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Abstract

Given integers k ≥ 1 and n ≥ 0, there is a unique way of writing n as n =
(

nk

k

)

+
(

nk−1

k−1

)

+ · · ·+
(

n1

1

)

so that 0 ≤ n1 < · · · < nk−1 < nk. Using this representation,

the kth Macaulay function of n is defined as ∂k(n) =
(

nk−1

k−1

)

+
(

nk−1−1

k−2

)

+ · · ·+
(

n1−1

0

)

.

We show that if a ≥ 0 and a < ∂k+1(n), then ∂k(a) + ∂k+1(n − a) ≥ ∂k+1(n). As
a corollary, we obtain a short proof of Macaulay’s theorem. Other previously known
results are obtained as direct consequences.

1 Introduction

Given integers k ≥ 1 and n ≥ 0, there is a unique way of writing n as

n =

(

nk

k

)

+

(

nk−1

k − 1

)

+ · · · +

(

n2

2

)

+

(

n1

1

)

(1)
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so that 0 ≤ n1 < n2 < · · · < nk−1 < nk. Using this representation, called the k-binomial
representation of n, the kth Macaulay function of n is defined as

∂k (n) =

(

nk − 1

k − 1

)

+

(

nk−1 − 1

k − 2

)

+ · · · +

(

n2 − 1

1

)

+

(

n1 − 1

0

)

.

(See [2, 6, 12, 14] for details.) The main goal of this paper is to prove the following inequality
for Macaulay functions and show some of its consequences.

Theorem 1. Let k, a, and n be integers such that k ≥ 1 and n ≥ a ≥ 0. If a < ∂k+1(n),
then

∂k (a) + ∂k+1 (n − a) ≥ ∂k+1 (n) . (2)

Moreover, if n =
(

N

k+1

)

for some N ≥ k + 1, then the equality occurs only when a = 0.

Macaulay functions and the related Kruskal–Katona functions (defined below) are rele-
vant for their applications to the study of antichains in multisets (see for example [12, 2]),
posets, rings and polyhedral combinatorics (see [5] and the survey [3]). In particular, they
play an important role in proving results, extensions and generalizations of classical problems
concerning the Kruskal–Katona [13, 11, 16], Macaulay [14], and Erdős-Ko-Rado [9] theorems.
More recently, the authors [1] applied Theorem 1 to the problem of finding the maximum
number of translated copies of a pattern that can occur among n points in a d-dimensional
space, a typical problem related to the study of repeated patterns in Combinatorial Geome-
try. For every P ⊆ R

d, a fixed finite point set (called a pattern), we say that P is a rational
simplex if all the points of P are rationally affinely independent. We proved [1] that the
maximum number of translated copies of a rational simplex P with |P | = k + 1 determined
by a set of n points of R

d is equal to n − ∂k(n).
We now introduce some terminology needed to state the Kruskal–Katona and Macaulay

theorems. Let Mk and Sk denote the set of nonincreasing, respectively decreasing, sequences
of natural integers of length k, i.e.,

Mk =
{

(x1, x2, . . . , xk) ∈ N
k : x1 ≥ x2 ≥ · · · ≥ xk ≥ 1

}

Sk =
{

(x1, x2, . . . , xk) ∈ N
k : x1 > x2 > · · · > xk ≥ 1

}

.

If A ⊆ Mk (or Sk), then the shadow of A, denoted by ∂A, consists of all nonincreasing
(decreasing) subsequences of length k − 1 of elements of A (∂(∅) = ∅). That is,

∂A = {x : x is a subsequence of y of length k − 1, for some y ∈ A} .

By analogy, one can think of Mk (or Sk) as multisets (or sets) of size k, with positive integers
as elements. In this context ∂A consists of the subsets of multisets (or sets) in A of cardinality
k − 1.

The Kruskal–Katona function ∂k (defined below) is the analogue of the Macaulay function
defined before. For n as in Identity (1),

∂k (n) =

(

nk

k − 1

)

+

(

nk−1

k − 2

)

+ · · · +

(

n2

1

)

+

(

n1

0

)

.
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The sets of sequences Mk and Sk are lexicographically ordered. That is, for x and y in Mk (or
Sk), x ≺ y if for some index i, xi < yi, and xj = yj whenever j < i. There is an important
relationship between shadows of multisets and sets and the functions ∂k and ∂k. Namely, if
we denote by FMk(n) and FSk(n) the first n members, in lexicographic order, of Mk and
Sk, respectively; then

|∂FMk (n)| = ∂k (n) and |∂FSk (n)| = ∂k (n) .. (3)

The Kruskal–Katona and Macaulay theorems show that in fact ∂k(n) and ∂k(n) are the
best lower bounds for the shadow of a set with n elements.

Theorem K. (Kruskal [13]–Katona [11]) Let k ≥ 0; for every A ⊆ Sk+1,

|∂A| ≥ |∂FSk+1 (|A|)| = ∂k+1 (|A|) .

Theorem M. (Macaulay [14]) Let k ≥ 0; for every A ⊆ Mk+1,

|∂A| ≥ |∂FMk+1 (|A|)| = ∂k+1 (|A|) .

The theorems just stated correspond only to the necessity of their polyhedral versions,
where f -vectors of complexes or multi-complexes are characterized by these inequalities.

We present, in Section 2, a short and simple proof of Theorem M obtained as a corollary
of Theorem 1. For a short textbook proof of Theorem K, see Frankl’s proof [10]. For an
approach similar to ours, we point out that Eckhoff and Wegner [8], (see also Daykin [7])
obtained a proof of Theorem K as a consequence of an inequality similar to Inequality (2).
Namely, for n ≥ a ≥ 0,

max (∂k(a), n − a) + ∂k+1 (n − a) ≥ ∂k+1 (n) . (4)

The equivalent inequality to Inequality (4) for the functions ∂k and ∂k+1 is true, and it was
in fact generalized by Björner and Vrećica [5] to a larger number of terms (see Corollary 3).
The proof of their result depends on Macaulay’s theorem. However, we are not aware of, nor
could we find, a proof of Theorem M obtained as a consequence of this result. We show, in
Section 2, how Björner and Vrećica’s inequalities follow easily from Theorem 1.

Our proof of Theorem 1, presented in Section 3, is elementary as it only relies on prop-
erties of binomial coefficients. Some of the ideas are similar to those used in [8] for the proof
of Inequality (4).

The condition a < ∂k+1(n) in Theorem 1 cannot be strengthened. For instance, whenever
k ≥ 2, a = ∂k+1(n), and the last three coefficients of the (k + 1)-binomial representation of
n are n1 = 1, n2 = 2, and n3 = 4; it follows that

∂k (a) + ∂k+1 (n − a) = ∂k+1 (n) − 1 < ∂k+1 (n) .

Finally, it is an interesting open problem to determine the pairs (n, a) with a < ∂k+1(n)
that achieve equality in Inequality (2). So far we were able to classify the pairs when n is of
the form

(

N

k+1

)

. The solution to this problem would be the first step to classify all patterns

P for which the maximum number of translates of P , among n points in R
d; is equal to

n − ∂k(n).
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2 Consequences of the theorem

We first prove Macaulay’s theorem as a corollary of Theorem 1.

Proof of Theorem M. Let A ⊆ Mk+1. We proceed by induction on k + |A|. If k = 0 or
A = ∅, the result is trivially true. Suppose k ≥ 1 and A 6= ∅. Set A11 = {x ∈ Mk : xk = 1
and x ∗ 1 ∈ A}, A12 = {x ∈ Mk : xk ≥ 2 and x ∗ 1 ∈ A}, and A2 = {x ∈ A : xk+1 ≥ 2}.
Here x ∗ 1 denotes the concatenation of x and 1, that is x ∗ 1 is the k-tuple x with an entry 1
appended in the (k+1)th position. Clearly, A = (A11∗1)∪(A12∗1)∪A2 and the terms in the
union are pairwise disjoint. Moreover, we can assume that A11 ∪ A12 6= ∅. Otherwise, since
all entries of members of A are ≥ 2, we can work with the set A′ obtained by subtracting 1
to every entry in the sequences of A (|A′| = |A| and |∂A′| = |∂A|.) Let a = |A11|+ |A12| and
b = |A2|. Note that |A| = a + b and a ≥ 1.

If x = (x1, x2, . . . , xk) ∈ A11, then (x1, x2, . . . , xk−1) ∈ ∂A11 and (x1, x2, . . . , xk−1, 1) =
x ∈ ∂A11 ∗ 1. That is, A11 ⊆ ∂A11 ∗ 1. We now calculate ∂A in terms of A11, A12, and A2.
We use the property that ∂(A ∪ B) = ∂A ∪ ∂B.

∂A = ∂A2 ∪ A12 ∪ A11 ∪ (∂A11 ∗ 1) ∪ (∂A12 ∗ 1)

= ∂A2 ∪ A12 ∪ (∂A11 ∗ 1) ∪ (∂A12 ∗ 1)

= (∂A2 ∪ A12) ∪ (∂(A11 ∪ A12) ∗ 1) .

If x ∈ (∂A2 ∪ A12), then xk ≥ 2. Thus

(∂A2 ∪ A12) ∩ (∂(A11 ∪ A12) ∗ 1) = ∅,

and consequently
|∂A| = |∂A2 ∪ A12| + |∂(A11 ∪ A12)| . (5)

We consider two cases. If a ≥ ∂k+1(|A|), then

|∂A| = |∂A2 ∪ A12| + |∂(A11 ∪ A12)| ≥ |A12| + |A11| = a ≥ ∂k+1(|A|).

Assume a < ∂k+1(|A|). Since a ≥ 1 then b < |A| and thus, by induction and Identity (3),

|∂A2 ∪ A12| ≥ |∂A2| ≥ |∂Fk+1 (b)| = ∂k+1(b) and

|∂(A11 ∪ A12)| ≥ |∂Fk (a)| = ∂k(a).

Therefore, by Identity (5), Theorem 1, and Identity (3); it follows that

|∂A| ≥ ∂k+1(b) + ∂k(a) ≥ ∂k+1(|A|) = |∂Fk+1 (|A|)| .

In terms of shadows of sets, and using our previous corollary, Theorem 1 can be gener-
alized as follows.

Corollary 2. Given sets A ⊆ Mk and B ⊆ Mk+1 with |A| < |∂Fk+1(|A| + |B|)| we have

|∂A| + |∂B| ≥ |∂Fk+1 (|A| + |B|)| .
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Proof. By the previous corollary and Identity (3), |∂A| + |∂B| ≥ ∂k(|A|)+ ∂k+1(|B|) and
|A| < ∂k+1(|A| + |B|). Thus, by Theorem 1, ∂k(|A|)+ ∂k+1(|B|) ≥ |∂Fk+1(|A| + |B|)|.

The following inequality, proved by Björner and Vrećica, follows directly from our Theo-
rem. We recall that their proof makes use of Macaulay’s theorem. Note that r = 1, n0 = a,
and n1 = n − a give the equivalent inequality to Inequality (4) for the function ∂k.

Corollary 3. (Lemma 3.2 [4], also Lemma 2.1 [15]). For k > 0, the function ∂k satisfies
that

∂k

(

r
∑

i=0

ni

)

≤
r
∑

i=0

max
{

ni+1, ∂
k−i (ni)

}

,

∂k

(

1 +
k
∑

i=0

ni

)

≤ 1 +
k−1
∑

i=0

max
{

ni+1, ∂
k−i (ni)

}

.

for all nonnegative integers ni and r < k.

Proof. By induction on k. If k = 1 the inequalities are trivially true.
Let r < k + 1, a =

∑r

i=1
ni, and n =

∑r

i=0
ni. If a ≥ ∂k+1(n), then

∂k+1

(

r
∑

i=0

ni

)

= ∂k+1 (n) ≤ a =
r
∑

i=1

ni ≤
r−1
∑

i=0

max
{

ni+1, ∂
k+1−i (ni)

}

≤
r
∑

i=0

max
{

ni+1, ∂
k+1−i (ni)

}

.

If on the other hand, a < ∂k+1(n), then by Theorem 1,

∂k+1

(

r
∑

i=0

ni

)

= ∂k+1 (n) ≤ ∂k+1 (n − a) + ∂k (a) = ∂k+1 (n0) + ∂k

(

r−1
∑

i=0

ni+1

)

;

then by induction,

∂k+1

(

r
∑

i=0

ni

)

≤ ∂k+1 (n0) +
r−1
∑

i=0

max
{

ni+2, ∂
k−i (ni+1)

}

≤
r
∑

i=0

max
{

ni+1, ∂
k+1−i (ni)

}

.

This proves the first inequality. The second inequality is proved exactly the same way by
letting a = 1 +

∑k+1

i=1
ni and n = 1 +

∑k+1

i=0
ni.
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3 Proof of the theorem

We first present a simple observation. If n > k ≥ 0 then by Pascal’s identity

(

n

k

)

=

(

n − 1

k

)

+

(

n − 2

k − 1

)

+ · · · +

(

n − k

1

)

+

(

n − k − 1

0

)

. (6)

Let a =
∑k

i=1

(

ai

i

)

be the k-binomial representation of a. We say that a is k-long if
a1 ≥ 1, and k-short if a1 = 0.

Lemma 4. Let a ≥ 0 be an integer. If a is k-short, then ∂k(a + 1) = ∂k(a) + 1, otherwise
∂k(a + 1) = ∂k(a).

Proof. The result is clear for a = 0. If a ≥ 1 is k-short, then a =
∑k

i=v

(

ai

i

)

for some v ≥ 2

and av ≥ v. Thus a + 1 =
∑k

i=v

(

ai

i

)

+
(

v−1

v−1

)

is the k-binomial representation of a + 1 where

all the zero terms have been omitted. Then ∂k(a + 1) = ∂k(a) +
(

v−2

v−2

)

= ∂k(a) + 1.
Now suppose a is k-long. There is v ≥ 2 such that aj = a1 + j − 1 for j < v, and either

v = k + 1 or v ≤ k and av > a1 + v − 1. Then

a + 1 =

(

ak

k

)

+ · · · +

(

av

v

)

+

(

a1 + v − 2

v − 1

)

+ · · · +

(

a1 + 1

2

)

+

(

a1

1

)

+

(

a1 − 1

0

)

and by Identity (6) the k-binomial representation of a + 1 is

a + 1 =

(

ak

k

)

+ · · · +

(

av

v

)

+

(

a1 + v − 1

v − 1

)

.

Then, again by Identity (6),

∂k(a + 1) − ∂k(a) =

(

a1 + v − 2

v − 2

)

−

((

a1 + v − 3

v − 2

)

+ · · · +

(

a1

1

)

+

(

a1 − 1

0

))

= 0.

To prove the Theorem, we need to consider the extended k-binomial representation of a
positive integer a, by requiring an a0 coefficient. That is, we write

a =

(

a′

k

k

)

+

(

a′

k−1

k − 1

)

+ · · · +

(

a′

2

2

)

+

(

a′

1

1

)

+

(

a′

0

0

)

,

with 0 ≤ a′

0 = a′

1 − 1 < a′

1 < · · · < a′

k. The condition a′

0 = a′

1 − 1 is necessary to
make this representation unique when it exists. Clearly a = 0 does not have an extended
representation. In general the following is true.

Lemma 5. Let a =
∑k

i=v

(

ai

i

)

≥ 1 be the k-binomial representation of a, where the terms
equal to zero have been omitted. The extended k-binomial representation of a exists (and it
is unique), if and only if av ≥ v + 1.
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Proof. If av ≥ v + 1, then, by Identity (6),

(

av

v

)

=

(

av − 1

v

)

+

(

av − 2

v − 1

)

+ · · · +

(

av − v − 1

0

)

.

Thus

a =
k
∑

i=v+1

(

ai

i

)

+
v
∑

i=0

(

av − v − 1 + i

i

)

is an extended k-representation of a. Reciprocally, if a =
∑k

i=0

(

a′

i

i

)

is an extended k-

representation, then
(

a′

0

0

)

=
(

a′

1
−1

0

)

, and there is v ≥ 1 such that a′

j = a′

1 + j− 1 for 0 ≤ j ≤ v

with either v = k or a′

v+1 > a′

1 + v. Then, by Identity (6 ),

a =
k
∑

i=v+1

(

a′

j

j

)

+
v
∑

j=0

(

a′

1 + j − 1

j

)

=
k
∑

i=v+1

(

a′

j

j

)

+

(

a′

1 + v

v

)

,

is the k-representation of a. Thus av = a′

1 + v ≥ v + 1.

We can define ∂k
e (a) =

∑k

i=1

(

a′

i
−1

i−1

)

for the extended k-representation of a (if it exists).

It turns out that both definitions agree, i.e., ∂k(a) = ∂k
e (a). Indeed, if a =

∑k

i=v

(

ai

i

)

with
av ≥ v + 1, then by Identity (6) and the last proof,

∂k(a) − ∂k
e (a) =

(

av−1

v−1

)

−
v
∑

i=0

(

av − v − 2 + i

i − 1

)

= 0.

Let n =
∑k+1

i=1

(

ni

i

)

, a =
∑k

i=1

(

ai

i

)

, and n−a = b =
∑k+1

i=1

(

bi

i

)

be binomial representations.

Lemma 6. If 0 ≤ a < ∂k+1(n), then ak < nk+1 ≤ bk+1 + 1.

Proof. We prove the contrapositives. If ak ≥ nk+1, then

a ≥

(

ak

k

)

≥

(

nk+1

k

)

= ∂k+1

((

nk+1 + 1

k + 1

))

≥ ∂k+1 (n) ,

since
(

nk+1+1

k+1

)

≥ n and ∂k+1 is a non-decreasing function by Lemma 4. Now, if bk+1 + 1 ≤

nk+1 − 1, then b <
(

bk+1+1

k+1

)

≤
(

nk+1−1

k+1

)

. Thus

a = n − b > n −

(

nk+1 − 1

k + 1

)

=

(

nk+1 − 1

k

)

+

(

nk

k

)

+

(

nk−1

k − 1

)

+ · · · +

(

n1

1

)

,

but

∂k+1 (n) =

(

nk+1 − 1

k

)

+

(

nk − 1

k − 1

)

+

(

nk−1 − 1

k − 2

)

+ · · · +

(

n1 − 1

0

)

,

and clearly
(

ni

i

)

≥
(

ni−1

i−1

)

. Thus a ≥ ∂k+1 (n) .
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Proof of Theorem 1. Recall that b = n − a. Clearly Inequality (2) holds if a = 0, and the
case a = 1 is a consequence of Lemma 4. We consider two cases.
Case 1. ak < bk+1.

Let a =
∑k

i=v

(

ai

i

)

≥ 2 be the k-binomial representation of a without the zero terms.
Assume that the pair (a, b) minimizes ∂k(a)+ ∂k+1(b) with a as small as possible.

(i) Suppose first that av ≥ v + 1. Then, by Lemma 5, a has an extended representation,
say a =

∑k

i=0

(

a′

i

i

)

. Let

α =
k
∑

i=1

(

min(a′

i, bi)

i

)

and β =

(

bk+1

k + 1

)

+
k
∑

i=1

(

max(a′

i, bi)

i

)

+

(

a′

0

0

)

.

Note that a + b = α + β and α < a. Also

0 ≤ min(a′

1, b1) < min(a′

2, b2) < · · · < min(a′

k, bk) and

0 ≤ a′

0 < max(a′

1, b1) < · · · < max(a′

k, bk) < bk+1

(since a′

k ≤ ak < bk+1 by assumption). Therefore the definitions we gave for α and β

are k-binomial representations (extended for β). This means that

∂k (α) + ∂k+1 (β) = ∂k (α) + ∂k+1
e (β) = ∂k (a) + ∂k+1 (b) ,

a contradiction to the minimality of a.

(ii) Assume now that av = v. This means that a − 1 = a −
(

av

v

)

=
∑k

i=v+1

(

ai

i

)

≥ 1 is the
k-representation of a − 1, and thus a − 1 is short. Then by Lemma 4,

∂k(a − 1) + ∂k+1(b + 1) = ∂k(a) − 1 + ∂k+1(b + 1) ≤ ∂k(a) + ∂k+1(b),

again a contradiction to the minimality of a.

Case 1 is settled.
Case 2. bk+1 ≤ ak.

Since a < ∂k+1(n) then, by Lemma 6, ak < nk+1 ≤ bk+1+1. That is, ak = bk+1 = nk+1−1.
We proceed by induction on k. If k = 1, then a1 = b2 = n2 − 1. Thus

(

n2

2

)

+

(

n1

1

)

= n = a + b =

(

n2 − 1

1

)

+

(

n2 − 1

2

)

+

(

b1

1

)

,

i.e., b1 = n1. Hence,

∂1 (a) + ∂2 (b) =

(

n2 − 2

0

)

+

(

n2 − 2

1

)

+

(

n1 − 1

0

)

= ∂2 (n) .

Assume k ≥ 2 and that the result holds for k−1. Let n′ = n−
(

nk+1

k+1

)

, b′ = b−
(

nk+1−1

k+1

)

, and

a′ = a −
(

nk+1−1

k

)

. Because a ≥
(

ak

k

)

=
(

nk+1−1

k

)

, it follows that a′ ≥ 0. Clearly, a′ + b′ = n′,
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and a′ < ∂k(n′) since a < ∂k+1(n) =
(

nk+1−1

k

)

+ ∂k(n′). By induction on k the result holds
for a′, b′, n′, and thus

∂k+1 (b) + ∂k (a) − ∂k+1 (n) =

(

nk+1 − 2

k

)

+ ∂k (b′) +

(

nk+1 − 2

k − 1

)

+ ∂k−1 (a′)

−

(

nk+1 − 1

k

)

− ∂k (n′)

= ∂k (b′) + ∂k−1 (a′) − ∂k (n′) ≥ 0.

Case 2 is now proved.
It is only left to be shown that if n =

(

N

k+1

)

for some N ≥ k + 1, then there is equality in
Inequality (2), i.e.,

∂k (a) + ∂k+1

((

N

k + 1

)

− a

)

= ∂k+1

((

N

k + 1

))

, (7)

occurs only when a = 0.
If N = k + 1 (and thus a = 0) or a = 0, the equality trivially holds. Suppose that

N ≥ k + 2, a ≥ 1, and Identity (7) holds. Let b =
(

N

k+1

)

− a; as before, we consider two
cases. First suppose that ak < bk+1. Assume that a and b are the smallest integers such that
Identity (7) is satisfied with a ≥ 1. If a = 1, then by Identity (6),

(

N

k + 1

)

− 1 =

(

N − 1

k + 1

)

+

(

N − 2

k

)

+ · · · +

(

N − k − 1

1

)

is (k+1)-long. Thus, by Lemma 4, ∂k+1(
(

N

k+1

)

−1) = ∂k+1(
(

N

k+1

)

) < 1+∂k+1(
(

N

k+1

)

−1), which
is a contradiction. If a ≥ 2, then we proceed as in Case 1 to get a contradiction. Now assume
that bk+1 ≤ ak. In this case, ak < N ≤ bk+1 + 1 and following the proof of Case 2, we have
that ak = bk+1 = N − 1, a contradiction since

(

N−1

k

)

=
(

ak

k

)

≤ a < ∂k+1(
(

N

k+1

)

) =
(

N−1

k

)

.
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