)). However, there is only one family of RCP's, depending on $r \in \mathbb{R}$ with $\frac{p q}{r}=\frac{9}{4}$ (see the descriptions (19)). This fact is proven in Section 2, but it independently results from (31), (9), (14) and from the following identity

$$
\begin{equation*}
\frac{p q}{r}=9-\frac{((\gamma-1)(\gamma-2)+1)^{3}}{((\gamma-1)(\gamma-2))^{2}} \tag{16}
\end{equation*}
$$

From (16) we get

$$
\frac{p q}{r}=\frac{9}{4} \Leftrightarrow t:=(\gamma-1)(\gamma-2) \in\left\{-\frac{1}{4}, 2\right\} \quad \Leftrightarrow \quad \gamma \in\left\{0, \frac{3}{2}, 3\right\},
$$

since we have

$$
\frac{d}{d t}\left(9-\frac{(t+1)^{3}}{t^{2}}\right)=t(2-t) \frac{(t+1)^{2}}{t^{4}}
$$

All three values $\gamma \in\left\{0, \frac{3}{2}, 3\right\}$ generate the same set of RCP's of the form (19).

2 Proof of Theorem 1

Let us indicate that from condition (2) the following equality follows (see [2]):

$$
\begin{equation*}
\frac{9}{4}-\frac{p q}{r}=\left(\frac{3}{2}+\frac{p}{r^{1 / 3}}\right)^{2} . \tag{17}
\end{equation*}
$$

Let

$$
p:=\left(\alpha-\frac{3}{2}\right) r^{1 / 3}
$$

By (17) we have

$$
\begin{aligned}
\frac{p q}{r} & =\frac{9}{4}-\alpha^{2} \\
q & =-\left(\alpha+\frac{3}{2}\right) r^{2 / 3} .
\end{aligned}
$$

In other words, an RCP has the form

$$
\begin{equation*}
x^{3}+\left(\alpha-\frac{3}{2}\right) r^{1 / 3} x^{2}-\left(\alpha+\frac{3}{2}\right) r^{2 / 3} x+r \tag{18}
\end{equation*}
$$

for some $\alpha, r \in \mathbb{R}$. If $\alpha=0$, the following decomposition holds

$$
\begin{equation*}
x^{3}-\frac{3}{2} r^{1 / 3} x^{2}-\frac{3}{2} r^{2 / 3} x+r=\left(x-\frac{1}{2} r^{1 / 3}\right)\left(x+r^{1 / 3}\right)\left(x-2 r^{1 / 3}\right) . \tag{19}
\end{equation*}
$$

Accordingly, the roots x_{1}, x_{2}, x_{3} of the polynomial (18) have the form $(r \neq 0)$:

$$
\begin{equation*}
x_{1}=\left(\frac{1}{2}+\beta\right) r^{1 / 3}, \quad x_{2}=(-1+\gamma) r^{1 / 3}, \quad x_{3}=(2+\delta) r^{1 / 3} \tag{20}
\end{equation*}
$$

for certain $\beta, \gamma, \delta \in \mathbb{R}$. Then from Vieta's formulae the following equations can be obtained

$$
\begin{align*}
& \alpha=-(\beta+\gamma+\delta) \tag{21}\\
& \left(\frac{1}{2}+\beta\right)(-1+\gamma)+\left(\frac{1}{2}+\beta\right)(2+\delta)+(-1+\gamma)(2+\delta)=-\alpha-\frac{3}{2} \tag{22}\\
& \left(\frac{1}{2}+\beta\right)(-1+\gamma)(2+\delta)=1 \tag{23}
\end{align*}
$$

From (21) and (22) we receive

$$
\begin{equation*}
\beta=\frac{\frac{3}{2}(\delta-\gamma)-\delta \gamma}{\delta+\gamma} \tag{24}
\end{equation*}
$$

which, by (23), implies

$$
\delta^{2}\left(\gamma^{2}-3 \gamma+2\right)+\delta\left(3 \gamma^{2}-7 \gamma+3\right)+2 \gamma^{2}-3 \gamma=0 .
$$

Hence, after some manipulations, we get

$$
\Delta_{\delta}=\left(\gamma^{2}-3 \gamma+3\right)^{2}
$$

and next

$$
\begin{equation*}
\delta=\frac{\gamma}{1-\gamma} \quad \text { or } \quad \delta=\frac{3-2 \gamma}{\gamma-2} . \tag{25}
\end{equation*}
$$

If we choose $\delta=\frac{\gamma}{1-\gamma}$, then by (24) we have $\beta=\frac{\gamma}{2(2-\gamma)}$, and by (20) we obtain

$$
\begin{align*}
& x_{1}=\frac{r^{1 / 3}}{2-\gamma}, \quad x_{2}=(\gamma-1) r^{1 / 3}, \quad x_{3}=\frac{2-\gamma}{1-\gamma} r^{1 / 3} \\
& \alpha=-\left(\frac{\gamma}{2(2-\gamma)}+\gamma+\frac{\gamma}{1-\gamma}\right)=\frac{-2 \gamma^{3}+9 \gamma^{2}-9 \gamma}{2(\gamma-1)(\gamma-2)} . \tag{26}
\end{align*}
$$

Finally

$$
\begin{align*}
& x^{3}+\frac{-\gamma^{3}+3 \gamma^{2}-3}{(\gamma-1)(\gamma-2)} r^{1 / 3} x^{2}+\frac{\gamma^{3}-6 \gamma^{2}+9 \gamma-3}{(\gamma-1)(\gamma-2)} r^{2 / 3} x+r= \\
&=\left(x-\frac{r^{1 / 3}}{2-\gamma}\right)\left(x-(\gamma-1) r^{1 / 3}\right)\left(x-\frac{2-\gamma}{1-\gamma} r^{1 / 3}\right), \tag{27}
\end{align*}
$$

which is compatible with (9).
On the other hand, if we choose $\delta=\frac{3-2 \gamma}{\gamma-2}$, then $\beta=\frac{\gamma-3}{2(\gamma-1)}$, and we obtain the same values of x_{1}, x_{2}, x_{3} and α as in (26) above.

Example 3. Since

$$
\begin{equation*}
\left(x-2 \cos \frac{2 \pi}{7}\right)\left(x-2 \cos \frac{4 \pi}{7}\right)\left(x-2 \cos \frac{8 \pi}{7}\right)=x^{3}+x^{2}-2 x-1 \tag{28}
\end{equation*}
$$

is the RCP [4], then, from (9) the following relations can be deduced

$$
\begin{aligned}
& \gamma=1-2 \cos \frac{2 \pi}{7}, \quad r=-1 \\
& \frac{P(\gamma-1)}{(1-\gamma)(2-\gamma)}=1 \quad \text { and } \quad \frac{P(2-\gamma)}{(1-\gamma)(2-\gamma)}=2
\end{aligned}
$$

which implies the equalities

$$
\begin{gather*}
\frac{1}{\gamma-2}=2 \cos \frac{4 \pi}{7}, \quad \frac{\gamma-2}{1-\gamma}=2 \cos \frac{8 \pi}{7} \\
\frac{\left(\cos \frac{2 \pi}{7}+\cos \frac{2 \pi}{9}\right)\left(\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{9}\right)\left(\cos \frac{2 \pi}{7}+\cos \frac{8 \pi}{9}\right)}{\cos \frac{2 \pi}{7}\left(1+2 \cos \frac{2 \pi}{7}\right)}=-\frac{1}{4} \tag{29}
\end{gather*}
$$

and the equivalent one

$$
\begin{equation*}
\frac{\left(\frac{1}{2}+\cos \frac{2 \pi}{7}-\cos \frac{2 \pi}{9}\right)\left(\frac{1}{2}+\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{9}\right)\left(\frac{1}{2}+\cos \frac{2 \pi}{7}-\cos \frac{8 \pi}{9}\right)}{\cos \frac{2 \pi}{7}\left(1+2 \cos \frac{2 \pi}{7}\right)}=\frac{1}{2} . \tag{30}
\end{equation*}
$$

3 Values of $\frac{p q}{r}$ for RCP's

By (9) we obtain

$$
\begin{equation*}
\frac{p q}{r}=\frac{P(\gamma-1) P(2-\gamma)}{(\gamma-1)^{2}(2-\gamma)^{2}} \tag{31}
\end{equation*}
$$

The examples of RCP's, which are given in [4, 5] (see also [2]), are produced by $\frac{p q}{r}$ equal only to $2,-40,-180$.

The following theorem holds.
Theorem 4. For every $a \leq \frac{9}{4}$ there exist at most six different sets of $R C P$'s, depending on $r \in \mathbb{R}$, having the same value of $\frac{p q}{r}$, equal to a.

Proof. The proof of this theorem results easily from inequality (15) and from relation (31).

We will present now a series of remarks, connected with the parameter $a=\frac{p q}{r}$.
Remark 5. Let us consider the following equation

$$
\begin{equation*}
\frac{P(\gamma-1) P(2-\gamma)}{(\gamma-1)^{2}(2-\gamma)^{2}}=a \quad(a \in \mathbb{R}) \tag{32}
\end{equation*}
$$

This equation, by (16), after substitution $t:=(\gamma-1)(\gamma-2)$, is equivalent to the following one

$$
\begin{equation*}
R(t):=t^{3}+(a-6) t^{2}+3 t+1=0 \tag{33}
\end{equation*}
$$

If we replace t in (33) by $\tau-\frac{a-6}{3}$, then the canonical form of $R(t)$ can be generated

$$
\begin{equation*}
\tau^{3}+\left(3-\frac{1}{3}(a-6)^{2}\right) \tau+\frac{2}{27}(a-6)^{3}-(a-6)+1 \tag{34}
\end{equation*}
$$

But the polynomial (34) has only one real root, if and only if

$$
\begin{aligned}
\frac{1}{4}\left(\frac{2}{27}(a-6)^{3}-(a-6)+1\right)^{2}+\frac{1}{27}\left(3-\frac{1}{3}(a-6)^{2}\right)^{3}>0 & \Longleftrightarrow \\
& \Longleftrightarrow \frac{4}{27}(a-6)^{3}-\frac{1}{3}(a-6)^{2}-2(a-6)+5>0
\end{aligned}
$$

Since the case $a=\frac{9}{4}$ was discussed in (19), the polynomial $R(t)$ has three real roots for every $a \leq \frac{9}{4}$.

Remark 6. If $\gamma_{0} \in \mathbb{C}$ is a root of equation (32) (for fixed $a \in \mathbb{C}$) then also $\gamma=3-\gamma_{0}$ and $\gamma=\frac{\gamma_{0}}{1-\gamma_{0}}$ are roots of this one. We note, that the last fact derives from the following identities

$$
(1-\gamma)^{3} P\left(\frac{1}{\gamma-1}\right)=P(2-\gamma)
$$

and

$$
(1-\gamma)^{3} P\left(\frac{\gamma-2}{\gamma-1}\right)=P(\gamma-1)
$$

Consequently, the roots of (32) are also

$$
\gamma=\frac{3-\gamma_{0}}{1-\left(3-\gamma_{0}\right)}=\frac{3-\gamma_{0}}{\gamma_{0}-2}, \quad \gamma=3-\frac{\gamma_{0}}{1-\gamma_{0}}=\frac{3-4 \gamma_{0}}{1-\gamma_{0}}, \quad \gamma=3-\frac{3-\gamma_{0}}{\gamma_{0}-2}=\frac{4 \gamma_{0}-9}{\gamma_{0}-2}
$$

Remark 7. Let us separately discuss equation (32) for $a=2$. After substitution $t=1-\tau$ in (33), the following equation is derived

$$
\begin{equation*}
\tau^{3}+\tau^{2}-2 \tau-1=0 \tag{35}
\end{equation*}
$$

i.e. (see [4]):

$$
\begin{equation*}
\left(\tau-2 \cos \frac{2 \pi}{7}\right)\left(\tau-2 \cos \frac{4 \pi}{7}\right)\left(\tau-2 \cos \frac{8 \pi}{7}\right)=0 \tag{36}
\end{equation*}
$$

Hence, equation (32) for $a=2$ is equivalent to each of the following three equations

$$
\begin{equation*}
(\gamma-1)(\gamma-2)=1-2 \cos \frac{2 \pi}{7} \Longleftrightarrow \gamma-1=-2 \cos \frac{4 \pi}{7} \quad \vee \quad \gamma-2=2 \cos \frac{4 \pi}{7}, \tag{37}
\end{equation*}
$$

or

$$
\begin{equation*}
(\gamma-1)(\gamma-2)=1-2 \cos \frac{4 \pi}{7} \Longleftrightarrow \gamma-1=-2 \cos \frac{8 \pi}{7} \quad \vee \quad \gamma-2=2 \cos \frac{8 \pi}{7} \tag{38}
\end{equation*}
$$

or

$$
\begin{equation*}
(\gamma-1)(\gamma-2)=1-2 \cos \frac{8 \pi}{7} \Longleftrightarrow \gamma-1=-2 \cos \frac{2 \pi}{7} \quad \vee \quad \gamma-2=2 \cos \frac{2 \pi}{7} . \tag{39}
\end{equation*}
$$

For the values

$$
\gamma \in\left\{1-2 \cos \frac{2^{k} \pi}{7}: k=1,2,3\right\},
$$

we obtain the same set of RCP's

$$
\begin{equation*}
x^{3}+r^{1 / 3} x^{2}-2 r^{2 / 3} x-r, \quad r \in \mathbb{R} . \tag{40}
\end{equation*}
$$

On the other hand, for values

$$
\gamma \in\left\{2+2 \cos \frac{2^{k} \pi}{7}: k=1,2,3\right\},
$$

we obtain the following set of RCP's

$$
\begin{equation*}
x^{3}-2 r^{1 / 3} x^{2}-r^{2 / 3} x+r, \quad r \in \mathbb{R} . \tag{41}
\end{equation*}
$$

We note, that RCP of the form (see [2, 4]):

$$
\begin{aligned}
& x^{3}+7 x^{2}-98 x-343= \\
&=\left(x-128 \cos \frac{2 \pi}{7}\left(\sin \frac{2 \pi}{7} \sin \frac{8 \pi}{7}\right)^{3}\right)\left(x-128 \cos \frac{4 \pi}{7}\left(\sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}\right)^{3}\right) \\
& \cdot\left(x-128 \cos \frac{8 \pi}{7}\left(\sin \frac{4 \pi}{7} \sin \frac{8 \pi}{7}\right)^{3}\right)
\end{aligned}
$$

belongs to the set (40) of RCP's with $\frac{p q}{r}=2$ for $r=7^{3}$, because of the following remark.
Remark 8. Suppose, that $\alpha \in\left\{\frac{2 \pi}{7}, \frac{4 \pi}{7}, \frac{8 \pi}{7}\right\}$. Then, we have $\sin \alpha=\sin 8 \alpha$, which implies

$$
\begin{aligned}
& 14 \cos \alpha=7 \frac{\sin 2 \alpha}{\sin \alpha}=(8 \sin \alpha \sin 2 \alpha \sin 4 \alpha)^{2} \frac{\sin 2 \alpha}{\sin \alpha}=64 \frac{\sin \alpha}{\sin 4 \alpha}(\sin 2 \alpha)^{3}(\sin 4 \alpha)^{3}= \\
& =64 \frac{\sin 8 \alpha}{\sin 4 \alpha}(\sin 2 \alpha)^{3}(\sin 4 \alpha)^{3}=128 \cos 4 \alpha(\sin 2 \alpha \sin 4 \alpha)^{3}
\end{aligned}
$$

References

[1] B. C. Berndt, H. H. Chan and L.-Ch. Zhang, Radicals and units in Ramanujan's work, Acta Arith. 87 (1998), 145-158.
[2] V. Shevelev, On Ramanujan Cubic Polynomials, preprint, http://arxiv.org/abs/0711.3420, 2007.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, available electronically at http://www.research.att.com/~njas/sequences/, 2010.
[4] R. Wituła and D. Słota, New Ramanujan-type formulas and quasi-Fibonacci numbers of order 7, J. Integer Seq. 10 (2007), Article 07.5.6.
[5] R. Wituła, Ramanujan type trigonometric formulas: the general form for the argument $\frac{2 \pi}{7}$, J. Integer Seq. 12 (2009), Article 09.8.5.

2000 Mathematics Subject Classification: Primary 11C08; Secondary 11B83, 33B10. Keywords: Ramanujan cubic polynomial.

Received December 1 2009; revised versions received March 2 2010; May 4 2010. Published in Journal of Integer Sequences, May 52010.

Return to Journal of Integer Sequences home page.

