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Abstract

In the case of two combinatorial polynomials, we show that they can exhibited as

moments of paramaterized families of orthogonal polynomials, and hence derive their

Hankel transforms. Exponential Riordan arrays are the main vehicles used for this.

1 Introduction

Let [n] = 1, 2, . . . , n, and let SPn be the set of set-partitions of [n]. For a set-partition
π ∈ SPn, let |π| be the number of parts in π. Then the n-th exponential polynomial, also
known as the n-th Touchard polynomial (and sometimes called the n-th Bell polynomial
[23]), is given by

en(z) =
∑

π

z|π| =
n

∑

k=0

S(n, k)zk,

where

S(n, k) =
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn

is the general element of the exponential Riordan array

[1, ex − 1] .
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This is the matrix of Stirling numbers of the second kind A008277, which begins























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 3 1 0 0 . . .
0 1 7 6 1 0 . . .
0 1 15 25 10 1 . . .
...

...
...

...
...

...
. . .























.

It is well known [11, 15, 18] that the Hankel transform of these polynomials is given by

z(n+1

2 )
n

∏

k=1

k!.

Now let

A(n, k) =
k

∑

k=0

(−1)j(k − j)n

(

n + 1

j

)

be the general term of the triangle of Eulerian numbers. The matrix of these numbers
A008292 begins























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 4 1 0 0 . . .
0 1 11 11 1 0 . . .
0 1 26 66 26 1 . . .
...

...
...

...
...

...
. . .























.

A(n, k) is the number of permutations in Sn with k excedances. The Eulerian polynomials
EUn(z) are defined by

EUn(z) =
n

∑

k=0

A(n, k)zk.

It is shown in [18] that the Hankel transform of these polynomials is given by

z(n+1

2 )
n

∏

k=1

k!2.

These two results are consequences of the following two theorems.

Theorem 1. The polynomials en(z) are moments of the family of orthogonal polynomials
whose coefficient array is given by the inverse of the exponential Riordan array

[

ez(ex−1), ex − 1
]

.
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Theorem 2. The polynomials EUn(z) are moments of the family of orthogonal polynomials
whose coefficient array is given by the inverse of the exponential Riordan array

[

ezx(1 − z)

ezx − zex
,

ex − ezx

ezx − zex

]

.

Note that in the case z = 1, the above matrix is taken to be
[

1
1−x

, x
1−x

]

, whose inverse is
the coefficient array of the Laguerre polynomials [2].

While partly expository in nature, this note assumes a certain familiarity with integer
sequences, generating functions, orthogonal polynomials [5, 10, 22], Riordan arrays [17, 21],
production matrices [9, 14], and the integer Hankel transform [4, 6, 13]. Many interesting
examples of sequences and Riordan arrays can be found in Neil Sloane’s On-Line Encyclo-
pedia of Integer Sequences (OEIS), [19, 20]. Sequences are frequently referred to by their
OEIS number. For instance, the binomial matrix B (“Pascal’s triangle”) is A007318.
The plan of the paper is as follows:

1. This Introduction

2. Integer sequences, Hankel transforms, exponential Riordan arrays, orthogonal polyno-
mials

3. Proof of Theorem 1

4. Proof of Theorem 2

2 Integer sequences, Hankel transforms, exponential

Riordan arrays, orthogonal polynomials

In this section, we recall known results on integer sequences, Hankel transforms, exponential
Riordan arrays and orthogonal polynomials that will be useful for the sequel.

For an integer sequence an, that is, an element of Z
N, the power series fo(x) =

∑∞
k=0 akx

k

is called the ordinary generating function or g.f. of the sequence, while fe(x) =
∑∞

k=0
ak

k!
xk is

called the exponential generating function or e.g.f. of the sequence. an is thus the coefficient
of xn in fo(x). We denote this by an = [xn]fo(x). Similarly, an = n![xn]fe(x). For instance,
Fn = [xn] x

1−x−x2 is the n-th Fibonacci number A000045, while n! = n![xn] 1
1−x

, which says

that 1
1−x

is the e.g.f. of n! A000142. For a power series f(x) =
∑∞

n=0 anx
n with f(0) = 0

and f ′(0) 6= 0 we define the reversion or compositional inverse of f to be the power series
f̄(x) = f [−1](x) such that f(f̄(x)) = x. We sometimes write f̄ = Revf .

The Hankel transform [13] of a given sequence A = {a0, a1, a2, ...} is the sequence of
Hankel determinants {h0, h1, h2, . . . } where hn = |ai+j|

n
i,j=0, i.e

A = {an}n∈N0
→ h = {hn}n∈N0

: hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · an

a1 a2 an+1
...

. . .

an an+1 a2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1)
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The Hankel transform of a sequence an and its binomial transform are equal.
In the case that an has g.f. g(x) expressible in the form

g(x) =
a0

1 − α0x −
β1x

2

1 − α1x −
β2x

2

1 − α2x −
β3x

2

1 − α3x − · · ·

(with βi 6= 0 for all i) then we have [11, 12, 24]

hn = an
0β

n−1
1 βn−2

2 · · · β2
n−1βn = an

0

n
∏

k=1

βn−k+1
k . (2)

Note that this is independent from αn. In general αn and βn are not integers. Such a
continued fraction is associated to a monic family of orthogonal polynomials which obey the
three term recurrence

pn+1(x) = (x − αn)pn(x) − βnpn−1(x), p0(x) = 1, p1(x) = x − α0.

The terms appearing in the first column of the inverse of the coefficient array of these
polynomials are the moments of the family.

The exponential Riordan group [1, 7, 9], is a set of infinite lower-triangular integer matri-
ces, where each matrix is defined by a pair of generating functions g(x) = g0+g1x+g2x

2+ . . .
and f(x) = f1x + f2x

2 + . . . where f1 6= 0. The associated matrix is the matrix whose i-th
column has exponential generating function g(x)f(x)i/i! (the first column being indexed by
0). The matrix corresponding to the pair f, g is denoted by [g, f ]. It is monic if g0 = 1. The
group law is given by

[g, f ] ∗ [h, l] = [g(h ◦ f), l ◦ f ].

The identity for this law is I = [1, x] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f . We use the notation eR to denote this group. If M is the
matrix [g, f ], and u = (un)n≥0 is an integer sequence with exponential generating function U
(x), then the sequence Mu has exponential generating function g(x)U(f(x)). Thus the row
sums of the array [g, f ] are given by g(x)ef(x) since the sequence 1, 1, 1, . . . has exponential
generating function ex.

Example 3. The binomial matrix is the matrix with general term
(

n

k

)

. It is realized by
Pascal’s triangle. As an exponential Riordan array, it is given by [ex, x]. We further have

([ex, x])m = [emx, x].

Example 4. We have

[

ez(ex−1), ex − 1
]

=
[

ez(ex−1), x
]

· [1, ex − 1] .

A more interesting factorization is given by
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Proposition 5. The general term of the matrix L =
[

ez(ex−1), ex − 1
]

is given by

Ln,k =
n

∑

j=0

S(n, j)

(

j

k

)

zj−k.

Proof. A straight-forward calculation shows that

[

ez(ex−1), ex − 1
]

= [1, ex − 1] · [ezx, x] .

The assertion now follows since the general term of [1, ex − 1] is S(n, k) and that of [ezx, x]
is

(

n

k

)

zn−k.

As an example of the calculation of an inverse, we have the following proposition.

Proposition 6.
[

ez(ex−1), ex − 1
]−1

=
[

e−zx, ln(1 + x)
]

.

Proof. This follows since with
f(x) = ex − 1

we have
f̄(x) = ln(1 + x).

Proposition 7.

[

ezx(1 − z)

ezx − zex
,

ex − ezx

ezx − zex

]−1

=

[

1 + zx,
1

z − 1
ln

(

1 + zx

1 + x

)]

.

Note that in the case z = 1, we have

[

1

1 − x
,

x

1 − x

]−1

=

[

1

1 + x
,

x

1 + x

]

.

Proof. This follows since with

f(x) =
ezx(1 − z)

ezx − zex

we have

f̄(x) =
1

z − 1
ln

(

1 + zx

1 + x

)

.

An important concept for the sequel is that of production matrix. The concept of a
production matrix [8, 9] is a general one, but for this note we find it convenient to review it
in the context of Riordan arrays. Thus let P be an infinite matrix (most often it will have
integer entries). Letting r0 be the row vector

r0 = (1, 0, 0, 0, . . .),
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we define ri = ri−1P , i ≥ 1. Stacking these rows leads to another infinite matrix which we
denote by AP . Then P is said to be the production matrix for AP . If we let

uT = (1, 0, 0, 0, . . . , 0, . . .)

then we have

AP =











uT

uT P
uT P 2

...











and
DAP = AP P

where D = (δi,j+1)i,j≥0 (where δ is the usual Kronecker symbol). In [14] P is called the
Stieltjes matrix associated to AP . In [9], we find the following result concerning matrices
that are production matrices for exponential Riordan arrays.

Proposition 8. Let A = (an,k)n,k≥0 = [g(x), f(x)] be an exponential Riordan array and let

c(y) = c0 + c1y + c2y
2 + . . . , r(y) = r0 + r1y + r2y

2 + . . . (3)

be two formal power series that that

r(f(x)) = f ′(x) (4)

c(f(x)) =
g′(x)

g(x)
. (5)

Then

(i) an+1,0 =
∑

i

i!cian,i (6)

(ii) an+1,k = r0an,k−1 +
1

k!

∑

i≥k

i!(ci−k + kri−k+1)an,i (7)

or, defining c−1 = 0,

an+1,k =
1

k!

∑

i≥k−1

i!(ci−k + kri−k+1)an,i. (8)

Conversely, starting from the sequences defined by (3), the infinite array (an,k)n,k≥0 defined
by (8) is an exponential Riordan array.

A consequence of this proposition is that P = (pi,j)i,j≥0 where

pi,j =
i!

j!
(ci−j + jrr−j+1) (c−1 = 0).
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Furthermore, the bivariate exponential generating function

φP (t, z) =
∑

n,k

pn,kt
k zn

n!

of the matrix P is given by
φP (t, z) = etz(c(z) + tr(z)).

Note in particular that we have
r(x) = f ′(f̄(x))

and

c(x) =
g′(f̄(x))

g(f̄(x))
.

Example 9. We consider the exponential Riordan array [ 1
1−x

, x], A094587. This array [2]
has elements























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .























and general term [k ≤ n]n!
k!

with inverse






















1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .























which is the array [1 − x, x]. In particular, we note that the row sums of the inverse,
which begin 1, 0,−1,−2,−3, . . . (that is, 1 − n), have e.g.f. (1 − x) exp(x). This sequence
is thus the binomial transform of the sequence with e.g.f. (1 − x) (which is the sequence
starting 1,−1, 0, 0, 0, . . .). In order to calculate the production matrix P of [ 1

1−x
, x] we note

that f(x) = x, and hence we have f ′(x) = 1 so f ′(f̄(x)) = 1. Also g(x) = 1
1−x

leads to

g′(x) = 1
(1−x)2

, and so, since f̄(x) = x, we get

g′(f̄(x))

g(f̄(x))
=

1

1 − x
.

Thus the generating function for P is

etz

(

1

1 − z
+ t

)

.
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Thus P is the matrix [ 1
1−x

, x] with its first row removed.

Example 10. We consider the exponential Riordan array [1, x
1−x

]. The general term of this
matrix [2] may be calculated as follows:

Tn,k =
n!

k!
[xn]

xk

(1 − x)k

=
n!

k!
[xn−k](1 − x)−k

=
n!

k!
[xn−k]

∞
∑

j=0

(

−k

j

)

(−1)jxj

=
n!

k!
[xn−k]

∞
∑

j=0

(

k + j − 1

j

)

xj

=
n!

k!

(

k + n − k − 1

n − k

)

=
n!

k!

(

n − 1

n − k

)

.

Thus its row sums, which have e.g.f. exp
(

x
1−x

)

, have general term
∑n

k=0
n!
k!

(

n−1
n−k

)

. This is
A000262, the ‘number of “sets of lists”: the number of partitions of {1, .., n} into any number
of lists, where a list means an ordered subset’. Its general term is equal to (n−1)!Ln−1(1,−1).
The inverse of

[

1, x
1−x

]

is the exponential Riordan array
[

1, x
1+x

]

, A111596. The row sums

of this sequence have e.g.f. exp
(

x
1+x

)

, and start 1, 1,−1, 1, 1,−19, 151, . . .. This is A111884.

To calculate the production matrix of
[

1, x
1+x

]

we note that g′(x) = 0, while f̄(x) = x
1+x

with

f ′(x) = 1
(1+x)2

. Thus

f ′(f̄(x)) = (1 + x)2,

and so the generating function of the production matrix is given by

etzt(1 + z)2.

The production matrix of the inverse begins























0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 2 4 1 0 0 . . .
0 0 6 6 1 0 . . .
0 0 0 12 8 1 . . .
0 0 0 0 20 10 . . .
...

...
...

...
...

...
. . .























.
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Example 11. The exponential Riordan array A =
[

1
1−x

, x
1−x

]

, or























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .























,

has general term

Tn,k =
n!

k!

(

n

k

)

.

Its inverse is
[

1
1+x

, x
1+x

]

with general term (−1)n−k n!
k!

(

n

k

)

. This is A021009, the triangle of

coefficients of the Laguerre polynomials Ln(x). The production matrix
[

1
1−x

, x
1−x

]

is given
by























1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
0 4 5 1 0 0 . . .
0 0 9 7 1 0 . . .
0 0 0 16 9 1 . . .
0 0 0 0 25 11 . . .
...

...
...

...
...

...
. . .























.

Example 12. The exponential Riordan array
[

ex, ln
(

1
1−x

)]

, or























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 8 6 1 0 0 . . .
1 24 29 10 1 0 . . .
1 89 145 75 15 1 . . .
...

...
...

...
...

...
. . .























is the coefficient array for the polynomials

2F0(−n, x;−1)

which are an unsigned version of the Charlier polynomials (of order 0) [10, 16, 22]. This is
A094816. It is equal to

[ex, x]

[

1, ln

(

1

1 − x

)]

,
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or the product of the binomial array B and the array of (unsigned) Stirling numbers of the
first kind. The production matrix of the inverse of this matrix is given by























−1 1 0 0 0 0 . . .
1 −2 1 0 0 0 . . .
0 2 −3 1 0 0 . . .
0 0 3 −4 1 0 . . .
0 0 0 4 −5 1 . . .
0 0 0 0 5 −6 . . .
...

...
...

...
...

...
. . .























which indicates the orthogonal nature of these polynomials. We can prove this as follows.
We have

[

ex, ln

(

1

1 − x

)]−1

=
[

e−(1−e−x), 1 − e−x
]

.

Hence g(x) = e−(1−e−x) and f(x) = 1 − e−x. We are thus led to the equations

r(1 − e−x) = e−x,

c(1 − e−x) = −e−x,

with solutions r(x) = 1 − x, c(x) = x − 1. Thus the bivariate generating function for the
production matrix of the inverse array is

etz(z − 1 + t(1 − z)),

which is what is required.

3 Proof of Theorem 1

Proof. We show first that with L =
[

ez(ex−1), ex − 1
]

, the matrix L−1 which is given by

L−1 =
[

ez(ex−1), ex − 1
]−1

=
[

e−zx, ln(1 + x)
]

,

is the coefficient array of a family of orthogonal polynomials. To this end, we calculate the
production array of

[

ez(ex−1), ex − 1
]

. We have f(x) = ex−1, f ′(x) = ex and f̄(x) = ln(1+x).
Thus

c(x) = f ′(f̄(x)) = 1 + x.

Similarly, for g(x) = ez(ex−1), we have g′(x) = zez(ex−1)+x and so

r(x) =
g′(f̄(x))

g(f̄(x))
=

zezx(1 + x)

ezx
= z(1 + x).

Thus the production matrix sought has generating function

etw(c(w) + tr(w)) = etw(1 + w + t(z(1 + w))).
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Thus the production array PL is tri-diagonal, beginning






















z 1 0 0 0 0 . . .
z z + 1 1 0 0 0 . . .
0 2z z + 2 1 0 0 . . .
0 0 3z z + 3 1 0 . . .
0 0 0 4z z + 4 1 . . .
0 0 0 0 5z z + 5 . . .
...

...
...

...
...

...
. . .























.

Now it is well known that
n

∑

k=0

ek(z)

k!
xk = ez(ex−1),

and hence the polynomials en(z) are the moments of the family of orthogonal polynomials
whose coefficient array is L−1.

Corollary 13. The Hankel transform of en(z) is z(n+1

2 ) ∏n

k=1 k!.

Proof. From the above, we have that the generating function of en(z) is given by the con-
tinued fraction

1

1 − zx −
zx2

1 − (z + 1)x −
2zx2

1 − (z + 2)x −
3zx2

1 − · · ·

.

In other words, βn = nz. Thus the Hankel transform of en(z) is given by

n
∏

k=1

βn−k+1
k =

n
∏

k=1

(kz)n−k+1 = z(n+1

2 )
n

∏

k=1

k!.

We note that the Hankel transform of the row sums of L =
[

ez(ex−1), ex − 1
]

is equal to

(z + 1)(
n+1

2 )
n

∏

k=1

k!.

Note also that if we take z = et, we obtain a solution to the restricted Toda chain [3].

4 Proof of Theorem 2

Proof. We show first that with L =
[

ezx(1−z)
ezx−zex , ex−ezx

ezx−zex

]

, the matrix L−1 which is given by

L−1 =

[

ezx(1 − z)

ezx − zex
,

ex − ezx

ezx − zex

]−1

=

[

1 + zx,
1

z − 1
ln

(

1 + zx

1 + x

)]

,

11



is the coefficient array of a family of orthogonal polynomials. To this end, we calculate the

production array of L =
[

ezx(1−z)
ezx−zex , ex−ezx

ezx−zex

]

. We have f(x) = ex−ezx

ezx−zex , f̄(x) = 1
z−1

ln
(

1+zx
1+x

)

and

f ′(x) =
(1 − z)2ex(1+z)

(ezx − zex)2
.

Thus
c(x) = f ′(f̄(x)) = (1 + x)(1 + zx).

Also g(x) = ezx(1−z)
ezx−zex , which implies that g′(x) = xf ′(x) and so

r(x) =
g′(f̄(x))

g(f̄(x))
= z(1 + x).

Thus the generating function of PL is given by

etw(c(w) + tr(w)) = etw((1 + w)(1 + zw) + t(z(1 + w))).

Thus the production array PL is tri-diagonal, beginning






















z 1 0 0 0 0 . . .
z 2z + 1 1 0 0 0 . . .
0 4z 3z + 2 1 0 0 . . .
0 0 9z 4z + 3 1 0 . . .
0 0 0 16z 5z + 4 1 . . .
0 0 0 0 25z 6z + 5 . . .
...

...
...

...
...

...
. . .























.

Now it is known that
n

∑

k=0

EUk(z)

k!
xk =

ezx(1 − z)

ezx − zex
,

and hence the polynomials en(z) are the moments of the family of orthogonal polynomials
whose coefficient array is L−1.

Corollary 14. The Hankel transform of EUn(z) is z(n+1

2 ) ∏n

k=1 k!2.

Proof. From the above, we have that the generating function of EUn(z) is given by the
continued fraction

1

1 − zx −
zx2

1 − (2z + 1)x −
4zx2

1 − (3z + 2)x −
9zx2

1 − · · ·

.

In other words, βn = n2z. Thus the Hankel transform of EUn(z) is given by
n

∏

k=1

βn−k+1
k =

n
∏

k=1

(k2z)n−k+1 = z(n+1

2 )
n

∏

k=1

k!2.
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