Journal of Integer Sequences, Vol. 14 (2011), Article 11.3.3

# Powerful Values of Quadratic Polynomials 

Jean-Marie De Koninck and Nicolas Doyon<br>Départment de Mathématiques<br>Université Laval<br>Québec, PQ G1V 0A6<br>Canada<br>jmdk@mat.ulaval.ca<br>nicolas.doyon.1@ulaval.ca<br>Florian Luca<br>Instituto de Matemáticas<br>Universidad Nacional Autónoma de México<br>C. P. 58180<br>Morelia, Michoacán<br>México<br>fluca@matmor.unam.mx


#### Abstract

We study the set of those integers $k$ such that $n^{2}+k$ is powerful for infinitely many positive integers $n$. We prove that most integers $k$ have this property.


## 1 Introduction

Given an arbitrary integer $k \neq 0$, Mollin and Walsh [1] have shown that there exist infinitely many ways of writing $k$ as a difference of two nonsquare powerful numbers. A positive integer $n$ is said to be powerful if $p^{2} \mid n$ for each prime divisor $p$ of $n$. For instance, 17 has two such representations below $10^{9}$, namely $17=125-108$ and $17=173881809-173881792$. But what about representations $17=P-n^{2}$, where $P$ is a powerful number? It turns out that there are no such representation with $P<10^{9}$. However, in view of Theorem 1 (below) we believe that infinitely many such representations should exist, even though the smallest is probably very large (see Table 1 in Section 3). In general, identifying all those integers $k \neq 0$
such that $n^{2}+k$ is a powerful number for infinitely many positive integers $n$ seems to be a very difficult problem. Indeed, already showing that one such $n$ exists is not obvious.

Now, for a given $k \neq 0$, if one can find an integer $n_{0}$ such that $n_{0}^{2}+k$ is a powerful number which is not a perfect square, that is if

$$
\begin{equation*}
n_{0}^{2}+k=m_{0}^{2} b^{3} \tag{1}
\end{equation*}
$$

for some integer $m_{0}$, with $b>1$ squarefree, then (1) can be written as

$$
\begin{equation*}
n_{0}^{2}-D m_{0}^{2}=-k, \tag{2}
\end{equation*}
$$

where $D>1$ is a cube but not a square. Now since $x^{2}-D y^{2}=-k$ is a generalized Pell equation with a given solution (see, for instance, Robertson [4]), it must have infinitely many solutions, thus providing infinitely many $n$ 's for which $n^{2}+k$ is powerful. However, given an arbitrary integer $k$, finding a minimal solution $\left(n_{0}, m_{0}\right)$ of (2) for an appropriate $D$ is not easily achieved.

In this note, we use a different approach and show that for almost all integers $k$, there exist infinitely many positive integers $n$ such that $n^{2}+k$ is powerful. In fact, we prove the following result.

Theorem 1. For any positive real number $x$, let $\mathcal{P}(x)$ be the set of integers $k$ with $|k| \leq x$ such that $n^{2}+k$ is powerful for infinitely many positive integers $n$. Then $2 x-\# \mathcal{P}(x)=o(x)$.

Throughout this paper we use the Landau symbols $O$ and $o$ as well as the Vinogradov symbols $\gg$ and $\ll$ with their usual meaning. We let $\log _{1} x=\max \{1, \log x\}$, where $\log$ stands for the natural logarithm, and for $i>1$ we define $\log _{i} x=\log _{1}\left(\log _{i-1} x\right)$. When $i=1$ we omit the subscript and thus understand that all the logarithms that will appear are $\geq 1$. For a positive integer $n$ we write $\phi(n)$ for the Euler function of $n$.

## 2 The Proof

For the proof, we first give a sufficient algebraic criterion on $k$ which insures that $n^{2}+k$ is powerful for infinitely many $n$. We then show that most integers $k$ satisfy this condition.

We shall prove this only when $k>0$, but the argument extends without any major modification to the case $k<0$.

Proposition 2. Assume that there exist positive integers $y_{1}$ and $d \mid k y_{1}^{2}+1$ such that

$$
u=\frac{1}{2 y_{1}}\left(\frac{k y_{1}^{2}+1}{d}-d\right)
$$

is a positive integer coprime to $k$. Let $D=u^{2}+k$ and assume further that $y_{1}$ is coprime to $D$. Then there exist infinitely many positive integers $n$ such that $n^{2}+k$ is powerful.

Proof. Since $u$ is an integer, it follows that $d$ and $\left(k y_{1}^{2}+1\right) / d$ are integers of the same parity. Put

$$
x_{1}=\frac{1}{2}\left(\frac{k y_{1}^{2}+1}{d}+d\right) .
$$

One checks immediately that $x_{1}^{2}-\left(u y_{1}\right)^{2}=k y_{1}^{2}+1$, which can be rewritten as

$$
\begin{equation*}
x_{1}^{2}-D y_{1}^{2}=1 \tag{3}
\end{equation*}
$$

Define the sequences $\left(x_{m}\right)_{m \geq 1}$ and $\left(y_{m}\right)_{m \geq 1}$ as

$$
x_{m}+y_{m} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{m}
$$

for all $m \geq 1$. Then, for all $m \geq 1$,

$$
\begin{align*}
x_{m}^{2}-D y_{m}^{2} & =\left(x_{m}+y_{m} \sqrt{D}\right)\left(x_{m}-y_{m} \sqrt{D}\right)  \tag{4}\\
& =\left(x_{1}+y_{1} \sqrt{D}\right)^{m}\left(x_{1}-y_{1} \sqrt{D}\right)^{m} \\
& =\left(x_{1}^{2}-D y_{1}^{2}\right)^{m}=1
\end{align*}
$$

We now search for positive integers $n$ such that $n^{2}+k=D \ell^{2}$ holds with some positive integer $\ell$ such that $D \mid \ell$. It is clear that such numbers $n$ have the property that $n^{2}+k$ is powerful. We rewrite this equation as

$$
\begin{equation*}
n^{2}-D \ell^{2}=-k \tag{5}
\end{equation*}
$$

Noting that $u^{2}-D \cdot 1^{2}=-k$ and using (4), if

$$
n+\sqrt{D} \ell=(u+\sqrt{D})\left(x_{m}+\sqrt{D} y_{m}\right)
$$

one checks by multiplying each side by its conjugate that the pair ( $n, \ell$ ) satisfies (5). Expanding we get

$$
n=u x_{m}+D y_{m} \quad \text { and } \quad \ell=u y_{m}+x_{m} .
$$

It suffices to argue that there exist infinitely many $m$ such that $D \mid \ell$. Since

$$
x_{m}=\frac{1}{2}\left(\left(x_{1}+y_{1} \sqrt{D}\right)^{m}+\left(x_{1}-y_{1} \sqrt{D}\right)^{m}\right) \equiv x_{1}^{m} \quad(\bmod D),
$$

and

$$
y_{m}=\frac{1}{2 \sqrt{D}}\left(\left(x_{1}+y_{1} \sqrt{D}\right)^{m}-\left(x_{1}-y_{1} \sqrt{D}\right)^{m}\right) \equiv m x_{1}^{m-1} y_{1} \quad(\bmod D),
$$

the relation $D \mid\left(u y_{m}+x_{m}\right)$ is equivalent to $D \mid x_{1}^{m-1}\left(u m y_{1}+x_{1}\right)$. Since $D$ and $x_{1}$ are coprime (in light of (3)), the above divisibility relation holds if and only if $m u y_{1} \equiv-x_{1}(\bmod D)$. Since both $u$ and $y_{1}$ are coprime to $D$, it follows that their product is invertible modulo $D$. Hence, if $m \equiv-x_{1}\left(u y_{1}\right)^{-1}(\bmod D)$, then

$$
n=u x_{m}+D y_{m}
$$

has the property that $n^{2}+k$ is powerful. This completes the proof of the proposition.

It now remains to show that for most positive integers $k$ one can choose integers $y_{1}$ and $d$ such that the conditions from Proposition 2 are fulfilled. It is clear that for the purpose of making $n^{2}+k$ powerful, we may assume that $k$ is squarefree. Indeed, if $p^{2} \mid k$, we may then take $n=p n^{\prime}$ and note that

$$
n^{2}+k=p^{2}\left(n^{\prime 2}+\left(k / p^{2}\right)\right)
$$

so we may replace $k$ by $k / p^{2}$.
Theorem 3. The set of squarefree positive integers $k$ for which there exist positive integers $y_{1}$ and $d \mid k y_{1}^{2}+1$ such that the conditions of Proposition 2 are satisfied is of density 1.

Proof. We let $x$ be a large positive real number and we assume that $k \leq x$ is a positive integer. We choose $y_{1}=12$.

The number $d$ will always be a prime number in a certain arithmetical progression modulo 144, as follows. If $\operatorname{gcd}(k, 6)=1$, we then take $d \equiv 1(\bmod 144)$. If $\operatorname{gcd}(k, 6)=2$, then $d \equiv 91$ $(\bmod 144)$. If $\operatorname{gcd}(k, 6)=3$, we put $d \equiv 65(\bmod 144)$, and finally if $6 \mid k$, we then put $d \equiv 11$ $(\bmod 144)$.

We first show that $y_{1}$ and $D$ are coprime, from which it will follow that 6 and $D$ are coprime.

If $\operatorname{gcd}(k, 6)=1$, then since $d \equiv 1(\bmod 144)$, we get that $(144 k+1) / d \equiv 1(\bmod 144)$. Hence, $(144 k+1) / d-d \equiv 0(\bmod 144)$, which shows that $6 \mid u$. Since $k$ is coprime to 6 , we get that 6 is coprime to $D$.

If $\operatorname{gcd}(k, 6)=2$, then $d \equiv 91(\bmod 144)$. In particular, $d \equiv 11(\bmod 16)$ and $d \equiv$ $1(\bmod 9)$. Hence, $(144 k+1) / d \equiv 3(\bmod 16)$ and $(144 k+1) / d \equiv 1(\bmod 9)$. Thus, $(144 k+1) / d-d$ is congruent to 8 modulo 16 and to 0 modulo 9 . Hence, $u$ is an odd multiple of 3 . Since 2 divides $k$ but 3 doesn't, we get that 6 is coprime to $D$.

It is easily seen that the other two cases, namely $\operatorname{gcd}(k, 6)=3$ and $\operatorname{gcd}(k, 6)=6$, can be treated similarly.

Moreover, since $\operatorname{gcd}\left(u^{2}+k, 12\right)=\operatorname{gcd}(D, y)=1$ there is no prime $p \in\{2,3\}$ such that $p \mid \operatorname{gcd}(k, u)$.

Thus, it remains to show that for all positive integers $k \leq x$ except $o(x)$ of them such a prime $d$ can be chosen in such a way that there is no prime $p>3$ dividing both $u$ and $k$. Note that if $p>3$ divides both $u$ and $k$, then $(144 k+1) / d \equiv d(\bmod p)$, so that $144 k+1 \equiv d^{2}$ $(\bmod p)$, in which case $d^{2} \equiv 1(\bmod p)$. Thus, $d \equiv \pm 1(\bmod p)$. We can reverse the argument to show that if $d \equiv \pm 1(\bmod p)$, then $p \mid 2 y_{1} u$ and $p \mid k$. Since $p>3$ and the largest prime factor of $y_{1}$ is 3 , the condition $d \equiv \pm 1(\bmod p)$ guarantees that $p \mid \operatorname{gcd}(u, k)$.

For coprime positive integers $a, b$ we write

$$
S(x ; a, b)=\sum_{p \equiv a(\bmod b)} \frac{1}{p}-\frac{\log _{2} x}{\phi(b)} .
$$

A result of Pomerance (see Theorem 1 and Remark 1 in [3]) shows that, uniformly for all $a<b \leq x$,

$$
S(x ; a, b)=\frac{1}{p(a, b)}+O\left(\frac{\log 2 b}{\phi(b)}\right)
$$

where $p(a, b)$ is the smallest prime number in the arithmetical progression $a(\bmod b)$.
Let $\omega(k ; a, b)$ be the number of prime factors $p$ of $k$ which are congruent to $a(\bmod b)$. We let $b=144, a=1,91,65,11$ according to whether $\operatorname{gcd}(k, 6)=1,2,3,6$, respectively. By a classical result of Turán [5], the estimate

$$
\omega(144 k+1 ; a, b)=\frac{\log _{2} x}{\phi(b)}+O\left(\left(\frac{\log _{2} x}{\phi(b)}\right)^{2 / 3}\right)
$$

holds for all $k \leq x$, with at most

$$
O\left(\frac{x}{\left(\log _{2} x\right)^{1 / 6}}\right)=o(x)
$$

exceptions. From now on, we work only with such positive integers $k$. Note that $\omega(144 k+$ $1 ; a, b)$ gives the number of admissible values for $d$.

We now put $y=\log _{2} x, z=x^{1 / 3}$ and show that the number of such $k \leq x$ for which there exists a prime factor $p \in[y, z]$ dividing both $u$ and $k$ is $o(x)$. Indeed, let us fix $p$ and $d$. Then $k \equiv 0(\bmod p)$ and $144 k+1 \equiv 0(\bmod d)$. This puts $k \leq x$ into a certain arithmetical progression modulo pd.

Assume first that $p d \leq x$. Clearly, the number of such positive integers $k \leq x$ is $\leq$ $x /(p d)+1 \ll x /(p d)$. Summing up this inequality for all $p \geq y$ and all $d \equiv \pm 1(\bmod p)$, we get that the number of such numbers $k$ is

$$
\ll x \sum_{p \geq y} \frac{1}{p} \sum_{\substack{d \leq x \\ d \equiv \pm 1(\bmod p)}} \frac{1}{d} \ll x \log _{2} x \sum_{p \geq y} \frac{1}{p^{2}} \ll \frac{x \log _{2} x}{y \log y}=o(x) .
$$

We now look at those positive integers $k \leq x$ such that $p d>x$. Write $144 k+1=d m$, and note that $m \leq 288 x / d<288 p \ll p$. Since $p \mid k$ and $d \equiv \pm 1(\bmod p)$, we get that $m \equiv \pm 1$ $(\bmod p)$. Fix $m$. Then $k / p$ is in a certain residue class modulo $m$ depending on $p$. Write $k / p=v+m \ell$. Then

$$
d m=144 p(k / p)+1=(144 p v+1)+144 p m \ell
$$

so that

$$
d=w+144 p \ell,
$$

where $w=(144 p v+1) / m$. Furthermore, $d \leq 288 x / m$. Hence, by a result of Montgomery and Vaughan [2], the number of such primes $d$ does not exceed

$$
\begin{equation*}
\frac{4 \cdot 144 x}{m \phi(144 p) \log (288 x /(m p))} \ll \frac{x}{m p \log x}, \tag{6}
\end{equation*}
$$

where we used the fact that $m \leq 288 p \leq 288 x^{1 / 3}$, and therefore

$$
\frac{288 x}{m p} \gg x^{1 / 3}
$$

Summing up inequality (6) over all the possible values of $m \leq 288 p \leq 288 x^{1 / 3}$, and then afterwards over all $p \in[y, z]$, we get that the number of such $k$ 's is

$$
\ll \frac{x}{\log x} \sum_{y \leq p} \frac{1}{p} \sum_{\substack{m \leq x \\ m \equiv \pm 1(\bmod p)}} \frac{1}{m} \ll x \sum_{y \leq p} \frac{1}{p^{2}} \ll \frac{x}{y \log y}=o(x) .
$$

From now on, we consider only those $k$ such that if $d \equiv a(\bmod b)$ is a prime factor of $144 k+1$, with the pair $(a, b)$ being the appropriate one depending on the value of $\operatorname{gcd}(k, 6)$, then there exists a prime $p \in[5, y] \cup\left[x^{1 / 3}, x\right]$ such that $p \mid \operatorname{gcd}(k, u)$. First observe that $k$ has at most 3 prime factors in $\left[x^{1 / 3}, x\right]$.

Moreover, for each prime $p>x^{1 / 3}$, there are at most 3 values of $d$ such that $d \equiv \pm 1$ $(\bmod p)$. Indeed, if there were 4 or more, let $d_{1}, d_{2}, d_{3}$ and $d_{4}$ be 4 of them. We would then have

$$
144 x+1 \geq 144 k+1 \geq d_{1} d_{2} d_{3} d_{4} \geq\left(x^{1 / 3}-1\right)^{4}
$$

which is impossible for large $x$. Hence, there are at most 9 values of $d$ which might be congruent to $\pm 1$ modulo some prime factor $p>x^{1 / 3}$ of $k$. Since we have $(1+o(1)) \frac{\log _{2} x}{\phi(b)}$ such primes $d$, it follows that we also have $(1+o(1)) \frac{\log _{2} x}{\phi(b)}$ such prime factors $d$ of $144 k+1$ with the property that each of them is congruent to $\pm 1$ modulo a prime factor $p$ of $k$ in the interval [5, y]. We apply Turán's inequality from [5] again to conclude that all $k \leq x$ have at most $1.5 \log _{2} y<2 \log _{4} x$ prime factors $p<y$ with at most $o(x)$ exceptions.

We now write

$$
M=\prod_{5 \leq p<\left(\log _{3} x\right) / 2} p
$$

and look at those $d$ such that $d \equiv 2(\bmod M)$. Note that such $d$ are in a certain arithmetical progression $A(\bmod B)$, where $B=b M=\left(\log _{2} x\right)^{1 / 2+o(1)}$. We apply again the results from [3] and [5] to infer that all positive integers $k \leq x$ have $\omega(k ; A, B)$ factors in the interval

$$
\left[\frac{\log _{2} x}{2 \phi(B)}, \frac{2 \log _{2} x}{\phi(B)}\right]
$$

with $o(x)$ possible exceptions. Because $d \equiv 2(\bmod M)$, we have that $d \not \equiv \pm 1(\bmod p)$ for all $p<\left(\log _{3} x\right) / 2$. Hence, there exist at least

$$
\mu:=\left\lfloor\left(\log _{2} x\right) /\left(4 \log _{4} x \phi(B)\right)\right\rfloor>\left(\log _{2} x\right)^{1 / 3}
$$

such primes $d$ which furthermore are congruent to either 1 or -1 modulo $p$ for the same prime $p>\left(\log _{3} x\right) / 2$.

We now count how many such $k$ 's can there can be. Because of the above argument, we can write $144 k+1=d_{1} d_{2} \cdots d_{\mu} Q<288 x$ (for some positive integer $Q$ ), where each $d_{j} \equiv \pm 1$
$(\bmod p)$. Thus, the number of such $k$ 's is at most

$$
\begin{aligned}
\sum_{p>\left(\log _{3} x\right) / 2} \frac{288 x}{\mu!}\left(\sum_{\substack{d \leq x \\
d \equiv A(\bmod B) \\
d \equiv \pm 1(\bmod p)}} \frac{1}{d}\right)^{\mu} & \ll x \sum_{p>\left(\log _{3} x\right) / 2}\left(\frac{2 e \log _{2} x+O(1)}{\mu \phi(B)(p-1)}\right)^{\mu} \\
& \ll x \sum_{p>\left(\log _{3} x\right) / 2}\left(\frac{O\left(\log _{4} x\right)}{p}\right)^{\left(\log _{2} x\right)^{1 / 3}} \\
& =o(x),
\end{aligned}
$$

which completes the proof of Theorem 3.

## 3 Comments and Numerical Results

Although we proved that $n^{2}+k$ is powerful for infinitely many $n$ 's only for most integers $k$, we do conjecture that this is actually true for all integers $k$. Indeed, fixing a squarefree integer $k$, the probability that $n^{2}+k$ is powerful is of the order $\frac{1}{\sqrt{n^{2}+k}} \approx \frac{1}{n}$ for large $n$. This means that we should expect that

$$
\begin{equation*}
\#\left\{n \leq x: n^{2}+k \text { is powerful }\right\} \sim \sum_{n \leq x} \frac{1}{n} \sim \log x \rightarrow \infty \quad \text { as } x \rightarrow \infty \tag{7}
\end{equation*}
$$

for any squarefree $k$. From our proof it follows indeed that if $\#\left\{n: n^{2}+k\right.$ is powerful $\}>1$, then $\#\left\{n \leq x: n^{2}+k\right.$ is powerful $\} \gg \log x$.

Table 1 (resp. Table 2) provides, for each integer $1 \leq k \leq 50$, the smallest known value of $n$ for which $n^{2}+k$ (resp. $n^{2}-k$ ) is a powerful number without being a perfect square. These values of $n$ were obtained by finding the minimal solution of $x^{2}-D y^{2}= \pm k$ by considering various cubefull $D$ 's. Those $n>10^{9}$ may not be the smallest $n$ for which $n^{2} \pm k$ is powerful.

Given three integers $a, b, c$, one could ask if the polynomial $a n^{2}+b n+c$ is powerful for infinitely many integers $n$. Assuming that $a n^{2}+b n+c$ is a powerful number which is not a square, we can then write $a n^{2}+b n+c=D m^{2}$ with $D>1$ squarefree and $D \mid m$. We then have

$$
n=\frac{-b \pm \sqrt{4 a D m^{2}+b^{2}-4 a c}}{2 a}
$$

Since $n$ is an integer, there exists an integer $y$ such that $4 a D m^{2}+b^{2}-4 a c=y^{2}$, or, equivalently, $y^{2}-a D(2 m)^{2}=b^{2}-4 a c$ with $y \equiv \pm b(\bmod 2 a)$. But then the existence of one solution implies the existence of infinitely many. On the other hand, we also get that if there is an infinity of integers $y$ for which $y^{2}-b^{2}+4 a c=D x^{2}$ where $D>1$ is squarefree and $2 a D \mid x$, then there exist infinitely many $n$ 's for which $a n^{2}+b n+c$ is a powerful number.

The prediction (7) may at first seem at odd with the fact that some of the smallest $n$ 's obtained in Tables 1 and 2 are huge. However, the statement " $n^{2}+k$ is powerful" is
equivalent to " $n^{2}+k=d m^{2}$ with $d$ squarefree and $d \mid m$ ". Now for any fixed $d$, this last equation is a generalized Pell equation. While a solution may not exist for some values of $d$, when it does for a particular $d$, it is well known that the smallest solution can be surprisingly large. When solutions exist, it is still possible that none of them will be such that $d \mid m$. The size of the smallest solution such that $d \mid m$ can also be quite large. There are thus three possible reasons for the huge value of the smallest solution: a large value of $d$, a large value of the smallest solution to $n^{2}+k=d m^{2}$ or a large value of the smallest solution such that $d \mid m$. We investigated this in Table 3, where $n=n_{0}$ is the smallest solution to $n^{2}+k=d m^{2}$ not taking into account the restriction $d \mid m$. It turns out that the surprisingly large values of the smallest $n$ in Table 1 are not due to a very large value of $d$ but rather to a large value of $n_{0}$ (see for instance $k=33$ ), or to the large size of the smallest solution $n_{0}$ for which $d \mid m$ (see for instance $k=17$ ).

| $k$ | $n$ | $n^{2}+k$ | $k$ | $n$ | $n^{2}+k$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 682 | $5^{3} \cdot 61^{2}$ | 26 | 109 | $3^{5} \cdot 7^{2}$ |
| 2 | 5 | $3^{3}$ | 27 | 36 | $3^{3} \cdot 7^{2}$ |
| 3 | 37 | $2^{2} \cdot 7^{3}$ | 28 | 62 | $2^{5} \cdot 11^{2}$ |
| 4 | 11 | $5^{3}$ | 29 | 436 | $3^{2} \cdot 5^{3} \cdot 13^{2}$ |
| 5 | 1879706 | $3^{5} \cdot 7^{2} \cdot 23^{3} \cdot 29^{3}$ | 30 | 832836278711 | $31^{2} \cdot 59^{2} \cdot 67^{2} \cdot 79^{3} \cdot 9679^{2}$ |
| 6 | 463 | $5^{4} \cdot 7^{3}$ | 31 | 63 | $2^{5} \cdot 5^{3}$ |
| 7 | 11 | $2^{7}$ | 32 | 88 | $2^{5} \cdot 3^{5}$ |
| 8 | 10 | $2^{2} \cdot 3^{3}$ | 33 | $n_{33}$ | $f_{33}$ |
| 9 | 2046 | $3^{2} \cdot 5^{3} \cdot 61^{2}$ | 34 | 7037029 | $5^{5} \cdot 7^{5} \cdot 971^{2}$ |
| 10 | 341881 | $11^{3} \cdot 9371^{2}$ | 35 | 36 | $11^{3}$ |
| 11 | 31 | $2^{2} \cdot 3^{5}$ | 36 | 33 | $3^{2} \cdot 5^{3}$ |
| 12 | 74 | $2^{4} \cdot 7^{3}$ | 37 | $n_{37}$ | $f_{37}$ |
| 13 | 70 | $17^{3}$ | 38 | 5945 | $3^{2} \cdot 7^{3} \cdot 107^{2}$ |
| 14 | 5519 | $3^{3} \cdot 5^{5} \cdot 19^{2}$ | 39 | 31 | $2^{3} \cdot 5^{3}$ |
| 15 | 793 | $2^{7} \cdot 17^{3}$ | 40 | 52 | $2^{3} \cdot 7^{3}$ |
| 16 | 22 | $2^{2} \cdot 5^{3}$ | 41 | 78 | $5^{3} \cdot 7^{2}$ |
| 17 | $n_{17}$ | $f_{17}$ | 42 | 720025 | $13^{3} \cdot 31^{3} \cdot 89^{2}$ |
| 18 | 57 | $3^{3} \cdot 11^{2}$ | 43 | 22364 | $11^{3} \cdot 613^{2}$ |
| 19 | 559 | $2^{2} \cdot 5^{7}$ | 44 | 62 | $2^{4} \cdot 3^{5}$ |
| 20 | 338 | $2^{3} \cdot 3^{3} \cdot 23^{2}$ | 45 | 96 | $3^{3} \cdot 7^{3}$ |
| 21 | $n_{21}$ | $f_{21}$ | 46 | 50927 | $5^{5} \cdot 11^{2} \cdot 19^{3}$ |
| 22 | 503259461 | $47^{3} \cdot 491^{2} \cdot 3181^{2}$ | 47 | 39 | $2^{5} \cdot 7^{2}$ |
| 23 | 45 | $2^{11}$ | 48 | 148 | $2^{6} \cdot 7^{3}$ |
| 24 | 926 | $2^{2} \cdot 5^{4} \cdot 7^{3}$ | 49 | 524 | $5^{3} \cdot 13^{3}$ |
| 25 | 190 | $5^{3} \cdot 17^{2}$ | 50 | 1325 | $3^{5} \cdot 5^{2} \cdot 17^{2}$ |

Here, $n_{17}=1952785824219551870$ with $f_{17}=3^{2} \cdot 13^{3} \cdot 367^{2} \cdot 7487^{2} \cdot 5054107013^{2}$;
$n_{21}=4580728614212333152148$ with $f_{21}=5^{2} \cdot 31^{2} \cdot 37^{3} \cdot 41611^{2} \cdot 3155673955493^{2}$;
$n_{33}=2451448196948930$ with $f_{33}=7^{2} \cdot 17^{3} \cdot 29^{3} \cdot 31992951041^{2}$;
$n_{37}=18651116694721032166213875246076$ with $f_{37}=317^{3} \cdot 10219159057^{2} \cdot 323370789682598407^{2}$.

Table 2

| $k$ | $n$ | $n^{2}-k$ |
| :---: | :---: | :---: |
| 1 | 3 | $2^{3}$ |
| 2 | 11427 | $7^{3} \cdot 617^{2}$ |
| 3 | $n_{3}$ | $f_{3}$ |
| 4 | 6 | $2^{5}$ |
| 5 | 73 | $2^{2} \cdot 11^{3}$ |
| 6 | 62531004125 | $19^{3} \cdot 14831^{2} \cdot 50909^{2}$ |
| 7 | $n_{7}$ | $f_{7}$ |
| 8 | 20 | $2^{3} \cdot 7^{2}$ |
| 9 | 15 | $2^{3} \cdot 3^{3}$ |
| 10 | $n_{10}$ | $f_{10}$ |
| 11 | 56 | $5^{5}$ |
| 12 | 47 | $13^{3}$ |
| 13 | 16 | $3^{5}$ |
| 14 | 33017 | $5^{2} \cdot 11^{3} \cdot 181^{2}$ |
| 15 | 1138 | $109^{3}$ |
| 16 | 68 | $2^{9} \cdot 3^{2}$ |
| 17 | 23 | $2^{9}$ |
| 18 | 19 | $7^{3}$ |
| 19 | 762488 | $3^{2} \cdot 5^{3} \cdot 127^{2} \cdot 179^{2}$ |
| 20 | 146 | $2^{4} \cdot 11^{3}$ |
| 21 | 1552808 | $43^{3} \cdot 5507^{2}$ |
| 22 | 47 | $3^{7}$ |
| 23 | 6234 | $7^{2} \cdot 13^{3} \cdot 19^{2}$ |
| 24 | 32 | $2^{3} \cdot 5^{3}$ |
| 25 | 45 | $2^{4} \cdot 5^{3}$ |


| $k$ | $n$ | $n^{2}-k$ |
| :---: | :---: | :---: |
| 26 | 2537 | $23^{5}$ |
| 27 | 51700 | $13^{3} \cdot 1103^{2}$ |
| 28 | 54 | $2^{3} \cdot 19^{2}$ |
| 29 | 426 | $7^{3} \cdot 23^{2}$ |
| 30 | 83 | $19^{3}$ |
| 31 | 34 | $3^{2} \cdot 5^{3}$ |
| 32 | 40 | $2^{5} \cdot 7^{2}$ |
| 33 | 3601 | $2^{8} \cdot 37^{3}$ |
| 34 | 948281 | $3^{6} \cdot 47^{3} \cdot 109^{2}$ |
| 35 | 531783519104 | $29^{3} \cdot 997^{2} \cdot 3415409^{2}$ |
| 36 | 42 | $2^{6} \cdot 3^{3}$ |
| 37 | 73 | $2^{2} \cdot 3^{3} \cdot 7^{2}$ |
| 38 | 16493 | $11^{2} \cdot 131^{3}$ |
| 39 | $n_{39}$ | $f_{39}$ |
| 40 | 632 | $2^{3} \cdot 3^{3} \cdot 43^{2}$ |
| 41 | 71 | $2^{3} \cdot 5^{4}$ |
| 42 | 691888331 | $13^{2} \cdot 79^{3} \cdot 75797^{2}$ |
| 43 | 5016 | $13^{2} \cdot 53^{3}$ |
| 44 | 112 | $2^{2} \cdot 5^{5}$ |
| 45 | 219 | $2^{2} \cdot 3^{2} \cdot 11^{3}$ |
| 46 | 847 | $3^{3} \cdot 163^{2}$ |
| 47 | 180190 | $53^{3} \cdot 467^{2}$ |
| 48 | 94 | $2^{2} \cdot 13^{3}$ |
| 49 | 56 | $3^{2} \cdot 7^{3}$ |
| 50 | 57135 | $5^{2} \cdot 7^{3} \cdot 617^{2}$ |

Here, $n_{3}=15503069909027$ with $f_{3}=13^{3} \cdot 239^{2} \cdot 64866401293^{2}$;
$n_{7}=85227106679780$ with $f_{7}=3^{3} \cdot 59^{3} \cdot 36192438539^{2}$;
$n_{10}=71457130044805582612325294634331$ with $f_{10}=3^{3} \cdot 13^{3} \cdot 43^{2} \cdot 6823075915494777091540353511^{2}$;
$n_{39}=82716851195974$ with $f_{39}=7^{2} \cdot 373^{3} \cdot 29287^{2} \cdot 56009^{2}$.

## 4 Acknowledgments

The first author was partially supported by a grant from NSERC, while the third author was supported by projects SEP-CONACYT 37259-E and 37260-E.

Table 3

| $k$ | d | $n_{0}$ | $k$ | d | $n_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 2 | 26 | 3 | 1 |
| 2 | 3 | 2 | 27 | 3 | 9 |
| 3 | 7 | 2 | 28 | 2 | 2 |
| 4 | 5 | 1 | 29 | 5 | 4 |
| 5 | $3 \cdot 23 \cdot 29$ | 26258 | 30 | 79 | 7 |
| 6 | 7 | 1 | 31 | 10 | 3 |
| 7 | 2 | 1 | 32 | 6 | 8 |
| 8 | 3 | 2 | 33 | $17 \cdot 29$ | 1310 |
| 9 | 5 | 6 | 34 | 35 | 1 |
| 10 | 11 | 1 | 35 | 11 | 3 |
| 11 | 3 | 1 | 36 | 5 | 3 |
| 12 | 7 | 4 | 37 | 317 | 61016 |
| 13 | 17 | 2 | 38 | 7 | 5 |
| 14 | 15 | 1 | 39 | 10 | 1 |
| 15 | 34 | 11 | 40 | 14 | 4 |
| 16 | 5 | 2 | 41 | 5 | 2 |
| 17 | 13 | 10 | 42 | $31 \cdot 13$ | 19 |
| 18 | 3 | 3 | 43 | 11 | 1 |
| 19 | 5 | 1 | 44 | 3 | 2 |
| 20 | 6 | 2 | 45 | 21 | 12 |
| 21 | 37 | 4 | 46 | 95 | 7 |
| 22 | 47 | 5 | 47 | 2 | 5 |
| 23 | 2 | 3 | 48 | 7 | 8 |
| 24 | 7 | 2 | 49 | 65 | 4 |
| 25 | 5 | 10 | 50 |  | 5 |

## References

[1] R. A. Mollin and P. G. Walsh, Proper differences of nonsquare powerful numbers, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 2, 71-76.
[2] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[3] C. Pomerance, On the distribution of amicable numbers, J. reine angew. Math., 293/294 (1977), 217-222.
[4] J. P. Robertson, Solving the generalized Pell equation $x^{2}-D y^{2}=N$, http://www.hometown.aol.com/jpr2718/pell.pdf.
[5] P. Turán, Uber einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan, J. London Math. Soc., 11 (1936), 125-133.

2010 Mathematics Subject Classification: Primary 11A05; Secondary 11N25.
Keywords: powerful numbers, generalized Pell equation.
(Concerned with sequence A001694.)

Received October 27 2010; revised version received February 22 2011. Published in Journal of Integer Sequences, March 252011.

Return to Journal of Integer Sequences home page.

