

# **Powerful Values of Quadratic Polynomials**

Jean-Marie De Koninck and Nicolas Doyon Départment de Mathématiques Université Laval Québec, PQ G1V 0A6 Canada jmdk@mat.ulaval.ca nicolas.doyon.1@ulaval.ca

Florian Luca Instituto de Matemáticas Universidad Nacional Autónoma de México C. P. 58180 Morelia, Michoacán México fluca@matmor.unam.mx

#### Abstract

We study the set of those integers k such that  $n^2 + k$  is powerful for infinitely many positive integers n. We prove that most integers k have this property.

#### 1 Introduction

Given an arbitrary integer  $k \neq 0$ , Mollin and Walsh [1] have shown that there exist infinitely many ways of writing k as a difference of two nonsquare powerful numbers. A positive integer n is said to be *powerful* if  $p^2 | n$  for each prime divisor p of n. For instance, 17 has two such representations below  $10^9$ , namely 17 = 125 - 108 and 17 = 173881809 - 173881792. But what about representations  $17 = P - n^2$ , where P is a powerful number? It turns out that there are no such representation with  $P < 10^9$ . However, in view of Theorem 1 (below) we believe that infinitely many such representations should exist, even though the smallest is probably very large (see Table 1 in Section 3). In general, identifying all those integers  $k \neq 0$  such that  $n^2 + k$  is a powerful number for infinitely many positive integers n seems to be a very difficult problem. Indeed, already showing that one such n exists is not obvious.

Now, for a given  $k \neq 0$ , if one can find an integer  $n_0$  such that  $n_0^2 + k$  is a powerful number which is not a perfect square, that is if

$$n_0^2 + k = m_0^2 b^3,\tag{1}$$

for some integer  $m_0$ , with b > 1 squarefree, then (1) can be written as

$$n_0^2 - Dm_0^2 = -k, (2)$$

where D > 1 is a cube but not a square. Now since  $x^2 - Dy^2 = -k$  is a generalized Pell equation with a given solution (see, for instance, Robertson [4]), it must have infinitely many solutions, thus providing infinitely many n's for which  $n^2 + k$  is powerful. However, given an arbitrary integer k, finding a minimal solution  $(n_0, m_0)$  of (2) for an appropriate D is not easily achieved.

In this note, we use a different approach and show that for almost all integers k, there exist infinitely many positive integers n such that  $n^2 + k$  is powerful. In fact, we prove the following result.

**Theorem 1.** For any positive real number x, let  $\mathcal{P}(x)$  be the set of integers k with  $|k| \leq x$  such that  $n^2 + k$  is powerful for infinitely many positive integers n. Then  $2x - \#\mathcal{P}(x) = o(x)$ .

Throughout this paper we use the Landau symbols O and o as well as the Vinogradov symbols  $\gg$  and  $\ll$  with their usual meaning. We let  $\log_1 x = \max\{1, \log x\}$ , where log stands for the natural logarithm, and for i > 1 we define  $\log_i x = \log_1(\log_{i-1} x)$ . When i = 1 we omit the subscript and thus understand that all the logarithms that will appear are  $\geq 1$ . For a positive integer n we write  $\phi(n)$  for the Euler function of n.

#### 2 The Proof

For the proof, we first give a sufficient algebraic criterion on k which insures that  $n^2 + k$  is powerful for infinitely many n. We then show that most integers k satisfy this condition.

We shall prove this only when k > 0, but the argument extends without any major modification to the case k < 0.

**Proposition 2.** Assume that there exist positive integers  $y_1$  and  $d \mid ky_1^2 + 1$  such that

$$u = \frac{1}{2y_1} \left( \frac{ky_1^2 + 1}{d} - d \right)$$

is a positive integer coprime to k. Let  $D = u^2 + k$  and assume further that  $y_1$  is coprime to D. Then there exist infinitely many positive integers n such that  $n^2 + k$  is powerful.

*Proof.* Since u is an integer, it follows that d and  $(ky_1^2 + 1)/d$  are integers of the same parity. Put

$$x_1 = \frac{1}{2} \left( \frac{ky_1^2 + 1}{d} + d \right).$$

One checks immediately that  $x_1^2 - (uy_1)^2 = ky_1^2 + 1$ , which can be rewritten as

$$x_1^2 - Dy_1^2 = 1. (3)$$

Define the sequences  $(x_m)_{m\geq 1}$  and  $(y_m)_{m\geq 1}$  as

$$x_m + y_m \sqrt{D} = (x_1 + y_1 \sqrt{D})^m$$

for all  $m \ge 1$ . Then, for all  $m \ge 1$ ,

$$x_m^2 - Dy_m^2 = (x_m + y_m \sqrt{D})(x_m - y_m \sqrt{D})$$

$$= (x_1 + y_1 \sqrt{D})^m (x_1 - y_1 \sqrt{D})^m$$

$$= (x_1^2 - Dy_1^2)^m = 1$$
(4)

We now search for positive integers n such that  $n^2 + k = D\ell^2$  holds with some positive integer  $\ell$  such that  $D \mid \ell$ . It is clear that such numbers n have the property that  $n^2 + k$  is powerful. We rewrite this equation as

$$n^2 - D\ell^2 = -k. (5)$$

Noting that  $u^2 - D \cdot 1^2 = -k$  and using (4), if

$$n + \sqrt{D}\ell = (u + \sqrt{D})(x_m + \sqrt{D}y_m),$$

one checks by multiplying each side by its conjugate that the pair  $(n, \ell)$  satisfies (5). Expanding we get

 $n = ux_m + Dy_m$  and  $\ell = uy_m + x_m$ .

It suffices to argue that there exist infinitely many m such that  $D \mid \ell$ . Since

$$x_m = \frac{1}{2} \left( (x_1 + y_1 \sqrt{D})^m + (x_1 - y_1 \sqrt{D})^m \right) \equiv x_1^m \pmod{D},$$

and

$$y_m = \frac{1}{2\sqrt{D}} \left( (x_1 + y_1\sqrt{D})^m - (x_1 - y_1\sqrt{D})^m \right) \equiv mx_1^{m-1}y_1 \pmod{D},$$

the relation  $D | (uy_m + x_m)$  is equivalent to  $D | x_1^{m-1}(umy_1 + x_1)$ . Since D and  $x_1$  are coprime (in light of (3)), the above divisibility relation holds if and only if  $muy_1 \equiv -x_1 \pmod{D}$ . Since both u and  $y_1$  are coprime to D, it follows that their product is invertible modulo D. Hence, if  $m \equiv -x_1(uy_1)^{-1} \pmod{D}$ , then

$$n = ux_m + Dy_m$$

has the property that  $n^2 + k$  is powerful. This completes the proof of the proposition.  $\Box$ 

It now remains to show that for most positive integers k one can choose integers  $y_1$  and d such that the conditions from Proposition 2 are fulfilled. It is clear that for the purpose of making  $n^2 + k$  powerful, we may assume that k is squarefree. Indeed, if  $p^2 | k$ , we may then take n = pn' and note that

$$n^{2} + k = p^{2}(n'^{2} + (k/p^{2})),$$

so we may replace k by  $k/p^2$ .

**Theorem 3.** The set of squarefree positive integers k for which there exist positive integers  $y_1$  and  $d | ky_1^2 + 1$  such that the conditions of Proposition 2 are satisfied is of density 1.

*Proof.* We let x be a large positive real number and we assume that  $k \leq x$  is a positive integer. We choose  $y_1 = 12$ .

The number d will always be a prime number in a certain arithmetical progression modulo 144, as follows. If gcd(k, 6) = 1, we then take  $d \equiv 1 \pmod{144}$ . If gcd(k, 6) = 2, then  $d \equiv 91 \pmod{144}$ . If gcd(k, 6) = 3, we put  $d \equiv 65 \pmod{144}$ , and finally if  $6 \mid k$ , we then put  $d \equiv 11 \pmod{144}$ .

We first show that  $y_1$  and D are coprime, from which it will follow that 6 and D are coprime.

If gcd(k, 6) = 1, then since  $d \equiv 1 \pmod{144}$ , we get that  $(144k + 1)/d \equiv 1 \pmod{144}$ . Hence,  $(144k + 1)/d - d \equiv 0 \pmod{144}$ , which shows that  $6 \mid u$ . Since k is coprime to 6, we get that 6 is coprime to D.

If gcd(k, 6) = 2, then  $d \equiv 91 \pmod{144}$ . In particular,  $d \equiv 11 \pmod{16}$  and  $d \equiv 1 \pmod{9}$ . Hence,  $(144k + 1)/d \equiv 3 \pmod{16}$  and  $(144k + 1)/d \equiv 1 \pmod{9}$ . Thus, (144k+1)/d - d is congruent to 8 modulo 16 and to 0 modulo 9. Hence, u is an odd multiple of 3. Since 2 divides k but 3 doesn't, we get that 6 is coprime to D.

It is easily seen that the other two cases, namely gcd(k, 6) = 3 and gcd(k, 6) = 6, can be treated similarly.

Moreover, since  $gcd(u^2 + k, 12) = gcd(D, y) = 1$  there is no prime  $p \in \{2, 3\}$  such that  $p \mid gcd(k, u)$ .

Thus, it remains to show that for all positive integers  $k \leq x$  except o(x) of them such a prime d can be chosen in such a way that there is no prime p > 3 dividing both u and k. Note that if p > 3 divides both u and k, then  $(144k + 1)/d \equiv d \pmod{p}$ , so that  $144k + 1 \equiv d^2 \pmod{p}$ , in which case  $d^2 \equiv 1 \pmod{p}$ . Thus,  $d \equiv \pm 1 \pmod{p}$ . We can reverse the argument to show that if  $d \equiv \pm 1 \pmod{p}$ , then  $p \mid 2y_1u$  and  $p \mid k$ . Since p > 3 and the largest prime factor of  $y_1$  is 3, the condition  $d \equiv \pm 1 \pmod{p}$  guarantees that  $p \mid \gcd(u, k)$ .

For coprime positive integers a, b we write

$$S(x; a, b) = \sum_{p \equiv a \pmod{b}} \frac{1}{p} - \frac{\log_2 x}{\phi(b)}.$$

A result of Pomerance (see Theorem 1 and Remark 1 in [3]) shows that, uniformly for all  $a < b \leq x$ ,

$$S(x; a, b) = \frac{1}{p(a, b)} + O\left(\frac{\log 2b}{\phi(b)}\right),$$

where p(a, b) is the smallest prime number in the arithmetical progression  $a \pmod{b}$ .

Let  $\omega(k; a, b)$  be the number of prime factors p of k which are congruent to  $a \pmod{b}$ . We let b = 144, a = 1,91,65,11 according to whether gcd(k,6) = 1,2,3,6, respectively. By a classical result of Turán [5], the estimate

$$\omega(144k+1; a, b) = \frac{\log_2 x}{\phi(b)} + O\left(\left(\frac{\log_2 x}{\phi(b)}\right)^{2/3}\right)$$

holds for all  $k \leq x$ , with at most

$$O\left(\frac{x}{(\log_2 x)^{1/6}}\right) = o(x)$$

exceptions. From now on, we work only with such positive integers k. Note that  $\omega(144k + 1; a, b)$  gives the number of admissible values for d.

We now put  $y = \log_2 x$ ,  $z = x^{1/3}$  and show that the number of such  $k \leq x$  for which there exists a prime factor  $p \in [y, z]$  dividing both u and k is o(x). Indeed, let us fix p and d. Then  $k \equiv 0 \pmod{p}$  and  $144k + 1 \equiv 0 \pmod{d}$ . This puts  $k \leq x$  into a certain arithmetical progression modulo pd.

Assume first that  $pd \leq x$ . Clearly, the number of such positive integers  $k \leq x$  is  $\leq x/(pd) + 1 \ll x/(pd)$ . Summing up this inequality for all  $p \geq y$  and all  $d \equiv \pm 1 \pmod{p}$ , we get that the number of such numbers k is

$$\ll x \sum_{p \ge y} \frac{1}{p} \sum_{\substack{d \le x \\ d \equiv \pm 1 \pmod{p}}} \frac{1}{d} \ll x \log_2 x \sum_{p \ge y} \frac{1}{p^2} \ll \frac{x \log_2 x}{y \log y} = o(x).$$

We now look at those positive integers  $k \leq x$  such that pd > x. Write 144k+1 = dm, and note that  $m \leq 288x/d < 288p \ll p$ . Since  $p \mid k$  and  $d \equiv \pm 1 \pmod{p}$ , we get that  $m \equiv \pm 1 \pmod{p}$ . Fix m. Then k/p is in a certain residue class modulo m depending on p. Write  $k/p = v + m\ell$ . Then

$$dm = 144p(k/p) + 1 = (144pv + 1) + 144pm\ell,$$

so that

$$d = w + 144p\ell,$$

where w = (144pv + 1)/m. Furthermore,  $d \le 288x/m$ . Hence, by a result of Montgomery and Vaughan [2], the number of such primes d does not exceed

$$\frac{4 \cdot 144x}{m\phi(144p)\log(288x/(mp))} \ll \frac{x}{mp\log x},\tag{6}$$

where we used the fact that  $m \leq 288p \leq 288x^{1/3}$ , and therefore

$$\frac{288x}{mp} \gg x^{1/3}.$$

Summing up inequality (6) over all the possible values of  $m \leq 288p \leq 288x^{1/3}$ , and then afterwards over all  $p \in [y, z]$ , we get that the number of such k's is

$$\ll \frac{x}{\log x} \sum_{y \le p} \frac{1}{p} \sum_{\substack{m \le x \\ m \equiv \pm 1 \pmod{p}}} \frac{1}{m} \ll x \sum_{y \le p} \frac{1}{p^2} \ll \frac{x}{y \log y} = o(x).$$

From now on, we consider only those k such that if  $d \equiv a \pmod{b}$  is a prime factor of 144k + 1, with the pair (a, b) being the appropriate one depending on the value of gcd(k, 6), then there exists a prime  $p \in [5, y] \cup [x^{1/3}, x]$  such that  $p \mid gcd(k, u)$ . First observe that k has at most 3 prime factors in  $[x^{1/3}, x]$ .

Moreover, for each prime  $p > x^{1/3}$ , there are at most 3 values of d such that  $d \equiv \pm 1 \pmod{p}$ . Indeed, if there were 4 or more, let  $d_1$ ,  $d_2$ ,  $d_3$  and  $d_4$  be 4 of them. We would then have

$$144x + 1 \ge 144k + 1 \ge d_1 d_2 d_3 d_4 \ge (x^{1/3} - 1)^4,$$

which is impossible for large x. Hence, there are at most 9 values of d which might be congruent to  $\pm 1$  modulo some prime factor  $p > x^{1/3}$  of k. Since we have  $(1 + o(1)) \frac{\log_2 x}{\phi(b)}$ such primes d, it follows that we also have  $(1 + o(1)) \frac{\log_2 x}{\phi(b)}$  such prime factors d of 144k + 1with the property that each of them is congruent to  $\pm 1$  modulo a prime factor p of k in the interval [5, y]. We apply Turán's inequality from [5] again to conclude that all  $k \leq x$  have at most  $1.5 \log_2 y < 2 \log_4 x$  prime factors p < y with at most o(x) exceptions.

We now write

$$M = \prod_{5 \le p < (\log_3 x)/2} p,$$

and look at those d such that  $d \equiv 2 \pmod{M}$ . Note that such d are in a certain arithmetical progression A (mod B), where  $B = bM = (\log_2 x)^{1/2+o(1)}$ . We apply again the results from [3] and [5] to infer that all positive integers  $k \leq x$  have  $\omega(k; A, B)$  factors in the interval

$$\left[\frac{\log_2 x}{2\phi(B)}, \ \frac{2\log_2 x}{\phi(B)}\right],$$

with o(x) possible exceptions. Because  $d \equiv 2 \pmod{M}$ , we have that  $d \not\equiv \pm 1 \pmod{p}$  for all  $p < (\log_3 x)/2$ . Hence, there exist at least

$$\mu := \lfloor (\log_2 x) / (4 \log_4 x \phi(B)) \rfloor > (\log_2 x)^{1/3}$$

such primes d which furthermore are congruent to either 1 or -1 modulo p for the same prime  $p > (\log_3 x)/2$ .

We now count how many such k's can there can be. Because of the above argument, we can write  $144k + 1 = d_1 d_2 \cdots d_\mu Q < 288x$  (for some positive integer Q), where each  $d_j \equiv \pm 1$ 

(mod p). Thus, the number of such k's is at most

$$\sum_{p>(\log_3 x)/2} \frac{288x}{\mu!} \left( \sum_{\substack{d \le x \\ d \equiv A \pmod{B} \\ d \equiv \pm 1 \pmod{p}}} \frac{1}{d} \right)^{\mu} \ll x \sum_{p>(\log_3 x)/2} \left( \frac{2e \log_2 x + O(1)}{\mu \phi(B)(p-1)} \right)^{\mu}$$
$$\ll x \sum_{p>(\log_3 x)/2} \left( \frac{O(\log_4 x)}{p} \right)^{(\log_2 x)^{1/3}}$$
$$= o(x),$$

which completes the proof of Theorem 3.

### 3 Comments and Numerical Results

Although we proved that  $n^2 + k$  is powerful for infinitely many *n*'s only for most integers k, we do conjecture that this is actually true for all integers k. Indeed, fixing a squarefree integer k, the probability that  $n^2 + k$  is powerful is of the order  $\frac{1}{\sqrt{n^2+k}} \approx \frac{1}{n}$  for large n. This means that we should expect that

$$#\{n \le x : n^2 + k \text{ is powerful}\} \sim \sum_{n \le x} \frac{1}{n} \sim \log x \to \infty \quad \text{as } x \to \infty$$
(7)

for any squarefree k. From our proof it follows indeed that if  $\#\{n: n^2 + k \text{ is powerful}\} > 1$ , then  $\#\{n \le x: n^2 + k \text{ is powerful}\} \gg \log x$ .

Table 1 (resp. Table 2) provides, for each integer  $1 \le k \le 50$ , the smallest known value of n for which  $n^2 + k$  (resp.  $n^2 - k$ ) is a powerful number without being a perfect square. These values of n were obtained by finding the minimal solution of  $x^2 - Dy^2 = \pm k$  by considering various cubefull D's. Those  $n > 10^9$  may not be the smallest n for which  $n^2 \pm k$  is powerful.

Given three integers a, b, c, one could ask if the polynomial  $an^2 + bn + c$  is powerful for infinitely many integers n. Assuming that  $an^2 + bn + c$  is a powerful number which is not a square, we can then write  $an^2 + bn + c = Dm^2$  with D > 1 squarefree and  $D \mid m$ . We then have

$$n = \frac{-b \pm \sqrt{4aDm^2 + b^2 - 4ac}}{2a}$$

Since n is an integer, there exists an integer y such that  $4aDm^2 + b^2 - 4ac = y^2$ , or, equivalently,  $y^2 - aD(2m)^2 = b^2 - 4ac$  with  $y \equiv \pm b \pmod{2a}$ . But then the existence of one solution implies the existence of infinitely many. On the other hand, we also get that if there is an infinity of integers y for which  $y^2 - b^2 + 4ac = Dx^2$  where D > 1 is squarefree and  $2aD \mid x$ , then there exist infinitely many n's for which  $an^2 + bn + c$  is a powerful number.

The prediction (7) may at first seem at odd with the fact that some of the smallest n's obtained in Tables 1 and 2 are huge. However, the statement " $n^2 + k$  is powerful" is

equivalent to " $n^2 + k = dm^2$  with d squarefree and  $d \mid m$ ". Now for any fixed d, this last equation is a generalized Pell equation. While a solution may not exist for some values of d, when it does for a particular d, it is well known that the smallest solution can be surprisingly large. When solutions exist, it is still possible that none of them will be such that  $d \mid m$ . The size of the smallest solution such that  $d \mid m$  can also be quite large. There are thus three possible reasons for the huge value of the smallest solution: a large value of d, a large value of the smallest solution to  $n^2 + k = dm^2$  or a large value of the smallest solution such that  $d \mid m$ . We investigated this in Table 3, where  $n = n_0$  is the smallest solution to  $n^2 + k = dm^2$ not taking into account the restriction  $d \mid m$ . It turns out that the surprisingly large values of the smallest n in Table 1 are not due to a very large value of d but rather to a large value of  $n_0$  (see for instance k = 33), or to the large size of the smallest solution  $n_0$  for which  $d \mid m$ (see for instance k = 17).

| k  | n         | $n^2 + k$                             |   | k  | n            | $n^2 + k$                                            |
|----|-----------|---------------------------------------|---|----|--------------|------------------------------------------------------|
| 1  | 682       | $5^3 \cdot 61^2$                      | ĺ | 26 | 109          | $3^5 \cdot 7^2$                                      |
| 2  | 5         | $3^{3}$                               |   | 27 | 36           | $3^{3} \cdot 7^{2}$                                  |
| 3  | 37        | $2^2 \cdot 7^3$                       |   | 28 | 62           | $2^5 \cdot 11^2$                                     |
| 4  | 11        | $5^{3}$                               |   | 29 | 436          | $3^2 \cdot 5^3 \cdot 13^2$                           |
| 5  | 1879706   | $3^5 \cdot 7^2 \cdot 23^3 \cdot 29^3$ |   | 30 | 832836278711 | $31^2 \cdot 59^2 \cdot 67^2 \cdot 79^3 \cdot 9679^2$ |
| 6  | 463       | $5^4 \cdot 7^3$                       |   | 31 | 63           | $2^5 \cdot 5^3$                                      |
| 7  | 11        | $2^{7}$                               |   | 32 | 88           | $2^5 \cdot 3^5$                                      |
| 8  | 10        | $2^2 \cdot 3^3$                       |   | 33 | $n_{33}$     | $f_{33}$                                             |
| 9  | 2046      | $3^2 \cdot 5^3 \cdot 61^2$            |   | 34 | 7037029      | $5^5 \cdot 7^5 \cdot 971^2$                          |
| 10 | 341881    | $11^{3} \cdot 9371^{2}$               |   | 35 | 36           | $11^{3}$                                             |
| 11 | 31        | $2^2 \cdot 3^5$                       |   | 36 | 33           | $3^2 \cdot 5^3$                                      |
| 12 | 74        | $2^4 \cdot 7^3$                       |   | 37 | $n_{37}$     | $f_{37}$                                             |
| 13 | 70        | $17^{3}$                              |   | 38 | 5945         | $3^2 \cdot 7^3 \cdot 107^2$                          |
| 14 | 5519      | $3^3 \cdot 5^5 \cdot 19^2$            |   | 39 | 31           | $2^3 \cdot 5^3$                                      |
| 15 | 793       | $2^{7} \cdot 17^{3}$                  |   | 40 | 52           | $2^3 \cdot 7^3$                                      |
| 16 | 22        | $2^2 \cdot 5^3$                       |   | 41 | 78           | $5^3 \cdot 7^2$                                      |
| 17 | $n_{17}$  | $f_{17}$                              |   | 42 | 720025       | $13^3 \cdot 31^3 \cdot 89^2$                         |
| 18 | 57        | $3^{3} \cdot 11^{2}$                  |   | 43 | 22364        | $11^{3} \cdot 613^{2}$                               |
| 19 | 559       | $2^2 \cdot 5^7$                       |   | 44 | 62           | $2^4 \cdot 3^5$                                      |
| 20 | 338       | $2^3 \cdot 3^3 \cdot 23^2$            |   | 45 | 96           | $3^3 \cdot 7^3$                                      |
| 21 | $n_{21}$  | $f_{21}$                              |   | 46 | 50927        | $5^5 \cdot 11^2 \cdot 19^3$                          |
| 22 | 503259461 | $47^3 \cdot 491^2 \cdot 3181^2$       |   | 47 | 39           | $2^5 \cdot 7^2$                                      |
| 23 | 45        | $2^{11}$                              |   | 48 | 148          | $2^6 \cdot 7^3$                                      |
| 24 | 926       | $2^2 \cdot 5^4 \cdot 7^3$             |   | 49 | 524          | $5^3 \cdot 13^3$                                     |
| 25 | 190       | $5^3 \cdot 17^2$                      |   | 50 | 1325         | $3^5 \cdot 5^2 \cdot 17^2$                           |

|     |    |     | -          |
|-----|----|-----|------------|
| L'A | ы  |     |            |
| Lа  | IJ | le. | _ <b>L</b> |

Here,  $n_{17} = 1952785824219551870$  with  $f_{17} = 3^2 \cdot 13^3 \cdot 367^2 \cdot 7487^2 \cdot 5054107013^2$ ;  $n_{21} = 4580728614212333152148$  with  $f_{21} = 5^2 \cdot 31^2 \cdot 37^3 \cdot 41611^2 \cdot 3155673955493^2$ ;  $n_{33} = 2451448196948930$  with  $f_{33} = 7^2 \cdot 17^3 \cdot 29^3 \cdot 31992951041^2$ ;

 $n_{37} = 18651116694721032166213875246076 \text{ with } f_{37} = 317^3 \cdot 10219159057^2 \cdot 323370789682598407^2.$ 

Table 2

| k  | n           | $n^2 - k$                               | k  | n            | $n^2 - k$                          |
|----|-------------|-----------------------------------------|----|--------------|------------------------------------|
| 1  | 3           | $2^{3}$                                 | 26 | 2537         | $23^{5}$                           |
| 2  | 11427       | $7^3 \cdot 617^2$                       | 27 | 51700        | $13^{3} \cdot 1103^{2}$            |
| 3  | $n_3$       | $f_3$                                   | 28 | 54           | $2^{3} \cdot 19^{2}$               |
| 4  | 6           | $2^{5}$                                 | 29 | 426          | $7^{3} \cdot 23^{2}$               |
| 5  | 73          | $2^{2} \cdot 11^{3}$                    | 30 | 83           | $19^{3}$                           |
| 6  | 62531004125 | $19^3 \cdot 14831^2 \cdot 50909^2$      | 31 | 34           | $3^2 \cdot 5^3$                    |
| 7  | $n_7$       | $f_7$                                   | 32 | 40           | $2^5 \cdot 7^2$                    |
| 8  | 20          | $2^{3} \cdot 7^{2}$                     | 33 | 3601         | $2^8 \cdot 37^3$                   |
| 9  | 15          | $2^{3} \cdot 3^{3}$                     | 34 | 948281       | $3^6 \cdot 47^3 \cdot 109^2$       |
| 10 | $n_{10}$    | $f_{10}$                                | 35 | 531783519104 | $29^3 \cdot 997^2 \cdot 3415409^2$ |
| 11 | 56          | $5^5$                                   | 36 | 42           | $2^{6} \cdot 3^{3}$                |
| 12 | 47          | $13^{3}$                                | 37 | 73           | $2^2 \cdot 3^3 \cdot 7^2$          |
| 13 | 16          | $3^5$                                   | 38 | 16493        | $11^{2} \cdot 131^{3}$             |
| 14 | 33017       | $5^2 \cdot 11^3 \cdot 181^2$            | 39 | $n_{39}$     | $f_{39}$                           |
| 15 | 1138        | $109^{3}$                               | 40 | 632          | $2^3 \cdot 3^3 \cdot 43^2$         |
| 16 | 68          | $2^9 \cdot 3^2$                         | 41 | 71           | $2^3 \cdot 5^4$                    |
| 17 | 23          | $2^{9}$                                 | 42 | 691888331    | $13^2 \cdot 79^3 \cdot 75797^2$    |
| 18 | 19          | $7^3$                                   | 43 | 5016         | $13^{2} \cdot 53^{3}$              |
| 19 | 762488      | $3^2 \cdot 5^3 \cdot 127^2 \cdot 179^2$ | 44 | 112          | $2^{2} \cdot 5^{5}$                |
| 20 | 146         | $2^{4} \cdot 11^{3}$                    | 45 | 219          | $2^2 \cdot 3^2 \cdot 11^3$         |
| 21 | 1552808     | $43^3 \cdot 5507^2$                     | 46 | 847          | $3^{3} \cdot 163^{2}$              |
| 22 | 47          | $3^{7}$                                 | 47 | 180190       | $53^{3} \cdot 467^{2}$             |
| 23 | 6234        | $7^2 \cdot 13^3 \cdot 19^2$             | 48 | 94           | $2^{2} \cdot 13^{3}$               |
| 24 | 32          | $2^{3} \cdot 5^{3}$                     | 49 | 56           | $3^2 \cdot 7^3$                    |
| 25 | 45          | $2^4 \cdot 5^3$                         | 50 | 57135        | $5^2 \cdot 7^3 \cdot 617^2$        |

Here,  $n_3 = 15503069909027$  with  $f_3 = 13^3 \cdot 239^2 \cdot 64866401293^2$ ;  $n_7 = 85227106679780$  with  $f_7 = 3^3 \cdot 59^3 \cdot 36192438539^2$ ;  $n_{10} = 71457130044805582612325294634331$  with  $f_{10} = 3^3 \cdot 13^3 \cdot 43^2 \cdot 6823075915494777091540353511^2$ ;  $n_{39} = 82716851195974$  with  $f_{39} = 7^2 \cdot 373^3 \cdot 29287^2 \cdot 56009^2$ .

## 4 Acknowledgments

The first author was partially supported by a grant from NSERC, while the third author was supported by projects SEP-CONACYT 37259-E and 37260-E.

| k  | d                     | $n_0$ | k  | d             | $n_0$ |
|----|-----------------------|-------|----|---------------|-------|
| 1  | 5                     | 2     | 26 | 3             | 1     |
| 2  | 3                     | 2     | 27 | 3             | 9     |
| 3  | 7                     | 2     | 28 | 2             | 2     |
| 4  | 5                     | 1     | 29 | 5             | 4     |
| 5  | $3 \cdot 23 \cdot 29$ | 26258 | 30 | 79            | 7     |
| 6  | 7                     | 1     | 31 | 10            | 3     |
| 7  | 2                     | 1     | 32 | 6             | 8     |
| 8  | 3                     | 2     | 33 | $17 \cdot 29$ | 1310  |
| 9  | 5                     | 6     | 34 | 35            | 1     |
| 10 | 11                    | 1     | 35 | 11            | 3     |
| 11 | 3                     | 1     | 36 | 5             | 3     |
| 12 | 7                     | 4     | 37 | 317           | 61016 |
| 13 | 17                    | 2     | 38 | 7             | 5     |
| 14 | 15                    | 1     | 39 | 10            | 1     |
| 15 | 34                    | 11    | 40 | 14            | 4     |
| 16 | 5                     | 2     | 41 | 5             | 2     |
| 17 | 13                    | 10    | 42 | $31 \cdot 13$ | 19    |
| 18 | 3                     | 3     | 43 | 11            | 1     |
| 19 | 5                     | 1     | 44 | 3             | 2     |
| 20 | 6                     | 2     | 45 | 21            | 12    |
| 21 | 37                    | 4     | 46 | 95            | 7     |
| 22 | 47                    | 5     | 47 | 2             | 5     |
| 23 | 2                     | 3     | 48 | 7             | 8     |
| 24 | 7                     | 2     | 49 | 65            | 4     |
| 25 | 5                     | 10    | 50 | 3             | 5     |

Table 3

## References

- R. A. Mollin and P. G. Walsh, Proper differences of nonsquare powerful numbers, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 2, 71–76.
- [2] H. L. Montgomery and R. C. Vaughan, The large sieve, *Mathematika* **20** (1973), 119–134.
- [3] C. Pomerance, On the distribution of amicable numbers, J. reine angew. Math., 293/294 (1977), 217–222.
- [4] J. P. Robertson, Solving the generalized Pell equation  $x^2 Dy^2 = N$ , http://www.hometown.aol.com/jpr2718/pell.pdf.
- [5] P. Turán, Uber einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan, J. London Math. Soc., 11 (1936), 125–133.

2010 Mathematics Subject Classification: Primary 11A05; Secondary 11N25. Keywords: powerful numbers, generalized Pell equation.

(Concerned with sequence  $\underline{A001694}$ .)

Received October 27 2010; revised version received February 22 2011. Published in *Journal of Integer Sequences*, March 25 2011.

Return to Journal of Integer Sequences home page.