Journal of Integer Sequences, Vol. 14 (2011), Article 11.4.7

Greatest Common Divisors in Shifted Fibonacci Sequences

Kwang-Wu Chen
Department of Mathematics and Computer Science Education
Taipei Municipal University of Education
No. 1, Ai-Kuo West Road
Taipei, Taiwan 100, R.O.C.
kwchen@tmue.edu.tw

Abstract

It is well known that successive members of the Fibonacci sequence are relatively prime. Let $$
f_{n}(a)=\operatorname{gcd}\left(F_{n}+a, F_{n+1}+a\right) .
$$

Therefore $\left(f_{n}(0)\right)$ is the constant sequence $1,1,1, \ldots$, but Hoggatt in 1971 noted that $\left(f_{n}(\pm 1)\right)$ is unbounded. In this note we prove that $\left(f_{n}(a)\right)$ is bounded if $a \neq \pm 1$.

1 Introduction

Let the generalized Fibonacci sequence be defined by

$$
G_{n}=G_{n-1}+G_{n-2}, \quad \text { for } n \geq 3,
$$

and $G_{1}=\alpha, G_{2}=\beta$. It is well known that [3, p. 109]

$$
G_{n}=\alpha F_{n-2}+\beta F_{n-1} .
$$

If $\alpha=\beta=1$, then the generalized Fibonacci sequence G_{n} is the Fibonacci sequence F_{n}, $\underline{\text { A000045 }}$, and if $\alpha=1$ and $\beta=3, G_{n}$ is the Lucas sequence $L_{n}, \underline{\text { A000032. It is well known }}$ that successive members of the Fibonacci sequence are relatively prime. Consider a slightly different sequence,

$$
\left(F_{n}+a\right),
$$

which we call a shifted Fibonacci sequence by a, e.g., $\underline{\text { A000071, A001611, and A157725. In }}$ 1971 Hoggatt [1] noted that

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n+1}+1, F_{4 n+2}+1\right) & =L_{2 n} \\
\operatorname{gcd}\left(F_{4 n+1}-1, F_{4 n+2}-1\right) & =F_{2 n} \\
\operatorname{gcd}\left(F_{4 n+3}-1, F_{4 n+4}-1\right) & =L_{2 n+1} .
\end{aligned}
$$

That is to say, the successive members of the shifted Fibonacci sequence by ± 1 are not always relatively prime. Let

$$
f_{n}(a)=\operatorname{gcd}\left(F_{n}+a, F_{n+1}+a\right)
$$

Therefore $\left(f_{n}(0)\right)$ is the constant sequence $1,1,1, \ldots$, but $\left(f_{n}(\pm 1)\right)$ is unbounded above.
In 2003 Hernández and Luca [2] proved that there exists a constant c such that

$$
\operatorname{gcd}\left(F_{m}+a, F_{n}+a\right)>\exp (c m)
$$

holds for infinitely many pairs of positive integers $m>n$.
In this note we prove that $\left(f_{n}(a)\right)$ is bounded above if $a \neq \pm 1$. In fact we prove the following two theorems in this note.
Theorem 1. For any integers α, β, n and a with $\alpha^{2}+\alpha \beta-\beta^{2}-a^{2} \neq 0$, we have

$$
\begin{equation*}
\operatorname{gcd}\left(G_{2 n-1}+a, G_{2 n}+a\right) \leq\left|\alpha^{2}+\alpha \beta-\beta^{2}-a^{2}\right| \tag{1}
\end{equation*}
$$

Theorem 2. For any integers α, β, n and a with $\alpha^{2}+\alpha \beta-\beta^{2}+a^{2} \neq 0$, we have

$$
\begin{equation*}
\operatorname{gcd}\left(G_{2 n}+a, G_{2 n+1}+a\right) \leq\left|\alpha^{2}+\alpha \beta-\beta^{2}+a^{2}\right| \tag{2}
\end{equation*}
$$

Let $\alpha=\beta=1$ in Theorem 1 and Theorem 2. We can get the corollary.
Corollary 1. For integers n and a,

$$
\begin{aligned}
& \operatorname{gcd}\left(F_{2 n-1}+a, F_{2 n}+a\right) \leq\left|a^{2}-1\right|, \quad \text { if } a \neq \pm 1, \\
& \operatorname{gcd}\left(F_{2 n}+a, F_{2 n+1}+a\right) \leq a^{2}+1 .
\end{aligned}
$$

Hence we conclude that $\left(f_{n}(a)\right)$ is bounded above if $a \neq \pm 1$. Another easy corollary is that

$$
\ell_{n}(a)=\operatorname{gcd}\left(L_{n}+a, L_{n+1}+a\right)
$$

has only finitely many values.
Corollary 2. For integers n and a,

$$
\begin{aligned}
\operatorname{gcd}\left(L_{2 n-1}+a, L_{2 n}+a\right) & \leq a^{2}+5 \\
\operatorname{gcd}\left(L_{2 n}+a, L_{2 n+1}+a\right) & \leq\left|a^{2}-5\right|
\end{aligned}
$$

Similarly, let $\alpha=1$ and $\beta=3$ in Theorem 1 and Theorem 2. We conclude that $\ell_{n}(a)$ is bounded above for any integers a.

In the next section we will derive two basic lemmas. From them, we determine $f_{n}(1)$, $f_{n}(2), f_{n}(-1), f_{n}(-2)$, and $\ell_{n}(1)$, in Section 3, 4, and 5 . In the last section we prove Theorems 1 and 2.

2 Preliminaries

Lemma 1. For integers n, k, and a,

$$
\begin{equation*}
\operatorname{gcd}\left(G_{n}+a F_{k}, G_{n-1}-a F_{k+1}\right)=\operatorname{gcd}\left(G_{n-2}+a F_{k+2}, G_{n-3}-a F_{k+3}\right) \tag{3}
\end{equation*}
$$

Proof. Since $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b c, b)$ for any integers a, b, and c, we have

$$
\begin{aligned}
\operatorname{gcd}\left(G_{n}+a F_{k}, G_{n-1}-a F_{k+1}\right) & =\operatorname{gcd}\left(G_{n}+a F_{k}-\left(G_{n-1}-a F_{k+1}\right), G_{n-1}-a F_{k+1}\right) \\
& =\operatorname{gcd}\left(G_{n-2}+a F_{k+2}, G_{n-1}-a F_{k+1}\right) \\
& =\operatorname{gcd}\left(G_{n-2}+a F_{k+2}, G_{n-1}-a F_{k+1}-\left(G_{n-2}+a F_{k+2}\right)\right) \\
& =\operatorname{gcd}\left(G_{n-2}+a F_{k+2}, G_{n-3}-a F_{k+3}\right) .
\end{aligned}
$$

Lemma 2. For integers m, k, and a,

$$
\begin{equation*}
\operatorname{gcd}\left(G_{m}+a, G_{m+1}+a\right)=\operatorname{gcd}\left(G_{m-(2 k)}+a F_{2 k-1}, G_{m-(2 k+1)}-a F_{2 k}\right) . \tag{4}
\end{equation*}
$$

Proof. We simplify $\operatorname{gcd}\left(G_{m}+a, G_{m+1}+a\right)$,

$$
\begin{aligned}
\operatorname{gcd}\left(G_{m}+a, G_{m+1}+a\right) & =\operatorname{gcd}\left(G_{m}+a, G_{m+1}+a-\left(G_{m}+a\right)\right) \\
& =\operatorname{gcd}\left(G_{m}+a, G_{m-1}\right)
\end{aligned}
$$

Because $F_{-1}=1$ and $F_{0}=0$ we can write

$$
\operatorname{gcd}\left(G_{m}+a, G_{m+1}+a\right)=\operatorname{gcd}\left(G_{m}+a F_{-1}, G_{m-1}+a F_{0}\right)
$$

and applying (3) k times gives the result.

3 The sequence $\left(f_{n}(1)\right)$

Theorem 3. For any integer n, we have

$$
\begin{align*}
\operatorname{gcd}\left(F_{4 n-1}+1, F_{4 n}+1\right) & =F_{2 n-1}, \tag{5}\\
\operatorname{gcd}\left(F_{4 n}+1, F_{4 n+1}+1\right) & = \begin{cases}2, & \text { if } n \equiv 1 \quad(\bmod 3), \\
1, & \text { otherwise },\end{cases} \tag{6}\\
\operatorname{gcd}\left(F_{4 n+1}+1, F_{4 n+2}+1\right) & =L_{2 n}, \tag{7}\\
\operatorname{gcd}\left(F_{4 n+2}+1, F_{4 n+3}+1\right) & = \begin{cases}2, & \text { if } n \equiv 2(\bmod 3), \\
1, & \text { otherwise } .\end{cases} \tag{8}
\end{align*}
$$

Proof. Let $m=4 n-1, k=n$, and $a=1$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n-1}+1, F_{4 n}+1\right) & =\operatorname{gcd}\left(F_{2 n-1}+F_{2 n-1}, F_{2 n-2}-F_{2 n}\right) \\
& =\operatorname{gcd}\left(2 F_{2 n-1},-F_{2 n-1}\right) \\
& =F_{2 n-1}
\end{aligned}
$$

giving (5). Let $m=4 n+1, k=n$, and $a=1$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n+1}+1, F_{4 n+2}+1\right) & =\operatorname{gcd}\left(F_{2 n+1}+F_{2 n-1}, F_{2 n}-F_{2 n}\right) \\
& =F_{2 n+1}+F_{2 n-1} \\
& =L_{2 n},
\end{aligned}
$$

giving (7). Let $m=4 n, k=n$, and $a=1$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n}+1, F_{4 n+1}+1\right) & =\operatorname{gcd}\left(F_{2 n}+F_{2 n-1}, F_{2 n-1}-F_{2 n}\right) \\
& =\operatorname{gcd}\left(F_{2 n+1},-F_{2 n-2}\right)
\end{aligned}
$$

Since $\operatorname{gcd}\left(F_{q n+r}, F_{n}\right)=\operatorname{gcd}\left(F_{n}, F_{r}\right)$ for integers q, r, and n. This gives

$$
\operatorname{gcd}\left(F_{4 n}+1, F_{4 n+1}+1\right)=\operatorname{gcd}\left(F_{2 n-2}, F_{3}\right)
$$

Because $\operatorname{gcd}\left(F_{k}, F_{r}\right)=F_{\operatorname{gcd}(k, r)}$ for integers k and r,

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n}+1, F_{4 n+1}+1\right) & =\operatorname{gcd}\left(F_{2 n-2}, F_{3}\right) \\
& =F_{\operatorname{gcd}(2 n-2,3)} \\
& = \begin{cases}F_{3}=2, & n \equiv 1 \quad(\bmod 3), \\
F_{1}=1, & \text { otherwise }\end{cases}
\end{aligned}
$$

which is (6). Let $m=4 n+2, k=n+1$, and $a=1$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n+2}+1, F_{4 n+3}+1\right) & =\operatorname{gcd}\left(F_{2 n}+F_{2 n+1}, F_{2 n-1}-F_{2 n+2}\right) \\
& =\operatorname{gcd}\left(F_{2 n+2}, F_{2 n-1}-F_{2 n+2}\right) \\
& =\operatorname{gcd}\left(F_{2 n+2}, F_{2 n-1}\right) \\
& =\operatorname{gcd}\left(F_{3}, F_{2 n-1}\right) \\
& =F_{\operatorname{gcd}(3,2 n-1)} \\
& = \begin{cases}F_{3}=2, & n \equiv 2 \quad(\bmod 3), \\
F_{1}=1, & \text { otherwise },\end{cases}
\end{aligned}
$$

which is (8).

4 The sequence $\left(f_{n}(2)\right)$

Theorem 4. For any integer n, we have

$$
\begin{align*}
\operatorname{gcd}\left(F_{4 n-1}+2, F_{4 n}+2\right) & =1, \tag{9}\\
\operatorname{gcd}\left(F_{4 n}+2, F_{4 n+1}+2\right) & =1, \tag{10}\\
\operatorname{gcd}\left(F_{4 n+1}+2, F_{4 n+2}+2\right) & =\left\{\begin{array}{lll}
3, & \text { if } n \equiv 0 \quad(\bmod 2), \\
1, & \text { if } n \equiv 1 \quad(\bmod 2),
\end{array}\right. \tag{11}\\
\operatorname{gcd}\left(F_{4 n+2}+2, F_{4 n+3}+2\right) & =\left\{\begin{array}{lll}
5, & \text { if } n \equiv 1 & (\bmod 5), \\
1, & \text { otherwise }
\end{array}\right. \tag{12}
\end{align*}
$$

Proof. Let $m=4 n-1, k=n$, and $a=2$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n-1}+2, F_{4 n}+2\right) & =\operatorname{gcd}\left(F_{2 n-1}+2 F_{2 n-1}, F_{2 n-2}-2 F_{2 n}\right) \\
& =\operatorname{gcd}\left(3 F_{2 n-1}, F_{2 n-1}+F_{2 n}\right) \\
& =\operatorname{gcd}\left(3 F_{2 n-1}, F_{2 n+1}\right)
\end{aligned}
$$

Since $\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, \operatorname{gcd}(a, b) c)$ and $\operatorname{gcd}\left(F_{2 n-1}, F_{2 n+1}\right)=\operatorname{gcd}\left(F_{2 n-1}, F_{2}\right)=1$, we have

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n-1}+2, F_{4 n}+2\right) & =\operatorname{gcd}\left(3 \operatorname{gcd}\left(F_{2 n-1}, F_{2 n+1}\right), F_{2 n+1}\right) \\
& =\operatorname{gcd}\left(3, F_{2 n+1}\right)=\operatorname{gcd}\left(F_{4}, F_{2 n+1}\right) \\
& =F_{\operatorname{gcd}(4,2 n+1)}=F_{1}=1,
\end{aligned}
$$

which is (9). Let $m=4 n, k=n$, and $a=2$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n}+2, F_{4 n+1}+2\right) & =\operatorname{gcd}\left(F_{2 n}+2 F_{2 n-1}, F_{2 n-1}-2 F_{2 n}\right) \\
& =\operatorname{gcd}\left(F_{2 n-1}+F_{2 n+1},-F_{2 n}-F_{2 n-2}\right) \\
& =\operatorname{gcd}\left(L_{2 n}, L_{2 n-1}\right) \\
& =1,
\end{aligned}
$$

which is (10). Let $m=4 n+1, k=n$, and $a=2$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n+1}+2, F_{4 n+2}+2\right) & =\operatorname{gcd}\left(F_{2 n+1}+2 F_{2 n-1}, F_{2 n}-2 F_{2 n}\right) \\
& =\operatorname{gcd}\left(F_{2 n+1}+2 F_{2 n-1}+2 F_{2 n}, F_{2 n}\right) \\
& =\operatorname{gcd}\left(3 F_{2 n+1}, F_{2 n}\right) \\
& =\operatorname{gcd}\left(3, F_{2 n}\right)=\operatorname{gcd}\left(F_{4}, F_{2 n}\right) \\
& =F_{\operatorname{gcd}(4,2 n)} \\
& =\left\{\begin{array}{lll}
F_{4}=3, & \text { if } n \equiv 0 \quad(\bmod 2), \\
F_{1}=1, & \text { if } n \equiv 1 \quad(\bmod 2),
\end{array}\right.
\end{aligned}
$$

which is (11). Let $m=4 n+2, k=n$, and $a=2$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n+2}+2, F_{4 n+3}+2\right) & =\operatorname{gcd}\left(F_{2 n+2}+2 F_{2 n-1}, F_{2 n+1}-2 F_{2 n}\right) \\
& =\operatorname{gcd}\left(F_{2 n+2}+2 F_{2 n-1},-F_{2 n}+F_{2 n-1}\right) \\
& =\operatorname{gcd}\left(F_{2 n+2}+2 F_{2 n-1},-F_{2 n-2}\right) \\
& =\operatorname{gcd}\left(F_{2 n-2}, F_{2 n+2}+2 F_{2 n}\right) .
\end{aligned}
$$

Since $F_{2 n+2}+2 F_{2 n}=F_{2 n+1}+3 F_{2 n}=4 F_{2 n}+F_{2 n-1}$, we have

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n+2}+2, F_{4 n+3}+2\right) & =\operatorname{gcd}\left(F_{2 n-2}, 4 F_{2 n}+F_{2 n-1}\right) \\
& =\operatorname{gcd}\left(F_{2 n-2}, 5 F_{2 n}\right) \\
& =\operatorname{gcd}\left(F_{2 n-2}, 5 \operatorname{gcd}\left(F_{2 n-2}, F_{2 n}\right)\right) \\
& =\operatorname{gcd}\left(F_{2 n-2}, 5\right)=\operatorname{gcd}\left(F_{2 n-2}, F_{5}\right) \\
& =F_{\operatorname{gcd}(2 n-2,5)} \\
& = \begin{cases}F_{5}=5, & \text { if } n \equiv 1 \quad(\bmod 5) \\
F_{1}=1, & \text { otherwise },\end{cases}
\end{aligned}
$$

which is (12).

5 The sequences $\left(f_{n}(-1)\right),\left(f_{n}(-2)\right)$, and $\left(\ell_{n}(1)\right)$

Applying the same methods we get
Theorem 5. For any integer n, we have

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n-1}-1, F_{4 n}-1\right) & =L_{2 n-1}, \\
\operatorname{gcd}\left(F_{4 n}-1, F_{4 n+1}-1\right) & = \begin{cases}2, & \text { if } n \equiv 1 \quad(\bmod 3), \\
1, & \text { otherwise },\end{cases} \\
\operatorname{gcd}\left(F_{4 n+1}-1, F_{4 n+2}-1\right) & =F_{2 n}, \\
\operatorname{gcd}\left(F_{4 n+2}-1, F_{4 n+3}-1\right) & = \begin{cases}2, & \text { if } n \equiv 2 \quad(\bmod 3), \\
1, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Theorem 6. For any integer n, we have

$$
\begin{aligned}
\operatorname{gcd}\left(F_{4 n-1}-2, F_{4 n}-2\right) & =1, \\
\operatorname{gcd}\left(F_{4 n}-2, F_{4 n+1}-2\right) & = \begin{cases}5, & \text { if } n \equiv 4 \quad(\bmod 5), \\
1, & \text { otherwise, }\end{cases} \\
\operatorname{gcd}\left(F_{4 n+1}-2, F_{4 n+2}-2\right) & =\left\{\begin{array}{ll}
1, & \text { if } n \equiv 0 \quad(\bmod 2), \\
3, & \text { if } n \equiv 1 \quad(\bmod 2), \\
\operatorname{gcd}\left(F_{4 n+2}-2, F_{4 n+3}-2\right) & =1 .
\end{array} .\right.
\end{aligned}
$$

Theorem 7. For any integer n, we have

$$
\begin{aligned}
\operatorname{gcd}\left(L_{4 n-1}+1, L_{4 n}+1\right) & = \begin{cases}3, & \text { if } n \equiv 0 \quad(\bmod 6), \\
1, & \text { if } n \equiv 1 \quad(\bmod 6), \\
6, & \text { if } n \equiv 2 \quad(\bmod 6), \\
1, & \text { if } n \equiv 3 \quad(\bmod 6), \\
3, & \text { if } n \equiv 4(\bmod 6), \\
2, & \text { if } n \equiv 5(\bmod 6) .\end{cases} \\
\operatorname{gcd}\left(L_{4 n}+1, L_{4 n+1}+1\right) & = \begin{cases}4, & \text { if } n \equiv 1 \quad(\bmod 3), \\
1, & \text { otherwise },\end{cases} \\
\operatorname{gcd}\left(L_{4 n+1}+1, L_{4 n+2}+1\right) & = \begin{cases}2, & \text { if } n \equiv 0 \quad(\bmod 3), \\
1, & \text { otherwise },\end{cases} \\
\operatorname{gcd}\left(L_{4 n+2}+1, L_{4 n+3}+1\right) & = \begin{cases}4, & \text { if } n \equiv 2 \quad(\bmod 3), \\
1, & \text { otherwise }\end{cases}
\end{aligned}
$$

6 The proofs of Theorems 1 and 2

First we give the proof of Theorem 1. Let $m=4 n-1$ and $k=n$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(G_{4 n-1}+a, G_{4 n}+a\right) & =\operatorname{gcd}\left(G_{2 n-1}+a F_{2 n-1}, G_{2 n-2}-a F_{2 n}\right) \\
& =\operatorname{gcd}\left(\alpha F_{2 n-3}+\beta F_{2 n-2}+a F_{2 n-1}, \alpha F_{2 n-4}+\beta F_{2 n-3}-a F_{2 n}\right) .
\end{aligned}
$$

Using the recursion relation for F_{n}, let

$$
a_{n}=\alpha F_{2 n-3}+\beta F_{2 n-2}+a F_{2 n-1}=(\alpha+a) F_{2 n-3}+(\beta+a) F_{2 n-2}
$$

and

$$
b_{n}=\alpha F_{2 n-4}+\beta F_{2 n-3}-a F_{2 n}=(-\alpha+\beta-a) F_{2 n-3}+(\alpha-2 a) F_{2 n-2} .
$$

Since $\operatorname{gcd}\left(a_{n}, b_{n}\right)$ divides $\gamma a_{n}+\theta b_{n}$ for any integers γ and θ, and

$$
\begin{aligned}
(\alpha+a) b_{n}-(-\alpha+\beta-a) a_{n} & =\left(\alpha^{2}+\alpha \beta-\beta^{2}-a^{2}\right) F_{2 n-2} \\
(\alpha-2 a) a_{n}-(\beta+a) b_{n} & =\left(\alpha^{2}+\alpha \beta-\beta^{2}-a^{2}\right) F_{2 n-3}
\end{aligned}
$$

we see that if $\alpha^{2}+\alpha \beta-\beta^{2}-a^{2} \neq 0$, then the greatest common divisor of the two numbers is $\left|\alpha^{2}+\alpha \beta-\beta^{2}-a^{2}\right|$. Therefore $\operatorname{gcd}\left(a_{n}, b_{n}\right)$ divides $\alpha^{2}+\alpha \beta-\beta^{2}-a^{2}$. That is to say,

$$
\operatorname{gcd}\left(G_{4 n-1}+a, G_{4 n}+a\right) \leq\left|\alpha^{2}+\alpha \beta-\beta^{2}-a^{2}\right|
$$

If we let $m=4 n+1$ and $k=n$ in (4) we have, in exactly the same way, that

$$
\operatorname{gcd}\left(G_{4 n+1}+a, G_{4 n+2}+a\right) \leq\left|\alpha^{2}+\alpha \beta-\beta^{2}-a^{2}\right|
$$

In the following we give the proof of Theorem 2. Let $m=4 n$ and $k=n$ in (4):

$$
\begin{aligned}
\operatorname{gcd}\left(G_{4 n}+a, G_{4 n+1}+a\right) & =\operatorname{gcd}\left(G_{2 n}+a F_{2 n-1}, G_{2 n-1}-a F_{2 n}\right) \\
& =\operatorname{gcd}\left(\alpha F_{2 n-2}+\beta F_{2 n-1}+a F_{2 n-1}, \alpha F_{2 n-3}+\beta F_{2 n-2}-a F_{2 n}\right)
\end{aligned}
$$

Using the recursion relation for F_{n}, let

$$
a_{n}=\alpha F_{2 n-2}+\beta F_{2 n-1}+a F_{2 n-1}=\alpha F_{2 n-2}+(\beta+a) F_{2 n-1}
$$

and

$$
b_{n}=\alpha F_{2 n-3}+\beta F_{2 n-2}-a F_{2 n}=(-\alpha+\beta-a) F_{2 n-2}+(\alpha-a) F_{2 n-1} .
$$

Since $\operatorname{gcd}\left(a_{n}, b_{n}\right)$ divides $\gamma a_{n}+\theta b_{n}$ for any integers γ and θ, and

$$
\begin{aligned}
(\alpha-a) a_{n}-(a+\beta) b_{n} & =\left(\alpha^{2}+\alpha \beta-\beta^{2}+a^{2}\right) F_{2 n-2} \\
\alpha b_{n}-(\beta-\alpha-a) a_{n} & =\left(\alpha^{2}+\alpha \beta-\beta^{2}+a^{2}\right) F_{2 n-1}
\end{aligned}
$$

we see that if $\alpha^{2}+\alpha \beta-\beta^{2}+a^{2} \neq 0$, then the greatest common divisor of the two numbers is $\left|\alpha^{2}+\alpha \beta-\beta^{2}+a^{2}\right|$. Therefore $\operatorname{gcd}\left(a_{n}, b_{n}\right)$ divides $\alpha^{2}+\alpha \beta-\beta^{2}+a^{2}$. That is to say,

$$
\operatorname{gcd}\left(G_{4 n}+a, G_{4 n+1}+a\right) \leq\left|\alpha^{2}+\alpha \beta-\beta^{2}+a^{2}\right|
$$

If we let $m=4 n+2$ and $k=n$ in (4) we have, in exactly the same way, that

$$
\operatorname{gcd}\left(G_{4 n+2}+a, G_{4 n+3}+a\right) \leq\left|\alpha^{2}+\alpha \beta-\beta^{2}+a^{2}\right|
$$

7 Acknowledgement

The author would like to thank the referee for some useful comments and suggestions.

References

[1] U. Dudley and B. Tucker, Greatest common divisors in altered Fibonacci sequences, Fibonacci Quart. 9 (1971), 89-91.
[2] S. Hernández and F. Luca, Common factors of shifted Fibonacci numbers, Period. Math. Hungar. 47 (2003), 95-110.
[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11A05.
Keywords: Fibonacci numbers, Lucas numbers, generalized Fibonacci numbers.
(Concerned with sequences $\underline{A 000032}, \underline{A 000045}, \underline{A 000071}, \underline{A 001611}$, and $\underline{A 157725}$.

Received January 31 2011; revised version received March 26 2011. Published in Journal of Integer Sequences, March 262011.

Return to Journal of Integer Sequences home page.

