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Abstract

Let pn/qn be the n-th convergent of a real irrational number α, and let εn = αqn−pn.

In this paper we investigate various sums of the type
∑

m εm,
∑

m |εm|, and
∑

m εmxm.

The main subject of the paper is bounds for these sums. In particular, we investigate

the behaviour of such sums when α is a quadratic surd. The most significant properties

of the error sums depend essentially on Fibonacci numbers or on related numbers.

1 Statement of results for arbitrary irrationals

Given a real irrational number α and its regular continued fraction expansion

α = 〈 a0; a1, a2, . . . 〉 (a0 ∈ Z , aν ∈ N for ν ≥ 1) ,

the convergents pn/qn of α form a sequence of best approximating rationals in the following
sense: for any rational p/q satisfying 1 ≤ q < qn we have

∣
∣
∣
∣
α − pn

qn

∣
∣
∣
∣

<

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣

.

The convergents pn/qn of α are defined by finite continued fractions

pn

qn

= 〈 a0; a1, . . . , an 〉 .
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The integers pn and qn can be computed recursively using the initial values p−1 = 1, p0 = a0,
q−1 = 0, q0 = 1, and the recurrence formulae

pn = anpn−1 + pn−2 , qn = anqn−1 + qn−2 (1)

with n ≥ 1. Then pn/qn is a rational number in lowest terms satisfying the inequalities

1

qn + qn+1

< |qnα − pn| <
1

qn+1

(n ≥ 0) . (2)

The error terms qnα−pn alternate, i.e., sgn (qnα−pn) = (−1)n. For basic facts on continued
fractions and convergents see [4, 5, 8].
Throughout this paper let

ρ =
1 +

√
5

2
and ρ = −1

ρ
=

1 −
√

5

2
.

The Fibonacci numbers Fn are defined recursively by F−1 = 1, F0 = 0, and Fn = Fn−1+Fn−2

for n ≥ 1. In this paper we shall often apply Binet’s formula,

Fn =
1√
5

(

ρn −
(

− 1

ρ

)n)

(n ≥ 0) . (3)

While preparing a talk on the subject of so-called leaping convergents relying on the papers
[2, 6, 7], the author applied results for convergents to the number α = e = exp(1). He found
two identities which are based on formulas given by Cohn [1]:

∞∑

n=0

(qne − pn) = 2

∫
1

0

exp(t2) dt − 2e + 3 = 0.4887398 . . . ,

∞∑

n=0

|qne − pn| = 2e

∫
1

0

exp(−t2) dt − e = 1.3418751 . . . .

These identities are the starting points of more generalized questions concerning error series
of real numbers α.

1.) What is the maximum size M of the series
∑∞

m=0
|qmα − pm| ? One easily concludes

that M ≥ (1 +
√

5)/2, because
∑∞

m=0

∣
∣qm(1 +

√
5)/2 − pm

∣
∣ = (1 +

√
5)/2.

2.) Is there a method to compute
∑∞

m=0
|qmα − pm| explicitly for arbitrary real quadratic

irrationals ?

The series
∑∞

m=0
|qmα−pm| ∈ [0,M ] measures the approximation properties of α on average.

The smaller this series is, the better rational approximations α has. Nevertheless, α can be
a Liouville number and

∑∞
m=0

|qmα − pm| takes a value close to M . For example, let us
consider the numbers

αn = 〈 1; 1, . . . , 1
︸ ︷︷ ︸

n

, an+1, an+2, . . . 〉
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for even positive integers n, where the elements an+1, an+2, . . . are defined recursively in the
following way. Let pk/qk = 〈1; 1, . . . , 1

︸ ︷︷ ︸

k

〉 for k = 0, 1, . . . , n and set

an+1 := qn
n , qn+1 = an+1qn + qn−1 = qn

n

(
qn + qn−1

)
,

an+2 := qn+1

n+1 , qn+2 = an+2qn+1 + qn = qn+1

n+1

(
qn+1
n + qn−1

)
,

an+3 := qn+2

n+2 , qn+3 = an+3qn+2 + qn+1 = . . .

and so on. In the general case we define ak+1 by ak+1 = qk
k for k = n, n + 1, . . .. Then we

have with (1) and (2) that

0 <
∣
∣
∣αn − pk

qk

∣
∣
∣ <

1

qkqk+1

<
1

ak+1q2
k

=
1

qk+2

k

(k ≥ n) .

Hence αn is a Liouville number. Now it follows from (9) in Theorem 2 below with 2k = n
and n0 = (n/2) − 1 that

∞∑

m=0

|qmαn − pm| >
n−1∑

m=0

|qmαn − pm| = (Fn−1 − 1)(ρ − αn) + ρ − ρ1−n ≥ ρ − 1

ρn−1
.

We shall show by Theorem 2 that M = ρ, such that the error sums of the Liouville numbers
αn tend to this maximum value ρ for increasing n.
We first treat infinite sums of the form

∑

n |qnα − pn| for arbitrary real irrational numbers
α = 〈1; a1, a2, . . .〉, when we may assume without loss of generality that 1 < α < 2.

Proposition 1. Let α = 〈1; a1, a2, . . .〉 be a real irrational number. Then for every integer

m ≥ 0, the following two inequalities hold: Firstly,

|q2mα − p2m| + |q2m+1α − p2m+1| <
1

ρ2m
, (4)

provided that either

a2ma2m+1 > 1 or
(
a2m = a2m+1 = 1 and a1a2 · · · a2m−1 > 1

)
. (5)

Secondly,

|q2mα − p2m| + |q2m+1α − p2m+1| =
1

ρ2m
+ F2m(ρ − α) (0 ≤ m ≤ k) , (6)

provided that

a1 = a2 = . . . = a2k+1 = 1 . (7)

In the second term on the right-hand side of (6), ρ − α takes positive or negative values
according to the parity of the smallest subscript r ≥ 1 with ar > 1: For odd r we have ρ > α,
otherwise, ρ < α.
Next, we introduce a set M of irrational numbers, namely

M :=
{

α ∈ R \ Q
∣
∣ ∃ k ∈ N : α = 〈1; 1, . . . , 1, a2k+1, a2k+2, . . .〉 ∧ a2k+1 > 1

}
.

Note that ρ > α for α ∈ M. Our main result for real irrational numbers is given by the
subsequent theorem.
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Theorem 2. Let 1 < α < 2 be a real irrational number and let g, n ≥ 0 be integers with

n ≥ 2g. Set n0 := ⌊n/2⌋. Then the following inequalities hold.

1.) For α 6∈ M we have
n∑

ν=2g

|qνα − pν | ≤ ρ1−2g − ρ−2n0−1 , (8)

with equality for α = ρ and every odd n ≥ 0.
2.) For α ∈ M, say α = 〈1; 1, . . . , 1, a2k+1, a2k+2, . . .〉 with a2k+1 > 1, we have

n∑

ν=2g

|qνα − pν | ≤ (F2k−1 − F2g−1)(ρ − α) + ρ1−2g − ρ−2n0−1 , (9)

with equality for n = 2k − 1.
3.) We have

∞∑

ν=2g

|qνα − pν | ≤ ρ1−2g , (10)

with equality for α = ρ.

In particular, for any positive ε and any even integer n satisfying

n ≥ log(ρ/ε)

log ρ
,

it follows that
∞∑

ν=n

|qνα − pν | ≤ ε .

For ν ≥ 1 we know by q2 ≥ 2 and by (2) that |qνα − pν | < 1/qν+1 ≤ 1/q2 ≤ 1/2, which
implies |qνα−pν | = ‖qνα‖, where ‖β‖ denotes the distance of a real number β to the nearest
integer. For α = 〈a0; a1, a2, . . .〉, |q0α − p0| = α − a0 = {α} is the fractional part of α.
Therefore, we conclude from Theorem 2 that

∞∑

ν=1

‖qνα‖ ≤ ρ − {α} .

In particular, we have for α = ρ that
∞∑

ν=1

‖qνρ‖ = 1 .

The following theorem gives a simple bound for
∑

m(qmα − pm).

Theorem 3. Let α be a real irrational number. Then the series
∑∞

m=0
(qmα − pm)xm con-

verges absolutely at least for |x| < ρ, and

0 <
∞∑

m=0

(qmα − pm) < 1 .

Both the upper bound 1 and the lower bound 0 are best possible.

The proof of this theorem is given in Section 3. We shall prove Proposition 1 and
Theorem 2 in Section 4, using essentially the properties of Fibonacci numbers.

4



2 Statement of Results for Quadratic Irrationals

In this section we state some results for error sums involving real quadratic irrational numbers
α. Any quadratic irrational α has a periodic continued fraction expansion,

α = 〈 a0; a1, . . . , aω, T1, . . . , Tr, T1, . . . , Tr, . . . 〉 = 〈 a0; a1, . . . , aω, T1, . . . , Tr 〉 ,

say. Then there is a linear three-term recurrence formula for zn = prn+s and zn = qrn+s

(s = 0, 1, . . . , r − 1), [3, Corollary 1]. This recurrence formula has the form

zn+2 = Gzn+1 ± zn (rn > ω) .

Here, G denotes a positive integer, which depends on α and r, but not on n and s. The
number G can be computed explicitly from the numbers T1, . . . , Tr of the continued fraction
expansion of α. This is the basic idea on which the following theorem relies.

Theorem 4. Let α be a real quadratic irrational number. Then

∞∑

m=0

(qmα − pm)xm ∈ Q[α](x) .

It is not necessary to explain further technical details of the proof. Thus, the generat-
ing function of the sequence (qmα − pm)m≥0

is a rational function with coefficients from Q[α].

Example 5. Let α =
√

7 = 〈2; 1, 1, 1, 4〉. Then

∞∑

m=0

(qm

√
7 − pm)xm =

x3 − (2 +
√

7)x2 + (3 +
√

7)x − (5 + 2
√

7)

x4 − (8 + 3
√

7)
. (11)

In particular, for x = 1 and x = −1 we obtain

∞∑

m=0

(qm

√
7 − pm) =

21 − 5
√

7

14
= 0.555088817 . . . ,

∞∑

m=0

|qm

√
7 − pm| =

7 + 5
√

7

14
= 1.444911182 . . . .

Next, we consider the particular quadratic surds

α =
n +

√
4 + n2

2
= 〈n; n, n, n, . . . 〉

and compute the generating function of the error terms qmα − pm.
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Corollary 6. Let n ≥ 1 and α = (n +
√

4 + n2)/2. Then

∞∑

m=0

(qmα − pm)xm =
1

x + α
,

particularly

∞∑

m=0

(qmα − pm) =
1

α + 1
,

∞∑

m=0

|qmα − pm| =
1

α − 1
,

∞∑

m=0

qmα − pm

m + 1
= log

(

1 +
1

α

)

.

For the number ρ = (1 +
√

5)/2 we have pm = Fm+2 and qm = Fm+1. Hence, using
1/(ρ + 1) = (3 −

√
5)/2 = 1 + ρ, 1/(ρ − 1) = ρ, and 1 + 1/ρ = ρ, we get from Corollary 6

∞∑

m=0

(Fm+1ρ − Fm+2) = 1 + ρ ,

∞∑

m=0

|Fm+1ρ − Fm+2| = ρ ,

∞∑

m=0

Fm+1ρ − Fm+2

m + 1
= log ρ .

(12)
Similarly, we obtain for the number α =

√
7 from (11):

∞∑

m=0

qm

√
7 − pm

m + 1
=

∫
1

0

x3 − (2 +
√

7)x2 + (3 +
√

7)x − (5 + 2
√

7)

x4 − (8 + 3
√

7)
dx = 0.5568649708 . . .

3 Proof of Theorem 3

Throughout this paper we shall use the abbreviations εm(α) = εm := qmα − pm and ε(α) =
∑∞

m=0
|εm(α)|. The sequence (|εm|)m≥0

converges strictly decreasing to zero. Since ε0 > 0
and εmεm+1 < 0, we have

ε0 + ε1 <
∞∑

m=0

εm < ε0 .

Put a0 = ⌊α⌋, θ := ε0 = α − a0, so that 0 < θ < 1. Moreover,

ε0 + ε1 = θ + a1α − (a0a1 + 1) = θ + a1θ − 1 = θ +
⌊ 1

θ

⌋

θ − 1 .

Choosing an integer k ≥ 1 satisfying

1

k + 1
< θ <

1

k
,

we get

θ +
⌊ 1

θ

⌋

θ − 1 >
1

k + 1
+

k

k + 1
− 1 = 0 ,

which proves the lower bound for
∑

εm.
In order to estimate the radius of convergence for the series

∑
εmxm we first prove the

inequality
qm ≥ Fm+1 (m ≥ 0) , (13)
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which follows inductively. We have q0 = 1 = F1, q1 = a1 ≥ 1 = F2, and

qm = amqm−1 + qm−2 ≥ qm−1 + qm−2 ≥ Fm + Fm−1 = Fm+1 (m ≥ 2) ,

provided that (13) is already proven for qm−1 and qm−2. With Binet’s formula (3) and (13)
we conclude that

qm+1 ≥ 1√
5

(

ρm+2 −
(

− 1

ρ

)m+2)

≥ 1√
5
ρm (m ≥ 0) . (14)

Hence, we have

|εm|xm = |qmα − pm|xm <
xm

qm+1

≤
√

5

(
x

ρ

)m

(m ≥ 0) .

It follows that the series
∑

εmxm converges absolutely at least for |x| < ρ. In order to
prove that the upper bound 1 is best possible, we choose 0 < ε < 1 and a positive integer n
satisfying

1

n

(

1 +
ρ
√

5

ρ − 1

)

< ε .

Put

αn := 〈 0; 1, n 〉 =
1

2
− 1

n
+

1

2

√

1 +
4

n2
> 1 − 1

n
.

With p0 = 0 and q0 = 1 we have by (1), (2), and (14),

∞∑

m=0

(qmαn − pm) ≥ αn −
∞∑

m=1

|qmαn − pm|

> 1 − 1

n
−

∞∑

m=1

1

qm+1

≥ 1 − 1

n
−

∞∑

m=1

1

nqm

≥ 1 − 1

n
−

√
5

n

∞∑

m=1

1

ρm−1

= 1 − 1

n

(

1 +
ρ
√

5

ρ − 1

)

> 1 − ε .

For the lower bound 0 we construct quadratic irrational numbers βn := 〈 0; n 〉 and complete
the proof of the theorem by similar arguments.

4 Proofs of Proposition 1 and Theorem 2

Lemma 7. Let α = 〈a0; a1, a2, . . .〉 be a real irrational number with convergents pm/qm. Let

n ≥ 1 be a subscript satisfying an > 1. Then

qn+k ≥ Fn+k+1 + Fk+1Fn (k ≥ 0) . (15)
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In the case n ≡ k + 1 ≡ 0 (mod 2) we additionally assume that n ≥ 4, k ≥ 3. Then

Fn+k+1 + Fk+1Fn > ρn+k . (16)

When α − ρ 6∈ Z, the inequality (15) with m = n + k is stronger than (13).

Proof. We prove (15) by induction on k. Using (1) and (13), we obtain for k = 0 and k = 1,
respectively,

qn = anqn−1 + qn−2 ≥ 2Fn + Fn−1 = (Fn + Fn−1) + Fn = Fn+1 + F1Fn ,

qn+1 = an+1qn + qn−1 ≥ qn + qn−1 ≥ (Fn+1 + Fn) + Fn = Fn+2 + F2Fn .

Now, let k ≥ 0 and assume that (15) is already proven for qn+k and qn+k+1. Then

qn+k+2 ≥ qn+k+1 + qn+k

≥ (Fn+k+2 + Fk+2Fn) + (Fn+k+1 + Fk+1Fn)

= Fn+k+3 + Fk+3Fn .

This corresponds to (15) with k replaced by k + 2. In order to prove (16) we express the
Fibonacci numbers Fm by Binet’s formula (3). Hence, we have

Fn+k+1 + Fk+1Fn

= ρn+k

(

ρ
(1

5
+

1√
5

)

+ (−1)n+k
( 1√

5
− 1

5

) 1

ρ2n+2k+1
+

1

5

((−1)n+1

ρ2n−1
+

(−1)k

ρ2k+1

)
)

.

Case 1: Let n ≡ k ≡ 1 (mod 2).
In particular, we have k ≥ 1. Then

Fn+k+1 + Fk+1Fn

= ρn+k

(

ρ
(1

5
+

1√
5

)

+
( 1√

5
− 1

5

) 1

ρ2n+2k+1
+

1

5

( 1

ρ2n−1
− 1

ρ2k+1

))

> ρn+k

(

ρ
(1

5
+

1√
5

)

− 1

5ρ3

)

= ρn+k .

Case 2: Let n ≡ 1 (mod 2), k ≡ 0 (mod 2).
In particular, we have n ≥ 1 and k ≥ 0. First, we assume that k ≥ 2. Then, by similar
computations as in Case 1, we obtain

Fn+k+1 + Fk+1Fn

= ρn+k

(

ρ
(1

5
+

1√
5

)

−
( 1√

5
− 1

5

) 1

ρ2n+2k+1
+

1

5

( 1

ρ2n−1
+

1

ρ2k+1

))

> ρn+k .

8



For k = 0 and some odd n ≥ 1 we get

Fn+k+1 + Fk+1Fn > ρn

(

ρ
(1

5
+

1√
5

)

−
( 1√

5
− 1

5

) 1

ρ3
+

1

5ρ

)

> ρn .

Case 3: Let n ≡ 0 (mod 2), k ≡ 1 (mod 2).
By the assumption of the lemma, we have n ≥ 4 and k ≥ 3. Then

Fn+k+1 + Fk+1Fn

= ρn+k

(

ρ
(1

5
+

1√
5

)

−
( 1√

5
− 1

5

) 1

ρ2n+2k+1
+

1

5

(

− 1

ρ2n−1
− 1

ρ2k+1

))

> ρn+k .

Case 4: Let n ≡ k ≡ 0 (mod 2).
In particular, we have n ≥ 2. Then

Fn+k+1 + Fk+1Fn

= ρn+k

(

ρ
(1

5
+

1√
5

)

+
( 1√

5
− 1

5

) 1

ρ2n+2k+1
+

1

5

(

− 1

ρ2n−1
+

1

ρ2k+1

))

> ρn+k .

This completes the proof of Lemma 7.

Lemma 8. Let m be an integer. Then

ρ2m

F2m+2

< 1 (m ≥ 1) , (17)

ρ2m
( 1

F2m+3

+
1

F2m+3 + F2m+1

)

< 1 (m ≥ 0) . (18)

Proof. For m ≥ 1 we estimate Binet’s formula (3) for F2m+2 using 4m + 2 ≥ 6:

F2m+2 =
ρ2m

√
5

(

ρ2 − 1

ρ4m+2

)

≥ ρ2m

√
5

(

ρ2 − 1

ρ6

)

> ρ2m .

Similarly, we prove (18) by

F2n+1 =
1√
5

(

ρ2n+1 +
1

ρ2n+1

)

>
ρ2n+1

√
5

(n ≥ 0) .

Hence,

ρ2m
( 1

F2m+3

+
1

F2m+3 + F2m+1

)

< ρ2m
(

√
5

ρ2m+3
+

√
5

ρ2m+3 + ρ2m+1

)

< 1 .

The lemma is proven.
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Proof of Proposition 1: Firstly, we assume the hypotheses in (5) and prove (4). As in the
proof of Theorem 3, put a0 = ⌊α⌋, θ := α − a0, a1 = ⌊1/θ⌋ with 0 < θ < 1 and ε0 = θ < 1.
Then

|ε0| + |ε1| = θ + (a0a1 + 1) − a1α = θ + 1 − a1θ = θ + 1 −
⌊ 1

θ

⌋

θ .

We have 0 < θ < 1/2, since otherwise for θ > 1/2, we obtain a1 = ⌊1/θ⌋ = 1. With
a0 = a1 = 1 the conditions in (5) are unrealizable both. Hence, there is an integer k ≥ 2
with

1

k + 1
< θ <

1

k
.

Obviously, it follows that [1/θ] = k, and therefore

θ + 1 −
⌊ 1

θ

⌋

θ <
1

k
+ 1 − k

k + 1
=

2k + 1

k(k + 1)
≤ 5

6
(k ≥ 2) .

Altogether, we have proven that

|ε0| + |ε1| ≤
5

6
< 1 . (19)

Therefore we already know that the inequality (4) holds for m = 0. Thus, we assume m ≥ 1
in the sequel. Noting that ε2m > 0 and ε2m+1 < 0 hold for every integer m ≥ 0, we may
rewrite (4) as follows:

(
0 <

)
(p2m+1 − p2m) − α(q2m+1 − q2m) <

1

ρ2m
(m ≥ 0) . (20)

We distinguish three cases according to the conditions in (5).

Case 1: Let a2m+1 ≥ 2.
Additionally, we apply the trivial inequality a2m+2 ≥ 1. Then, using (2), (13), and (18),

|ε2m| + |ε2m+1| <
1

q2m+1

+
1

q2m+2

≤ 1

2q2m + q2m−1

+
1

q2m+1 + q2m

≤ 1

2q2m + q2m−1

+
1

3q2m + q2m−1

≤ 1

2F2m+1 + F2m

+
1

3F2m+1 + F2m

<
1

ρ2m
(m ≥ 0) .

Case 2: Let a2m+1 = 1 and a2m ≥ 2.
Here, we have p2m+1 − p2m = p2m + p2m−1 − p2m = p2m−1, and similarly q2m+1 − q2m = q2m−1.
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Therefore, by (20), it suffices to show that 0 < p2m−1 − αq2m−1 < ρ−2m for m ≥ 1. This
follows with (2), (13), and (17) from

0 < p2m−1 − αq2m−1 <
1

q2m

≤ 1

2q2m−1 + q2m−2

≤ 1

2F2m + F2m−1

=
1

F2m+2

<
1

ρ2m
(m ≥ 1) .

Case 3: Let a2m = a2m+1 = 1 ∧ a1a2 · · · a2m−1 > 1.
Since a2m+1 = 1, we again have (as in Case 2):

0 < |ε2m| + |ε2m+1| = p2m−1 − αq2m−1 <
1

q2m

. (21)

By the hypothesis of Case 3, there is an integer n satisfying 1 ≤ n ≤ 2m − 1 and an ≥ 2.
We define an integer k ≥ 1 by setting 2m = n + k. Then we obtain using (15) and (16),

q2m = qn+k ≥ Fn+k+1 + Fk+1Fn > ρn+k = ρ2m .

From the identity n+k = 2m it follows that the particular condition n ≡ k +1 ≡ 0 (mod 2)
in Lemma 7 does not occur. Thus, by (21), we conclude that the desired inequality (4).
In order to prove (6), we now assume the hypothesis (7), i.e., a1a2 · · · a2k+1 = 1 and 0 ≤ m ≤
k. From 2m − 1 ≤ 2k − 1 and a0 = a1 = . . . = a2k−1 = 1 it is clear that p2m−1 = F2m+1 and
q2m−1 = F2m. Since a2k+1 = 1 and 0 ≤ m ≤ k, we have

|q2mα − p2m| + |q2m+1α − p2m+1|
= p2m−1 − αq2m−1 = F2m+1 − αF2m = F2m+1 − ρF2m + (ρ − α)F2m .

From Binet’s formula (3) we conclude that

F2m+1 − ρF2m =
1√
5

( 1

ρ2m+1
+

1

ρ2m−1

)

= ρ−2m ,

which finally proves the desired identity (6) in Proposition 1.

Lemma 9. Let k ≥ 1 be an integer, and let α := 〈 1; 1, . . . , 1, a2k+1, a2k+2 . . . 〉 be a real

irrational number with partial quotients a2k+1 > 1 and aµ ≥ 1 for µ ≥ 2k + 2. Then we have

the inequalities

(F2k−1 − 1)(ρ − α) <
1

ρ2k
− |ε2k| − |ε2k+1| (22)

for a2k+1 ≥ 3, and

(F2k−1 − 1)(ρ − α) <
1

ρ2k
+

1

ρ2k+2
− |ε2k| − |ε2k+1| − |ε2k+2| − |ε2k+3| (23)

for a2k+1 = 2.

11



One may conjecture that (22) also holds for a2k+1 = 2.

Example 10. Let α = 〈1; 1, 1, 1, 1, 2, 1〉 = (21ρ + 8)/(13ρ + 5) = (257 −
√

5)/158. With
k = 2 and a5 = 2, we have on the one side

ρ − α = F2(ρ − α) =
40
√

5 − 89

79
= 0.005604 . . . ,

on the other side,

1

ρ4
− |ε4| − |ε5| =

1

ρ4
− 4

√
5 − 1

79
= 0.045337 . . .

Proof of Lemma 9:

Case 1: Let n := a2k+1 ≥ 3.
Then there is a real number η satisfying 0 < η < 1 and

r2k+1 := 〈a2k+1; a2k+2, . . .〉 = n + η =: 1 + β .

It is clear that n − 1 < β < n. From the theory of regular continued fractions (see [5,
formula (16)]) it follows that

α = 〈 1; 1, . . . , 1, a2k+1, a2k+2 . . . 〉 =
F2k+2r2k+1 + F2k+1

F2k+1r2k+1 + F2k

=
F2k+2(1 + β) + F2k+1

F2k+1(1 + β) + F2k

=
βF2k+2 + F2k+3

βF2k+1 + F2k+2

.

Similarly, we have

ρ =
F2k+2ρ + F2k+1

F2k+1ρ + F2k

,

hence, by some straightforward computations,

ρ − α =
1 + β − ρ

(ρF2k+1 + F2k)(βF2k+1 + F2k+2)
<

n

(ρF2k+1 + F2k)(βF2k+1 + F2k+2)
. (24)

Here, we have applied the identities

F 2

2k+2 − F2k+1F2k+3 = −1 , F 2

2k+1 − F2kF2k+2 = 1 ,

and the inequality 1 + β − ρ < 1 + n − ρ < n. Since β > n − 1 and, by (2),

|ε2k| <
1

q2k+1

=
1

nF2k+1 + F2k

,

|ε2k+1| <
1

q2k+2

=
1

a2k+2q2k+1 + F2k+1

≤ 1

(n + 1)F2k+1 + F2k

.

12



(22) follows from

n(F2k−1 − 1)
(
ρF2k+1 + F2k

)(
(n − 1)F2k+1 + F2k+2

) <
1

ρ2k
− 1

nF2k+1 + F2k

− 1

(n + 1)F2k+1 + F2k

. (25)

In order to prove (25), we need three inequalities for Fibonacci numbers, which rely on
Binet’s formula. Let δ := 1/ρ4. Then, for all integers s ≥ 1, we have

ρ2s+1

√
5

< F2s+1 <
(1 + δ)ρ2s+1

√
5

and
(1 − δ)ρ2s

√
5

≤ F2s . (26)

We start to prove (25) by observing that

√
5

(
1 + δ

ρ2(ρ2 + 1 − δ)
+

1

3ρ + 1 − δ
+

1

4ρ + 1 − δ

)

< 1 .

Here, the left-hand side can be diminished by noting that

1

ρ
>

n

(n − 1)ρ + (1 − δ)ρ2
.

By n ≥ 3 we get

√
5

(

(1 + δ)n

ρ
(
ρ2 + 1 − δ

)(
(n − 1)ρ + (1 − δ)ρ2

) +
1

nρ + 1 − δ
+

1

(n + 1)ρ + 1 − δ

)

< 1 ,

or, equivalently,

(1 + δ)nρ2k−1/
√

5
(
ρ · ρ2k+1/

√
5 + (1 − δ)ρ2k/

√
5
)(

(n − 1)ρ2k+1/
√

5 + (1 − δ)ρ2k+2/
√

5
)

<
1

ρ2k
− 1

nρ2k+1/
√

5 + (1 − δ)ρ2k/
√

5
− 1

(n + 1)ρ2k+1/
√

5 + (1 − δ)ρ2k/
√

5
.

From this inequality, (25) follows easily by applications of (26) with s ∈ {2k − 1, 2k, 2k +
1, 2k + 2}.

Case 2: Let a2k+1 = 2.

Case 2.1: Let k ≥ 2.
We first consider the function

f(β) :=
1 − ρ + β

βF2k+1 + F2k+2

(1 ≤ β ≤ 2) .

The function f increases monotonically with β, therefore we have

f(β) ≤ f(2) =
3 − ρ

2F2k+1 + F2k+2

,

13



and consequently we conclude from the identity stated in (24) that

ρ − α ≤ 3 − ρ

(ρF2k+1 + F2k)(2F2k+1 + F2k+2)
.

Hence, (23) follows from the inequality

(3 − ρ)F2k−1

(ρF2k+1 + F2k)(2F2k+1 + F2k+2)
+

1

q2k+1

+
1

q2k+2

+
1

q2k+3

+
1

q2k+4

<
1

ρ2k
+

1

ρ2k+2
. (27)

On the left-hand side we now replace the q’s by certain smaller terms in Fibonacci numbers.
For q2k+2, q2k+3, and q2k+4, we find lower bounds by (15) in Lemma 7:

q2k+1 = a2k+1q2k + q2k−1 = 2F2k+1 + F2k ,

q2k+2 ≥ F2k+3 + F2F2k+1 = F2k+3 + F2k+1 ,

q2k+3 ≥ F2k+4 + F3F2k+1 = F2k+4 + 2F2k+1 ,

q2k+4 ≥ F2k+5 + F4F2k+1 = F2k+5 + 3F2k+1 .

Substituting these expressions into (27), we then conclude that (23) from

(3 − ρ)F2k−1

(ρF2k+1 + F2k)(2F2k+1 + F2k+2)
+

1

2F2k+1 + F2k

+
1

F2k+3 + F2k+1

+
1

F2k+4 + 2F2k+1

+
1

F2k+5 + 3F2k+1

<
1

ρ2k

(

1 +
1

ρ2

)

. (28)

We apply the inequalities in (26) for all s ≥ 2 when δ is replaced by δ := 1/ρ8. Using this
redefined number δ, we have

√
5
( (3 − ρ)(1 + δ)

ρ
(
ρ2 + 1 − δ

)(
2ρ + (1 − δ)ρ2

) +
1

2ρ + 1 − δ
+

1

ρ3 + ρ
+

1

(1 − δ)ρ4 + 2ρ
+

1

ρ5 + 3ρ

)

− 1

ρ2

< 1 ,

or, equivalently,

(3 − ρ)(1 + δ)ρ2k−1/
√

5
(
ρ · ρ2k+1/

√
5 + (1 − δ)ρ2k/

√
5
)(

2ρ2k+1/
√

5 + (1 − δ)ρ2k+2/
√

5
)

+
1

2ρ2k+1/
√

5 + (1 − δ)ρ2k/
√

5
+

1

ρ2k+3/
√

5 + ρ2k+1/
√

5

+
1

(1 − δ)ρ2k+4/
√

5 + 2ρ2k+1/
√

5
+

1

ρ2k+5/
√

5 + 3ρ2k+1/
√

5

<
1

ρ2k

(

1 +
1

ρ2

)

.

From this inequality, (28) follows by applications of (26) with s ∈ {2k − 1, 2k, 2k + 1, 2k +
2, 2k + 3, 2k + 4, 2k + 5} for k ≥ 2 (which implies s ≥ 3).
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Case 2.2: Let k = 1.
From the hypotheses we have a2k+1 = a3 = 2. To prove (23) it suffices to check the inequality
in (28) for k = 1. We have

F2k−1 = F1 = 1 , F2k = F2 = 1 , F2k+1 = F3 = 2 ,
F2k+2 = F4 = 3 , F2k+3 = F5 = 5 ,
F2k+4 = F6 = 8 , F2k+5 = F7 = 13 .

Then (28) is satisfied because

ρ2

( 3 − ρ

7(1 + 2ρ)
+

1

5
+

1

7
+

1

12
+

1

19

)

− 1

ρ2
< 1 .

This completes the proof of Lemma 9.

Proof of Theorem 2: In the sequel we shall use the identity

F2g + F2g+2 + F2g+4 + . . . + F2n = F2n+1 − F2g−1 (n ≥ g ≥ 0) , (29)

which can be proven by induction by applying the recurrence formula of Fibonacci numbers.
Note that F−1 = 1. Next, we prove (8).

Case 1: Let α 6∈ M, α = 〈1; a1, a2, . . .〉 = 〈1; 1, . . . , 1, a2k, a2k+1, . . .〉 with a2k > 1 for some
subscript k ≥ 1. This implies α > ρ.

Case 1.1: Let 0 ≤ n < 2k.
Then n0 = ⌊n/2⌋ ≤ k − 1. In order to treat |ε2m|+ |ε2m+1|, we apply (6) with k replaced by
k − 1 in Proposition 1. For α the condition (7) with k replaced by k − 1 is fulfilled. Note
that the term F2m(ρ − α) in (6) is negative. Therefore, we have

S(n) :=
n∑

ν=2g

|εν | ≤
⌊n/2⌋
∑

m=g

(
|ε2m| + |ε2m+1|

)

<

n0∑

m=g

1

ρ2m
=

ρ2−2g − ρ−2n0

ρ2 − 1
= ρ1−2g − ρ−2n0−1 .

Case 1.2: Let n ≥ 2k.

Case 1.2.1: Let k ≥ g.
Here, we get

S(n) ≤
k−1∑

m=g

(
|ε2m| + |ε2m+1|

)
+
(
|ε2k| + |ε2k+1|

)
+

n0∑

m=k+1

(
|ε2m| + |ε2m+1|

)
. (30)
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When n0 ≤ k, the right-hand sum is empty and becomes zero. The same holds for the
left-hand sum for k = g.
a) We estimate the left-hand sum as in the preceding case applying (6), ρ− α < 0, and the
hypothesis a1a2 · · · a2k−1 = 1:

k−1∑

m=g

(
|ε2m| + |ε2m+1|

)
<

k−1∑

m=g

1

ρ2m
.

b) Since a2k > 1, the left-hand condition in (5) allows us to apply (4) for m = k:

|ε2k| + |ε2k+1| <
1

ρ2k
.

c) We estimate the right-hand sum in (30) again by (4). To check the conditions in (5), we
use a1a2 · · · a2m−1 > 1, which holds by m ≥ k + 1 and a2k > 1. Hence,

n0∑

m=k+1

(
|ε2m| + |ε2m+1|

)
<

n0∑

m=k+1

1

ρ2m
.

Altogether, we find with (30) that

S(n) <

n0∑

m=g

1

ρ2m
= ρ1−2g − ρ−2n0−1 . (31)

Case 1.2.2: Let k < g.
In order to estimate |ε2m| + |ε2m+1| for g ≤ m ≤ n0, we use k + 1 ≤ g and the arguments
from c) in Case 1.2.1. Again, we obtain the inequality (31). The results from Case 1.1 and
Case 1.2 prove (8) for a2k > 1 with k ≥ 1. It remains to investigate the following case.

Case 2: Let α 6∈ M, α = 〈1; a1, a2, . . .〉 with a1 > 1.
For m = 0 (provided that g = 0) the first condition in (5) is fulfilled by a2ma2m+1 = a0a1 =
a1 > 1. For m ≥ 1 we know that a1a2 · · · a2m−1 > 1 always satisfies one part of the second
condition. Therefore, we apply the inequality from (4):

S(n) <

n0∑

m=g

1

ρ2m
= ρ1−2g − ρ−2n0−1 .

Next, we prove (9). Let α ∈ M, α = 〈1; a1, a2, . . .〉 = 〈1; 1, . . . , 1, a2k+1, a2k+2, . . .〉 with
a2k+1 > 1 for some subscript k ≥ 1. This implies ρ > α.

Case 3.1: Let 0 ≤ n < 2k.
Then n0 = ⌊n/2⌋ ≤ k − 1. In order to treat |ε2m|+ |ε2m+1|, we apply (6) with k replaced by
k − 1 in Proposition 1. For α the condition (7) with k replaced by k − 1 is fulfilled. Note
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that the term F2m(ρ − α) in (6) is positive. Therefore we have, using (29),

S(n) ≤
n0∑

m=g

( 1

ρ2m
+ (ρ − α)F2m

)

= ρ1−2g − ρ−2n0−1 + (ρ − α)

n0∑

m=g

F2m

= ρ1−2g − ρ−2n0−1 + (ρ − α)(F2n0+1 − F2g−1)

≤ ρ1−2g − ρ−2n0−1 + (F2k−1 − F2g−1)(ρ − α) .

Here we have used that 2n0 + 1 ≤ 2k − 1.

Case 3.2: Let n ≥ 2k.
Our arguments are similar to the proof given in Case 1.2, using a1a2 · · · a2k−1 = 1 and
a2k+1 > 1.

Case 3.2.1: Let k ≥ g.
Applying (29) again, we obtain

S(n) ≤
k−1∑

m=g

(
|ε2m| + |ε2m+1|

)
+
(
|ε2k| + |ε2k+1|

)
+

n0∑

m=k+1

(
|ε2m| + |ε2m+1|

)

<

k−1∑

m=g

( 1

ρ2m
+ (ρ − α)F2m

)

+
1

ρ2k
+

n0∑

m=k+1

1

ρ2m

=

n0∑

m=g

1

ρ2m
+ (ρ − α)

k−1∑

m=g

F2m

= ρ1−2g − ρ−2n0−1 + (F2k−1 − F2g−1)(ρ − α) .

Case 3.2.2: Let k < g.
From g ≥ k + 1 we get

S(n) ≤
n0∑

m=g

1

ρ2m
= ρ1−2g − ρ−2n0−1 .

The results of Case 3.1 and Case 3.2 complete the proof of (9).
For the inequality (10) we distinguish whether α belongs to M or not.

Case 4.1: Let α 6∈ M.
Then (10) is a consequence of the inequality in (8):

∞∑

ν=2g

|εν | ≤ lim
n0→∞

(
ρ1−2g − ρ−2n0−1

)
= ρ1−2g .

Case 4.2: Let α ∈ M.
There is a subscript k ≥ 1 satisfying α = 〈1; 1, . . . , 1, a2k+1, a2k+2, . . .〉 and a2k+1 > 1. To
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simplify arguments, we introduce the function χ(k, g) defined by χ(k, g) = 1 (if k > g), and
χ(k, g) = 0 (if k ≤ g). We have

S :=
∞∑

ν=2g

|εν | =
2k−1∑

ν=2g

|εν | +
∞∑

ν=max{2k,2g}

|εν |

= χ(k, g)
(
(F2k−1 − F2g−1)(ρ − α) + ρ1−2g − ρ−2k+1

)
+

∞∑

m=max{k,g}

(
|ε2m| + |ε2m+1|

)

≤ (F2k−1 − F2g−1)(ρ − α) + ρ1−2g − ρ−2k+1 +
∞∑

m=k

(
|ε2m| + |ε2m+1|

)

≤ (F2k−1 − 1)(ρ − α) + ρ1−2g − ρ−2k+1 +
∞∑

m=k

(
|ε2m| + |ε2m+1|

)
, (32)

where we have used (9) with n = 2k − 1 and n0 = ⌊n/2⌋ = k − 1.

Case 4.2.1: Let a2k+1 ≥ 3.
The conditions in Lemma 9 for (22) are satisfied. Moreover, the terms |ε2m|+ |ε2m+1| of the
series in (32) for m ≥ k + 1 can be estimated using (4), since a1a2 · · · a2k+1 > 1. Therefore,
we obtain

S <
1

ρ2k
− 1

ρ2k−1
+ ρ1−2g +

∞∑

m=k+1

(
|ε2m| + |ε2m+1|

)

<
1

ρ2k
− 1

ρ2k−1
+ ρ1−2g +

1

ρ2k+1
= ρ1−2g .

Case 4.2.2: Let a2k+1 = 2.
Now the conditions in Lemma 9 for (23) are satisfied. Thus, from (32) and (4) we have

S <
1

ρ2k
+

1

ρ2k+2
− 1

ρ2k−1
+ ρ1−2g +

∞∑

m=k+2

(
|ε2m| + |ε2m+1|

)

<
1

ρ2k
+

1

ρ2k+2
− 1

ρ2k−1
+ ρ1−2g +

∞∑

m=k+2

1

ρ2m

=
1

ρ2k
+

1

ρ2k+2
− 1

ρ2k−1
+ ρ1−2g +

1

ρ2k+3
= ρ1−2g .

This completes the proof of Theorem 2.

5 Concluding remarks

In this section we state some additional identities for error sums ε(α). For this purpose let
α = 〈a0; a1, a2, . . . 〉 be the continued fraction expansion of a real irrational number. Then
the numbers αn are defined by

α = 〈a0; a1, a2, . . . , an−1, αn〉 (n = 0, 1, 2, . . . ) .
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Proposition 11. For every real irrational number α we have

ε(α) =
∞∑

n=1

n∏

k=1

1

αk

and (
ε(α)
·

)

=
∞∑

n=0

(−1)n

(
an 1
1 0

)(
an−1 1

1 0

)

· · ·
(

a0 1
1 0

)(
−1
α

)

.

Next, let α = 〈a0; a1, a2, . . . 〉 with a0 ≥ 1 be a real number with convergents pm/qm

(m ≥ 0), where p−1 = 1, q−1 = 0. Then the convergents pm/qm of the number 1/α =
〈0; a0, a1, a2, . . . 〉 satisfy the equations qm = pm−1 and pm = qm−1 for m ≥ 0, since we know
that p−1 = 1, p0 = 0 and q−1 = 0, q0 = 1. Therefore we obtain a relation between ε(α) and
ε(1/α):

ε(1/α) =
∞∑

m=0

∣
∣
∣
qm

α
− pm

∣
∣
∣ =

∞∑

m=0

∣
∣
∣
pm−1

α
− qm−1

∣
∣
∣ =

1

α

∞∑

m=0

|qm−1α − pm−1|

=
1

α

(

|q−1α − p−1| +
∞∑

m=0

|qmα − pm|
)

=
1

α

(
1 + ε(α)

)
.

This proves

Proposition 12. For every real number α > 1 we have

ε(1/α) =
1 + ε(α)

α
.
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