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Abstract

It is well known that successive members of the Fibonacci sequence are relatively
prime. Let

fn(a) = gcd(Fn + a, Fn+1 + a).

Therefore (fn(0)) is the constant sequence 1, 1, 1, . . ., but Hoggatt in 1971 noted that
(fn(±1)) is unbounded. In this note we prove that (fn(a)) is bounded if a 6= ±1.

1 Introduction

Let the generalized Fibonacci sequence be defined by

Gn = Gn−1 + Gn−2, for n ≥ 3,

and G1 = α, G2 = β. It is well known that [3, p. 109]

Gn = αFn−2 + βFn−1.

If α = β = 1, then the generalized Fibonacci sequence Gn is the Fibonacci sequence Fn,
A000045, and if α = 1 and β = 3, Gn is the Lucas sequence Ln, A000032. It is well known
that successive members of the Fibonacci sequence are relatively prime. Consider a slightly
different sequence,

(Fn + a),
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which we call a shifted Fibonacci sequence by a, e.g., A000071, A001611, and A157725. In
1971 Hoggatt [1] noted that

gcd(F4n+1 + 1, F4n+2 + 1) = L2n,

gcd(F4n+1 − 1, F4n+2 − 1) = F2n,

gcd(F4n+3 − 1, F4n+4 − 1) = L2n+1.

That is to say, the successive members of the shifted Fibonacci sequence by ±1 are not
always relatively prime. Let

fn(a) = gcd(Fn + a, Fn+1 + a).

Therefore (fn(0)) is the constant sequence 1, 1, 1, . . ., but (fn(±1)) is unbounded above.
In 2003 Hernández and Luca [2] proved that there exists a constant c such that

gcd(Fm + a, Fn + a) > exp(cm),

holds for infinitely many pairs of positive integers m > n.
In this note we prove that (fn(a)) is bounded above if a 6= ±1. In fact we prove the

following two theorems in this note.

Theorem 1. For any integers α, β, n and a with α2 + αβ − β2 − a2 6= 0, we have

gcd(G2n−1 + a,G2n + a) ≤ |α2 + αβ − β2 − a2|. (1)

Theorem 2. For any integers α, β, n and a with α2 + αβ − β2 + a2 6= 0, we have

gcd(G2n + a,G2n+1 + a) ≤ |α2 + αβ − β2 + a2|. (2)

Let α = β = 1 in Theorem 1 and Theorem 2. We can get the corollary.

Corollary 1. For integers n and a,

gcd(F2n−1 + a, F2n + a) ≤ |a2 − 1|, if a 6= ±1,

gcd(F2n + a, F2n+1 + a) ≤ a2 + 1.

Hence we conclude that (fn(a)) is bounded above if a 6= ±1. Another easy corollary is
that

ℓn(a) = gcd(Ln + a, Ln+1 + a)

has only finitely many values.

Corollary 2. For integers n and a,

gcd(L2n−1 + a, L2n + a) ≤ a2 + 5,

gcd(L2n + a, L2n+1 + a) ≤ |a2 − 5|.

Similarly, let α = 1 and β = 3 in Theorem 1 and Theorem 2. We conclude that ℓn(a) is
bounded above for any integers a.

In the next section we will derive two basic lemmas. From them, we determine fn(1),
fn(2), fn(−1), fn(−2), and ℓn(1), in Section 3, 4, and 5. In the last section we prove
Theorems 1 and 2.
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2 Preliminaries

Lemma 1. For integers n, k, and a,

gcd(Gn + aFk, Gn−1 − aFk+1) = gcd(Gn−2 + aFk+2, Gn−3 − aFk+3). (3)

Proof. Since gcd(a, b) = gcd(a + bc, b) for any integers a, b, and c, we have

gcd(Gn + aFk, Gn−1 − aFk+1) = gcd(Gn + aFk − (Gn−1 − aFk+1), Gn−1 − aFk+1)

= gcd(Gn−2 + aFk+2, Gn−1 − aFk+1)

= gcd(Gn−2 + aFk+2, Gn−1 − aFk+1 − (Gn−2 + aFk+2))

= gcd(Gn−2 + aFk+2, Gn−3 − aFk+3).

Lemma 2. For integers m, k, and a,

gcd(Gm + a,Gm+1 + a) = gcd(Gm−(2k) + aF2k−1, Gm−(2k+1) − aF2k). (4)

Proof. We simplify gcd(Gm + a,Gm+1 + a),

gcd(Gm + a,Gm+1 + a) = gcd(Gm + a,Gm+1 + a − (Gm + a))

= gcd(Gm + a,Gm−1).

Because F
−1 = 1 and F0 = 0 we can write

gcd(Gm + a,Gm+1 + a) = gcd(Gm + aF
−1, Gm−1 + aF0),

and applying (3) k times gives the result.

3 The sequence (fn(1))

Theorem 3. For any integer n, we have

gcd(F4n−1 + 1, F4n + 1) = F2n−1, (5)

gcd(F4n + 1, F4n+1 + 1) =

{

2, if n ≡ 1 (mod 3),

1, otherwise,
(6)

gcd(F4n+1 + 1, F4n+2 + 1) = L2n, (7)

gcd(F4n+2 + 1, F4n+3 + 1) =

{

2, if n ≡ 2 (mod 3),

1, otherwise.
(8)

Proof. Let m = 4n − 1, k = n, and a = 1 in (4):

gcd(F4n−1 + 1, F4n + 1) = gcd(F2n−1 + F2n−1, F2n−2 − F2n)

= gcd(2F2n−1,−F2n−1)

= F2n−1,
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giving (5). Let m = 4n + 1, k = n, and a = 1 in (4):

gcd(F4n+1 + 1, F4n+2 + 1) = gcd(F2n+1 + F2n−1, F2n − F2n)

= F2n+1 + F2n−1

= L2n,

giving (7). Let m = 4n, k = n, and a = 1 in (4):

gcd(F4n + 1, F4n+1 + 1) = gcd(F2n + F2n−1, F2n−1 − F2n)

= gcd(F2n+1,−F2n−2).

Since gcd(Fqn+r, Fn) = gcd(Fn, Fr) for integers q, r, and n. This gives

gcd(F4n + 1, F4n+1 + 1) = gcd(F2n−2, F3).

Because gcd(Fk, Fr) = Fgcd(k,r) for integers k and r,

gcd(F4n + 1, F4n+1 + 1) = gcd(F2n−2, F3)

= Fgcd(2n−2,3)

=

{

F3 = 2, n ≡ 1 (mod 3),

F1 = 1, otherwise,

which is (6). Let m = 4n + 2, k = n + 1, and a = 1 in (4):

gcd(F4n+2 + 1, F4n+3 + 1) = gcd(F2n + F2n+1, F2n−1 − F2n+2)

= gcd(F2n+2, F2n−1 − F2n+2)

= gcd(F2n+2, F2n−1)

= gcd(F3, F2n−1)

= Fgcd(3,2n−1)

=

{

F3 = 2, n ≡ 2 (mod 3),

F1 = 1, otherwise,

which is (8).

4 The sequence (fn(2))

Theorem 4. For any integer n, we have

gcd(F4n−1 + 2, F4n + 2) = 1, (9)

gcd(F4n + 2, F4n+1 + 2) = 1, (10)

gcd(F4n+1 + 2, F4n+2 + 2) =

{

3, if n ≡ 0 (mod 2),

1, if n ≡ 1 (mod 2),
(11)

gcd(F4n+2 + 2, F4n+3 + 2) =

{

5, if n ≡ 1 (mod 5),

1, otherwise.
(12)
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Proof. Let m = 4n − 1, k = n, and a = 2 in (4):

gcd(F4n−1 + 2, F4n + 2) = gcd(F2n−1 + 2F2n−1, F2n−2 − 2F2n)

= gcd(3F2n−1, F2n−1 + F2n)

= gcd(3F2n−1, F2n+1).

Since gcd(a, bc) = gcd(a, gcd(a, b)c) and gcd(F2n−1, F2n+1) = gcd(F2n−1, F2) = 1, we have

gcd(F4n−1 + 2, F4n + 2) = gcd(3 gcd(F2n−1, F2n+1), F2n+1)

= gcd(3, F2n+1) = gcd(F4, F2n+1)

= Fgcd(4,2n+1) = F1 = 1,

which is (9). Let m = 4n, k = n, and a = 2 in (4):

gcd(F4n + 2, F4n+1 + 2) = gcd(F2n + 2F2n−1, F2n−1 − 2F2n)

= gcd(F2n−1 + F2n+1,−F2n − F2n−2)

= gcd(L2n, L2n−1)

= 1,

which is (10). Let m = 4n + 1, k = n, and a = 2 in (4):

gcd(F4n+1 + 2, F4n+2 + 2) = gcd(F2n+1 + 2F2n−1, F2n − 2F2n)

= gcd(F2n+1 + 2F2n−1 + 2F2n, F2n)

= gcd(3F2n+1, F2n)

= gcd(3, F2n) = gcd(F4, F2n)

= Fgcd(4,2n)

=

{

F4 = 3, if n ≡ 0 (mod 2),

F1 = 1, if n ≡ 1 (mod 2),

which is (11). Let m = 4n + 2, k = n, and a = 2 in (4):

gcd(F4n+2 + 2, F4n+3 + 2) = gcd(F2n+2 + 2F2n−1, F2n+1 − 2F2n)

= gcd(F2n+2 + 2F2n−1,−F2n + F2n−1)

= gcd(F2n+2 + 2F2n−1,−F2n−2)

= gcd(F2n−2, F2n+2 + 2F2n).

Since F2n+2 + 2F2n = F2n+1 + 3F2n = 4F2n + F2n−1, we have

gcd(F4n+2 + 2, F4n+3 + 2) = gcd(F2n−2, 4F2n + F2n−1)

= gcd(F2n−2, 5F2n)

= gcd(F2n−2, 5 gcd(F2n−2, F2n))

= gcd(F2n−2, 5) = gcd(F2n−2, F5)

= Fgcd(2n−2,5)

=

{

F5 = 5, if n ≡ 1 (mod 5)

F1 = 1, otherwise,

which is (12).
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5 The sequences (fn(−1)), (fn(−2)), and (ℓn(1))

Applying the same methods we get

Theorem 5. For any integer n, we have

gcd(F4n−1 − 1, F4n − 1) = L2n−1,

gcd(F4n − 1, F4n+1 − 1) =

{

2, if n ≡ 1 (mod 3),

1, otherwise,

gcd(F4n+1 − 1, F4n+2 − 1) = F2n,

gcd(F4n+2 − 1, F4n+3 − 1) =

{

2, if n ≡ 2 (mod 3),

1, otherwise.

Theorem 6. For any integer n, we have

gcd(F4n−1 − 2, F4n − 2) = 1,

gcd(F4n − 2, F4n+1 − 2) =

{

5, if n ≡ 4 (mod 5),

1, otherwise,.

gcd(F4n+1 − 2, F4n+2 − 2) =

{

1, if n ≡ 0 (mod 2),

3, if n ≡ 1 (mod 2),

gcd(F4n+2 − 2, F4n+3 − 2) = 1.

Theorem 7. For any integer n, we have

gcd(L4n−1 + 1, L4n + 1) =







































3, if n ≡ 0 (mod 6),

1, if n ≡ 1 (mod 6),

6, if n ≡ 2 (mod 6),

1, if n ≡ 3 (mod 6),

3, if n ≡ 4 (mod 6),

2, if n ≡ 5 (mod 6).

gcd(L4n + 1, L4n+1 + 1) =

{

4, if n ≡ 1 (mod 3),

1, otherwise,

gcd(L4n+1 + 1, L4n+2 + 1) =

{

2, if n ≡ 0 (mod 3),

1, otherwise,

gcd(L4n+2 + 1, L4n+3 + 1) =

{

4, if n ≡ 2 (mod 3),

1, otherwise.
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6 The proofs of Theorems 1 and 2

First we give the proof of Theorem 1. Let m = 4n − 1 and k = n in (4):

gcd(G4n−1 + a,G4n + a) = gcd(G2n−1 + aF2n−1, G2n−2 − aF2n)

= gcd(αF2n−3 + βF2n−2 + aF2n−1, αF2n−4 + βF2n−3 − aF2n).

Using the recursion relation for Fn, let

an = αF2n−3 + βF2n−2 + aF2n−1 = (α + a)F2n−3 + (β + a)F2n−2

and
bn = αF2n−4 + βF2n−3 − aF2n = (−α + β − a)F2n−3 + (α − 2a)F2n−2.

Since gcd(an, bn) divides γan + θbn for any integers γ and θ, and

(α + a)bn − (−α + β − a)an = (α2 + αβ − β2 − a2)F2n−2

(α − 2a)an − (β + a)bn = (α2 + αβ − β2 − a2)F2n−3,

we see that if α2 + αβ − β2 − a2 6= 0, then the greatest common divisor of the two numbers
is |α2 + αβ − β2 − a2|. Therefore gcd(an, bn) divides α2 + αβ − β2 − a2. That is to say,

gcd(G4n−1 + a,G4n + a) ≤ |α2 + αβ − β2 − a2|.

If we let m = 4n + 1 and k = n in (4) we have, in exactly the same way, that

gcd(G4n+1 + a,G4n+2 + a) ≤ |α2 + αβ − β2 − a2|.

In the following we give the proof of Theorem 2. Let m = 4n and k = n in (4):

gcd(G4n + a,G4n+1 + a) = gcd(G2n + aF2n−1, G2n−1 − aF2n)

= gcd(αF2n−2 + βF2n−1 + aF2n−1, αF2n−3 + βF2n−2 − aF2n).

Using the recursion relation for Fn, let

an = αF2n−2 + βF2n−1 + aF2n−1 = αF2n−2 + (β + a)F2n−1

and
bn = αF2n−3 + βF2n−2 − aF2n = (−α + β − a)F2n−2 + (α − a)F2n−1.

Since gcd(an, bn) divides γan + θbn for any integers γ and θ, and

(α − a)an − (a + β)bn = (α2 + αβ − β2 + a2)F2n−2

αbn − (β − α − a)an = (α2 + αβ − β2 + a2)F2n−1,

we see that if α2 + αβ − β2 + a2 6= 0, then the greatest common divisor of the two numbers
is |α2 + αβ − β2 + a2|. Therefore gcd(an, bn) divides α2 + αβ − β2 + a2. That is to say,

gcd(G4n + a,G4n+1 + a) ≤ |α2 + αβ − β2 + a2|.

If we let m = 4n + 2 and k = n in (4) we have, in exactly the same way, that

gcd(G4n+2 + a,G4n+3 + a) ≤ |α2 + αβ − β2 + a2|.
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