Journal of Integer Sequences, Vol. 14 (2011),

Series of Error Terms for Rational Approximations of Irrational Numbers

Carsten Elsner
Fachhochschule für die Wirtschaft
Hannover
Freundallee 15
D-30173 Hannover
Germany
Carsten.Elsner@fhdw.de

Abstract

Let p_{n} / q_{n} be the n-th convergent of a real irrational number α, and let $\varepsilon_{n}=\alpha q_{n}-p_{n}$. In this paper we investigate various sums of the type $\sum_{m} \varepsilon_{m}, \sum_{m}\left|\varepsilon_{m}\right|$, and $\sum_{m} \varepsilon_{m} x^{m}$. The main subject of the paper is bounds for these sums. In particular, we investigate the behaviour of such sums when α is a quadratic surd. The most significant properties of the error sums depend essentially on Fibonacci numbers or on related numbers.

1 Statement of results for arbitrary irrationals

Given a real irrational number α and its regular continued fraction expansion

$$
\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots\right\rangle \quad\left(a_{0} \in \mathbb{Z}, a_{\nu} \in \mathbb{N} \text { for } \nu \geq 1\right)
$$

the convergents p_{n} / q_{n} of α form a sequence of best approximating rationals in the following sense: for any rational p / q satisfying $1 \leq q<q_{n}$ we have

$$
\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\left|\alpha-\frac{p}{q}\right| .
$$

The convergents p_{n} / q_{n} of α are defined by finite continued fractions

$$
\frac{p_{n}}{q_{n}}=\left\langle a_{0} ; a_{1}, \ldots, a_{n}\right\rangle .
$$

The integers p_{n} and q_{n} can be computed recursively using the initial values $p_{-1}=1, p_{0}=a_{0}$, $q_{-1}=0, q_{0}=1$, and the recurrence formulae

$$
\begin{equation*}
p_{n}=a_{n} p_{n-1}+p_{n-2}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2} \tag{1}
\end{equation*}
$$

with $n \geq 1$. Then p_{n} / q_{n} is a rational number in lowest terms satisfying the inequalities

$$
\begin{equation*}
\frac{1}{q_{n}+q_{n+1}}<\left|q_{n} \alpha-p_{n}\right|<\frac{1}{q_{n+1}} \quad(n \geq 0) \tag{2}
\end{equation*}
$$

The error terms $q_{n} \alpha-p_{n}$ alternate, i.e., $\operatorname{sgn}\left(q_{n} \alpha-p_{n}\right)=(-1)^{n}$. For basic facts on continued fractions and convergents see $[4,5,8]$.
Throughout this paper let

$$
\rho=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \bar{\rho}=-\frac{1}{\rho}=\frac{1-\sqrt{5}}{2} .
$$

The Fibonacci numbers F_{n} are defined recursively by $F_{-1}=1, F_{0}=0$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 1$. In this paper we shall often apply Binet's formula,

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left(\rho^{n}-\left(-\frac{1}{\rho}\right)^{n}\right) \quad(n \geq 0) \tag{3}
\end{equation*}
$$

While preparing a talk on the subject of so-called leaping convergents relying on the papers $[2,6,7]$, the author applied results for convergents to the number $\alpha=e=\exp (1)$. He found two identities which are based on formulas given by Cohn [1]:

$$
\begin{gathered}
\sum_{n=0}^{\infty}\left(q_{n} e-p_{n}\right)=2 \int_{0}^{1} \exp \left(t^{2}\right) d t-2 e+3=0.4887398 \ldots \\
\sum_{n=0}^{\infty}\left|q_{n} e-p_{n}\right|=2 e \int_{0}^{1} \exp \left(-t^{2}\right) d t-e=1.3418751 \ldots
\end{gathered}
$$

These identities are the starting points of more generalized questions concerning error series of real numbers α.
1.) What is the maximum size M of the series $\sum_{m=0}^{\infty}\left|q_{m} \alpha-p_{m}\right|$? One easily concludes that $M \geq(1+\sqrt{5}) / 2$, because $\sum_{m=0}^{\infty}\left|q_{m}(1+\sqrt{5}) / 2-p_{m}\right|=(1+\sqrt{5}) / 2$.
2.) Is there a method to compute $\sum_{m=0}^{\infty}\left|q_{m} \alpha-p_{m}\right|$ explicitly for arbitrary real quadratic irrationals?

The series $\sum_{m=0}^{\infty}\left|q_{m} \alpha-p_{m}\right| \in[0, M]$ measures the approximation properties of α on average. The smaller this series is, the better rational approximations α has. Nevertheless, α can be a Liouville number and $\sum_{m=0}^{\infty}\left|q_{m} \alpha-p_{m}\right|$ takes a value close to M. For example, let us consider the numbers

$$
\alpha_{n}=\langle 1 ; \underbrace{1, \ldots, 1}_{n}, a_{n+1}, a_{n+2}, \ldots\rangle
$$

for even positive integers n, where the elements a_{n+1}, a_{n+2}, \ldots are defined recursively in the following way. Let $p_{k} / q_{k}=\langle 1 ; \underbrace{1, \ldots, 1}\rangle$ for $k=0,1, \ldots, n$ and set

$$
\begin{array}{ll}
a_{n+1}:=q_{n}^{n}, & q_{n+1}=a_{n+1} q_{n}+q_{n-1}=q_{n}^{n}\left(q_{n}+q_{n-1}\right), \\
a_{n+2}:=q_{n+1}^{n+1}, & q_{n+2}=a_{n+2} q_{n+1}+q_{n}=q_{n+1}^{n+1}\left(q_{n}^{n+1}+q_{n-1}\right), \\
a_{n+3}:=q_{n+2}^{n+2}, & q_{n+3}=a_{n+3} q_{n+2}+q_{n+1}=\ldots
\end{array}
$$

and so on. In the general case we define a_{k+1} by $a_{k+1}=q_{k}^{k}$ for $k=n, n+1, \ldots$. Then we have with (1) and (2) that

$$
0<\left|\alpha_{n}-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k} q_{k+1}}<\frac{1}{a_{k+1} q_{k}^{2}}=\frac{1}{q_{k}^{k+2}} \quad(k \geq n) .
$$

Hence α_{n} is a Liouville number. Now it follows from (9) in Theorem 2 below with $2 k=n$ and $n_{0}=(n / 2)-1$ that

$$
\sum_{m=0}^{\infty}\left|q_{m} \alpha_{n}-p_{m}\right|>\sum_{m=0}^{n-1}\left|q_{m} \alpha_{n}-p_{m}\right|=\left(F_{n-1}-1\right)\left(\rho-\alpha_{n}\right)+\rho-\rho^{1-n} \geq \rho-\frac{1}{\rho^{n-1}} .
$$

We shall show by Theorem 2 that $M=\rho$, such that the error sums of the Liouville numbers α_{n} tend to this maximum value ρ for increasing n.
We first treat infinite sums of the form $\sum_{n}\left|q_{n} \alpha-p_{n}\right|$ for arbitrary real irrational numbers $\alpha=\left\langle 1 ; a_{1}, a_{2}, \ldots\right\rangle$, when we may assume without loss of generality that $1<\alpha<2$.

Proposition 1. Let $\alpha=\left\langle 1 ; a_{1}, a_{2}, \ldots\right\rangle$ be a real irrational number. Then for every integer $m \geq 0$, the following two inequalities hold: Firstly,

$$
\begin{equation*}
\left|q_{2 m} \alpha-p_{2 m}\right|+\left|q_{2 m+1} \alpha-p_{2 m+1}\right|<\frac{1}{\rho^{2 m}} \tag{4}
\end{equation*}
$$

provided that either

$$
\begin{equation*}
a_{2 m} a_{2 m+1}>1 \quad \text { or } \quad\left(a_{2 m}=a_{2 m+1}=1 \quad \text { and } \quad a_{1} a_{2} \cdots a_{2 m-1}>1\right) . \tag{5}
\end{equation*}
$$

Secondly,

$$
\begin{equation*}
\left|q_{2 m} \alpha-p_{2 m}\right|+\left|q_{2 m+1} \alpha-p_{2 m+1}\right|=\frac{1}{\rho^{2 m}}+F_{2 m}(\rho-\alpha) \quad(0 \leq m \leq k) \tag{6}
\end{equation*}
$$

provided that

$$
\begin{equation*}
a_{1}=a_{2}=\ldots=a_{2 k+1}=1 \tag{7}
\end{equation*}
$$

In the second term on the right-hand side of (6), $\rho-\alpha$ takes positive or negative values according to the parity of the smallest subscript $r \geq 1$ with $a_{r}>1$: For odd r we have $\rho>\alpha$, otherwise, $\rho<\alpha$.
Next, we introduce a set \mathcal{M} of irrational numbers, namely

$$
\mathcal{M}:=\left\{\alpha \in \mathbb{R} \backslash \mathbb{Q} \mid \exists k \in \mathbb{N}: \alpha=\left\langle 1 ; 1, \ldots, 1, a_{2 k+1}, a_{2 k+2}, \ldots\right\rangle \wedge a_{2 k+1}>1\right\} .
$$

Note that $\rho>\alpha$ for $\alpha \in \mathcal{M}$. Our main result for real irrational numbers is given by the subsequent theorem.

Theorem 2. Let $1<\alpha<2$ be a real irrational number and let $g, n \geq 0$ be integers with $n \geq 2 g$. Set $n_{0}:=\lfloor n / 2\rfloor$. Then the following inequalities hold.
1.) For $\alpha \notin \mathcal{M}$ we have

$$
\begin{equation*}
\sum_{\nu=2 g}^{n}\left|q_{\nu} \alpha-p_{\nu}\right| \leq \rho^{1-2 g}-\rho^{-2 n_{0}-1} \tag{8}
\end{equation*}
$$

with equality for $\alpha=\rho$ and every odd $n \geq 0$.
2.) For $\alpha \in \mathcal{M}$, say $\alpha=\left\langle 1 ; 1, \ldots, 1, a_{2 k+1}, a_{2 k+2}, \ldots\right\rangle$ with $a_{2 k+1}>1$, we have

$$
\begin{equation*}
\sum_{\nu=2 g}^{n}\left|q_{\nu} \alpha-p_{\nu}\right| \leq\left(F_{2 k-1}-F_{2 g-1}\right)(\rho-\alpha)+\rho^{1-2 g}-\rho^{-2 n_{0}-1} \tag{9}
\end{equation*}
$$

with equality for $n=2 k-1$.
3.) We have

$$
\begin{equation*}
\sum_{\nu=2 g}^{\infty}\left|q_{\nu} \alpha-p_{\nu}\right| \leq \rho^{1-2 g} \tag{10}
\end{equation*}
$$

with equality for $\alpha=\rho$.
In particular, for any positive ε and any even integer n satisfying

$$
n \geq \frac{\log (\rho / \varepsilon)}{\log \rho}
$$

it follows that

$$
\sum_{\nu=n}^{\infty}\left|q_{\nu} \alpha-p_{\nu}\right| \leq \varepsilon
$$

For $\nu \geq 1$ we know by $q_{2} \geq 2$ and by (2) that $\left|q_{\nu} \alpha-p_{\nu}\right|<1 / q_{\nu+1} \leq 1 / q_{2} \leq 1 / 2$, which implies $\left|q_{\nu} \alpha-p_{\nu}\right|=\left\|q_{\nu} \alpha\right\|$, where $\|\beta\|$ denotes the distance of a real number β to the nearest integer. For $\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots\right\rangle,\left|q_{0} \alpha-p_{0}\right|=\alpha-a_{0}=\{\alpha\}$ is the fractional part of α. Therefore, we conclude from Theorem 2 that

$$
\sum_{\nu=1}^{\infty}\left\|q_{\nu} \alpha\right\| \leq \rho-\{\alpha\}
$$

In particular, we have for $\alpha=\rho$ that

$$
\sum_{\nu=1}^{\infty}\left\|q_{\nu} \rho\right\|=1
$$

The following theorem gives a simple bound for $\sum_{m}\left(q_{m} \alpha-p_{m}\right)$.
Theorem 3. Let α be a real irrational number. Then the series $\sum_{m=0}^{\infty}\left(q_{m} \alpha-p_{m}\right) x^{m}$ converges absolutely at least for $|x|<\rho$, and

$$
0<\sum_{m=0}^{\infty}\left(q_{m} \alpha-p_{m}\right)<1
$$

Both the upper bound 1 and the lower bound 0 are best possible.
The proof of this theorem is given in Section 3. We shall prove Proposition 1 and Theorem 2 in Section 4, using essentially the properties of Fibonacci numbers.

2 Statement of Results for Quadratic Irrationals

In this section we state some results for error sums involving real quadratic irrational numbers α. Any quadratic irrational α has a periodic continued fraction expansion,

$$
\alpha=\left\langle a_{0} ; a_{1}, \ldots, a_{\omega}, T_{1}, \ldots, T_{r}, T_{1}, \ldots, T_{r}, \ldots\right\rangle=\left\langle a_{0} ; a_{1}, \ldots, a_{\omega}, \overline{T_{1}, \ldots, T_{r}}\right\rangle
$$

say. Then there is a linear three-term recurrence formula for $z_{n}=p_{r n+s}$ and $z_{n}=q_{r n+s}$ $(s=0,1, \ldots, r-1),[3$, Corollary 1]. This recurrence formula has the form

$$
z_{n+2}=G z_{n+1} \pm z_{n} \quad(r n>\omega) .
$$

Here, G denotes a positive integer, which depends on α and r, but not on n and s. The number G can be computed explicitly from the numbers T_{1}, \ldots, T_{r} of the continued fraction expansion of α. This is the basic idea on which the following theorem relies.

Theorem 4. Let α be a real quadratic irrational number. Then

$$
\sum_{m=0}^{\infty}\left(q_{m} \alpha-p_{m}\right) x^{m} \in \mathbb{Q}[\alpha](x)
$$

It is not necessary to explain further technical details of the proof. Thus, the generating function of the sequence $\left(q_{m} \alpha-p_{m}\right)_{m \geq 0}$ is a rational function with coefficients from $\mathbb{Q}[\alpha]$.

Example 5. Let $\alpha=\sqrt{7}=\langle 2 ; \overline{1,1,1,4}\rangle$. Then

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(q_{m} \sqrt{7}-p_{m}\right) x^{m}=\frac{x^{3}-(2+\sqrt{7}) x^{2}+(3+\sqrt{7}) x-(5+2 \sqrt{7})}{x^{4}-(8+3 \sqrt{7})} \tag{11}
\end{equation*}
$$

In particular, for $x=1$ and $x=-1$ we obtain

$$
\begin{aligned}
& \sum_{m=0}^{\infty}\left(q_{m} \sqrt{7}-p_{m}\right)=\frac{21-5 \sqrt{7}}{14}=0.555088817 \ldots \\
& \sum_{m=0}^{\infty}\left|q_{m} \sqrt{7}-p_{m}\right|=\frac{7+5 \sqrt{7}}{14}=1.444911182 \ldots
\end{aligned}
$$

Next, we consider the particular quadratic surds

$$
\alpha=\frac{n+\sqrt{4+n^{2}}}{2}=\langle n ; n, n, n, \ldots\rangle
$$

and compute the generating function of the error terms $q_{m} \alpha-p_{m}$.

Corollary 6. Let $n \geq 1$ and $\alpha=\left(n+\sqrt{4+n^{2}}\right) / 2$. Then

$$
\sum_{m=0}^{\infty}\left(q_{m} \alpha-p_{m}\right) x^{m}=\frac{1}{x+\alpha}
$$

particularly

$$
\sum_{m=0}^{\infty}\left(q_{m} \alpha-p_{m}\right)=\frac{1}{\alpha+1}, \quad \sum_{m=0}^{\infty}\left|q_{m} \alpha-p_{m}\right|=\frac{1}{\alpha-1}, \quad \sum_{m=0}^{\infty} \frac{q_{m} \alpha-p_{m}}{m+1}=\log \left(1+\frac{1}{\alpha}\right)
$$

For the number $\rho=(1+\sqrt{5}) / 2$ we have $p_{m}=F_{m+2}$ and $q_{m}=F_{m+1}$. Hence, using $1 /(\rho+1)=(3-\sqrt{5}) / 2=1+\bar{\rho}, 1 /(\rho-1)=\rho$, and $1+1 / \rho=\rho$, we get from Corollary 6

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(F_{m+1} \rho-F_{m+2}\right)=1+\bar{\rho}, \quad \sum_{m=0}^{\infty}\left|F_{m+1} \rho-F_{m+2}\right|=\rho, \quad \sum_{m=0}^{\infty} \frac{F_{m+1} \rho-F_{m+2}}{m+1}=\log \rho . \tag{12}
\end{equation*}
$$

Similarly, we obtain for the number $\alpha=\sqrt{7}$ from (11):

$$
\sum_{m=0}^{\infty} \frac{q_{m} \sqrt{7}-p_{m}}{m+1}=\int_{0}^{1} \frac{x^{3}-(2+\sqrt{7}) x^{2}+(3+\sqrt{7}) x-(5+2 \sqrt{7})}{x^{4}-(8+3 \sqrt{7})} d x=0.5568649708 \ldots
$$

3 Proof of Theorem 3

Throughout this paper we shall use the abbreviations $\varepsilon_{m}(\alpha)=\varepsilon_{m}:=q_{m} \alpha-p_{m}$ and $\varepsilon(\alpha)=$ $\sum_{m=0}^{\infty}\left|\varepsilon_{m}(\alpha)\right|$. The sequence $\left(\left|\varepsilon_{m}\right|\right)_{m \geq 0}$ converges strictly decreasing to zero. Since $\varepsilon_{0}>0$ and $\varepsilon_{m} \varepsilon_{m+1}<0$, we have

$$
\varepsilon_{0}+\varepsilon_{1}<\sum_{m=0}^{\infty} \varepsilon_{m}<\varepsilon_{0}
$$

Put $a_{0}=\lfloor\alpha\rfloor, \theta:=\varepsilon_{0}=\alpha-a_{0}$, so that $0<\theta<1$. Moreover,

$$
\varepsilon_{0}+\varepsilon_{1}=\theta+a_{1} \alpha-\left(a_{0} a_{1}+1\right)=\theta+a_{1} \theta-1=\theta+\left\lfloor\frac{1}{\theta}\right\rfloor \theta-1 .
$$

Choosing an integer $k \geq 1$ satisfying

$$
\frac{1}{k+1}<\theta<\frac{1}{k}
$$

we get

$$
\theta+\left\lfloor\frac{1}{\theta}\right\rfloor \theta-1>\frac{1}{k+1}+\frac{k}{k+1}-1=0
$$

which proves the lower bound for $\sum \varepsilon_{m}$.
In order to estimate the radius of convergence for the series $\sum \varepsilon_{m} x^{m}$ we first prove the inequality

$$
\begin{equation*}
q_{m} \geq F_{m+1} \quad(m \geq 0) \tag{13}
\end{equation*}
$$

which follows inductively. We have $q_{0}=1=F_{1}, q_{1}=a_{1} \geq 1=F_{2}$, and

$$
q_{m}=a_{m} q_{m-1}+q_{m-2} \geq q_{m-1}+q_{m-2} \geq F_{m}+F_{m-1}=F_{m+1} \quad(m \geq 2)
$$

provided that (13) is already proven for q_{m-1} and q_{m-2}. With Binet's formula (3) and (13) we conclude that

$$
\begin{equation*}
q_{m+1} \geq \frac{1}{\sqrt{5}}\left(\rho^{m+2}-\left(-\frac{1}{\rho}\right)^{m+2}\right) \geq \frac{1}{\sqrt{5}} \rho^{m} \quad(m \geq 0) \tag{14}
\end{equation*}
$$

Hence, we have

$$
\left|\varepsilon_{m}\right| x^{m}=\left|q_{m} \alpha-p_{m}\right| x^{m}<\frac{x^{m}}{q_{m+1}} \leq \sqrt{5}\left(\frac{x}{\rho}\right)^{m} \quad(m \geq 0)
$$

It follows that the series $\sum \varepsilon_{m} x^{m}$ converges absolutely at least for $|x|<\rho$. In order to prove that the upper bound 1 is best possible, we choose $0<\varepsilon<1$ and a positive integer n satisfying

$$
\frac{1}{n}\left(1+\frac{\rho \sqrt{5}}{\rho-1}\right)<\varepsilon .
$$

Put

$$
\alpha_{n}:=\langle 0 ; 1, \bar{n}\rangle=\frac{1}{2}-\frac{1}{n}+\frac{1}{2} \sqrt{1+\frac{4}{n^{2}}}>1-\frac{1}{n} .
$$

With $p_{0}=0$ and $q_{0}=1$ we have by (1), (2), and (14),

$$
\begin{aligned}
\sum_{m=0}^{\infty}\left(q_{m} \alpha_{n}-p_{m}\right) & \geq \alpha_{n}-\sum_{m=1}^{\infty}\left|q_{m} \alpha_{n}-p_{m}\right| \\
& >1-\frac{1}{n}-\sum_{m=1}^{\infty} \frac{1}{q_{m+1}} \geq 1-\frac{1}{n}-\sum_{m=1}^{\infty} \frac{1}{n q_{m}} \\
& \geq 1-\frac{1}{n}-\frac{\sqrt{5}}{n} \sum_{m=1}^{\infty} \frac{1}{\rho^{m-1}} \\
& =1-\frac{1}{n}\left(1+\frac{\rho \sqrt{5}}{\rho-1}\right)>1-\varepsilon .
\end{aligned}
$$

For the lower bound 0 we construct quadratic irrational numbers $\beta_{n}:=\langle 0 ; \bar{n}\rangle$ and complete the proof of the theorem by similar arguments.

4 Proofs of Proposition 1 and Theorem 2

Lemma 7. Let $\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots\right\rangle$ be a real irrational number with convergents p_{m} / q_{m}. Let $n \geq 1$ be a subscript satisfying $a_{n}>1$. Then

$$
\begin{equation*}
q_{n+k} \geq F_{n+k+1}+F_{k+1} F_{n} \quad(k \geq 0) \tag{15}
\end{equation*}
$$

In the case $n \equiv k+1 \equiv 0(\bmod 2)$ we additionally assume that $n \geq 4, k \geq 3$. Then

$$
\begin{equation*}
F_{n+k+1}+F_{k+1} F_{n}>\rho^{n+k} . \tag{16}
\end{equation*}
$$

When $\alpha-\rho \notin \mathbb{Z}$, the inequality (15) with $m=n+k$ is stronger than (13).

Proof. We prove (15) by induction on k. Using (1) and (13), we obtain for $k=0$ and $k=1$, respectively,

$$
\begin{aligned}
& q_{n}=a_{n} q_{n-1}+q_{n-2} \geq 2 F_{n}+F_{n-1}=\left(F_{n}+F_{n-1}\right)+F_{n}=F_{n+1}+F_{1} F_{n} \\
& q_{n+1}=a_{n+1} q_{n}+q_{n-1} \geq q_{n}+q_{n-1} \geq\left(F_{n+1}+F_{n}\right)+F_{n}=F_{n+2}+F_{2} F_{n}
\end{aligned}
$$

Now, let $k \geq 0$ and assume that (15) is already proven for q_{n+k} and q_{n+k+1}. Then

$$
\begin{aligned}
q_{n+k+2} & \geq q_{n+k+1}+q_{n+k} \\
& \geq\left(F_{n+k+2}+F_{k+2} F_{n}\right)+\left(F_{n+k+1}+F_{k+1} F_{n}\right) \\
& =F_{n+k+3}+F_{k+3} F_{n} .
\end{aligned}
$$

This corresponds to (15) with k replaced by $k+2$. In order to prove (16) we express the Fibonacci numbers F_{m} by Binet's formula (3). Hence, we have

$$
\begin{aligned}
& F_{n+k+1}+F_{k+1} F_{n} \\
= & \rho^{n+k}\left(\rho\left(\frac{1}{5}+\frac{1}{\sqrt{5}}\right)+(-1)^{n+k}\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) \frac{1}{\rho^{2 n+2 k+1}}+\frac{1}{5}\left(\frac{(-1)^{n+1}}{\rho^{2 n-1}}+\frac{(-1)^{k}}{\rho^{2 k+1}}\right)\right) .
\end{aligned}
$$

Case 1: Let $n \equiv k \equiv 1(\bmod 2)$.
In particular, we have $k \geq 1$. Then

$$
\begin{aligned}
& F_{n+k+1}+F_{k+1} F_{n} \\
= & \rho^{n+k}\left(\rho\left(\frac{1}{5}+\frac{1}{\sqrt{5}}\right)+\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) \frac{1}{\rho^{2 n+2 k+1}}+\frac{1}{5}\left(\frac{1}{\rho^{2 n-1}}-\frac{1}{\rho^{2 k+1}}\right)\right) \\
> & \rho^{n+k}\left(\rho\left(\frac{1}{5}+\frac{1}{\sqrt{5}}\right)-\frac{1}{5 \rho^{3}}\right)=\rho^{n+k} .
\end{aligned}
$$

Case 2: Let $n \equiv 1(\bmod 2), k \equiv 0(\bmod 2)$.
In particular, we have $n \geq 1$ and $k \geq 0$. First, we assume that $k \geq 2$. Then, by similar computations as in Case 1, we obtain

$$
\begin{aligned}
& F_{n+k+1}+F_{k+1} F_{n} \\
= & \rho^{n+k}\left(\rho\left(\frac{1}{5}+\frac{1}{\sqrt{5}}\right)-\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) \frac{1}{\rho^{2 n+2 k+1}}+\frac{1}{5}\left(\frac{1}{\rho^{2 n-1}}+\frac{1}{\rho^{2 k+1}}\right)\right)>\rho^{n+k} .
\end{aligned}
$$

For $k=0$ and some odd $n \geq 1$ we get

$$
F_{n+k+1}+F_{k+1} F_{n}>\rho^{n}\left(\rho\left(\frac{1}{5}+\frac{1}{\sqrt{5}}\right)-\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) \frac{1}{\rho^{3}}+\frac{1}{5 \rho}\right)>\rho^{n} .
$$

Case 3: Let $n \equiv 0(\bmod 2), k \equiv 1(\bmod 2)$.
By the assumption of the lemma, we have $n \geq 4$ and $k \geq 3$. Then

$$
\begin{aligned}
& F_{n+k+1}+F_{k+1} F_{n} \\
= & \rho^{n+k}\left(\rho\left(\frac{1}{5}+\frac{1}{\sqrt{5}}\right)-\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) \frac{1}{\rho^{2 n+2 k+1}}+\frac{1}{5}\left(-\frac{1}{\rho^{2 n-1}}-\frac{1}{\rho^{2 k+1}}\right)\right)>\rho^{n+k} .
\end{aligned}
$$

Case 4: Let $n \equiv k \equiv 0(\bmod 2)$.
In particular, we have $n \geq 2$. Then

$$
\begin{aligned}
& F_{n+k+1}+F_{k+1} F_{n} \\
= & \rho^{n+k}\left(\rho\left(\frac{1}{5}+\frac{1}{\sqrt{5}}\right)+\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) \frac{1}{\rho^{2 n+2 k+1}}+\frac{1}{5}\left(-\frac{1}{\rho^{2 n-1}}+\frac{1}{\rho^{2 k+1}}\right)\right)>\rho^{n+k} .
\end{aligned}
$$

This completes the proof of Lemma 7.
Lemma 8. Let m be an integer. Then

$$
\begin{align*}
\frac{\rho^{2 m}}{F_{2 m+2}} & <1 \quad(m \geq 1), \tag{17}\\
\rho^{2 m}\left(\frac{1}{F_{2 m+3}}+\frac{1}{F_{2 m+3}+F_{2 m+1}}\right) & <1 \quad(m \geq 0) . \tag{18}
\end{align*}
$$

Proof. For $m \geq 1$ we estimate Binet's formula (3) for $F_{2 m+2}$ using $4 m+2 \geq 6$:

$$
F_{2 m+2}=\frac{\rho^{2 m}}{\sqrt{5}}\left(\rho^{2}-\frac{1}{\rho^{4 m+2}}\right) \geq \frac{\rho^{2 m}}{\sqrt{5}}\left(\rho^{2}-\frac{1}{\rho^{6}}\right)>\rho^{2 m} .
$$

Similarly, we prove (18) by

$$
F_{2 n+1}=\frac{1}{\sqrt{5}}\left(\rho^{2 n+1}+\frac{1}{\rho^{2 n+1}}\right)>\frac{\rho^{2 n+1}}{\sqrt{5}} \quad(n \geq 0)
$$

Hence,

$$
\rho^{2 m}\left(\frac{1}{F_{2 m+3}}+\frac{1}{F_{2 m+3}+F_{2 m+1}}\right)<\rho^{2 m}\left(\frac{\sqrt{5}}{\rho^{2 m+3}}+\frac{\sqrt{5}}{\rho^{2 m+3}+\rho^{2 m+1}}\right)<1 .
$$

The lemma is proven.

Proof of Proposition 1: Firstly, we assume the hypotheses in (5) and prove (4). As in the proof of Theorem 3, put $a_{0}=\lfloor\alpha\rfloor, \theta:=\alpha-a_{0}, a_{1}=\lfloor 1 / \theta\rfloor$ with $0<\theta<1$ and $\varepsilon_{0}=\theta<1$. Then

$$
\left|\varepsilon_{0}\right|+\left|\varepsilon_{1}\right|=\theta+\left(a_{0} a_{1}+1\right)-a_{1} \alpha=\theta+1-a_{1} \theta=\theta+1-\left\lfloor\frac{1}{\theta}\right\rfloor \theta
$$

We have $0<\theta<1 / 2$, since otherwise for $\theta>1 / 2$, we obtain $a_{1}=\lfloor 1 / \theta\rfloor=1$. With $a_{0}=a_{1}=1$ the conditions in (5) are unrealizable both. Hence, there is an integer $k \geq 2$ with

$$
\frac{1}{k+1}<\theta<\frac{1}{k} .
$$

Obviously, it follows that $[1 / \theta]=k$, and therefore

$$
\theta+1-\left\lfloor\frac{1}{\theta}\right\rfloor \theta<\frac{1}{k}+1-\frac{k}{k+1}=\frac{2 k+1}{k(k+1)} \leq \frac{5}{6} \quad(k \geq 2) .
$$

Altogether, we have proven that

$$
\begin{equation*}
\left|\varepsilon_{0}\right|+\left|\varepsilon_{1}\right| \leq \frac{5}{6}<1 \tag{19}
\end{equation*}
$$

Therefore we already know that the inequality (4) holds for $m=0$. Thus, we assume $m \geq 1$ in the sequel. Noting that $\varepsilon_{2 m}>0$ and $\varepsilon_{2 m+1}<0$ hold for every integer $m \geq 0$, we may rewrite (4) as follows:

$$
\begin{equation*}
(0<) \quad\left(p_{2 m+1}-p_{2 m}\right)-\alpha\left(q_{2 m+1}-q_{2 m}\right)<\frac{1}{\rho^{2 m}} \quad(m \geq 0) \tag{20}
\end{equation*}
$$

We distinguish three cases according to the conditions in (5).
Case 1: Let $a_{2 m+1} \geq 2$.
Additionally, we apply the trivial inequality $a_{2 m+2} \geq 1$. Then, using (2), (13), and (18),

$$
\begin{aligned}
\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right| & <\frac{1}{q_{2 m+1}}+\frac{1}{q_{2 m+2}} \\
& \leq \frac{1}{2 q_{2 m}+q_{2 m-1}}+\frac{1}{q_{2 m+1}+q_{2 m}} \\
& \leq \frac{1}{2 q_{2 m}+q_{2 m-1}}+\frac{1}{3 q_{2 m}+q_{2 m-1}} \\
& \leq \frac{1}{2 F_{2 m+1}+F_{2 m}}+\frac{1}{3 F_{2 m+1}+F_{2 m}} \\
& <\frac{1}{\rho^{2 m}} \quad(m \geq 0)
\end{aligned}
$$

Case 2: Let $a_{2 m+1}=1$ and $a_{2 m} \geq 2$.
Here, we have $p_{2 m+1}-p_{2 m}=p_{2 m}+p_{2 m-1}-p_{2 m}=p_{2 m-1}$, and similarly $q_{2 m+1}-q_{2 m}=q_{2 m-1}$.

Therefore, by (20), it suffices to show that $0<p_{2 m-1}-\alpha q_{2 m-1}<\rho^{-2 m}$ for $m \geq 1$. This follows with (2), (13), and (17) from

$$
\begin{aligned}
0 & <p_{2 m-1}-\alpha q_{2 m-1}<\frac{1}{q_{2 m}} \\
& \leq \frac{1}{2 q_{2 m-1}+q_{2 m-2}} \leq \frac{1}{2 F_{2 m}+F_{2 m-1}} \\
& =\frac{1}{F_{2 m+2}}<\frac{1}{\rho^{2 m}} \quad(m \geq 1) .
\end{aligned}
$$

Case 3: Let $a_{2 m}=a_{2 m+1}=1 \wedge a_{1} a_{2} \cdots a_{2 m-1}>1$.
Since $a_{2 m+1}=1$, we again have (as in Case 2):

$$
\begin{equation*}
0<\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|=p_{2 m-1}-\alpha q_{2 m-1}<\frac{1}{q_{2 m}} \tag{21}
\end{equation*}
$$

By the hypothesis of Case 3, there is an integer n satisfying $1 \leq n \leq 2 m-1$ and $a_{n} \geq 2$. We define an integer $k \geq 1$ by setting $2 m=n+k$. Then we obtain using (15) and (16),

$$
q_{2 m}=q_{n+k} \geq F_{n+k+1}+F_{k+1} F_{n}>\rho^{n+k}=\rho^{2 m} .
$$

From the identity $n+k=2 m$ it follows that the particular condition $n \equiv k+1 \equiv 0(\bmod 2)$ in Lemma 7 does not occur. Thus, by (21), we conclude that the desired inequality (4).
In order to prove (6), we now assume the hypothesis (7), i.e., $a_{1} a_{2} \cdots a_{2 k+1}=1$ and $0 \leq m \leq$ k. From $2 m-1 \leq 2 k-1$ and $a_{0}=a_{1}=\ldots=a_{2 k-1}=1$ it is clear that $p_{2 m-1}=F_{2 m+1}$ and $q_{2 m-1}=F_{2 m}$. Since $a_{2 k+1}=1$ and $0 \leq m \leq k$, we have

$$
\begin{aligned}
& \left|q_{2 m} \alpha-p_{2 m}\right|+\left|q_{2 m+1} \alpha-p_{2 m+1}\right| \\
= & p_{2 m-1}-\alpha q_{2 m-1}=F_{2 m+1}-\alpha F_{2 m}=F_{2 m+1}-\rho F_{2 m}+(\rho-\alpha) F_{2 m} .
\end{aligned}
$$

From Binet's formula (3) we conclude that

$$
F_{2 m+1}-\rho F_{2 m}=\frac{1}{\sqrt{5}}\left(\frac{1}{\rho^{2 m+1}}+\frac{1}{\rho^{2 m-1}}\right)=\rho^{-2 m}
$$

which finally proves the desired identity (6) in Proposition 1.
Lemma 9. Let $k \geq 1$ be an integer, and let $\alpha:=\left\langle 1 ; 1, \ldots, 1, a_{2 k+1}, a_{2 k+2} \ldots\right\rangle$ be a real irrational number with partial quotients $a_{2 k+1}>1$ and $a_{\mu} \geq 1$ for $\mu \geq 2 k+2$. Then we have the inequalities

$$
\begin{equation*}
\left(F_{2 k-1}-1\right)(\rho-\alpha)<\frac{1}{\rho^{2 k}}-\left|\varepsilon_{2 k}\right|-\left|\varepsilon_{2 k+1}\right| \tag{22}
\end{equation*}
$$

for $a_{2 k+1} \geq 3$, and

$$
\begin{equation*}
\left(F_{2 k-1}-1\right)(\rho-\alpha)<\frac{1}{\rho^{2 k}}+\frac{1}{\rho^{2 k+2}}-\left|\varepsilon_{2 k}\right|-\left|\varepsilon_{2 k+1}\right|-\left|\varepsilon_{2 k+2}\right|-\left|\varepsilon_{2 k+3}\right| \tag{23}
\end{equation*}
$$

for $a_{2 k+1}=2$.

One may conjecture that (22) also holds for $a_{2 k+1}=2$.

Example 10. Let $\alpha=\langle 1 ; 1,1,1,1,2, \overline{1}\rangle=(21 \rho+8) /(13 \rho+5)=(257-\sqrt{5}) / 158$. With $k=2$ and $a_{5}=2$, we have on the one side

$$
\rho-\alpha=F_{2}(\rho-\alpha)=\frac{40 \sqrt{5}-89}{79}=0.005604 \ldots,
$$

on the other side,

$$
\frac{1}{\rho^{4}}-\left|\varepsilon_{4}\right|-\left|\varepsilon_{5}\right|=\frac{1}{\rho^{4}}-\frac{4 \sqrt{5}-1}{79}=0.045337 \ldots
$$

Proof of Lemma 9:
Case 1: Let $n:=a_{2 k+1} \geq 3$.
Then there is a real number η satisfying $0<\eta<1$ and

$$
r_{2 k+1}:=\left\langle a_{2 k+1} ; a_{2 k+2}, \ldots\right\rangle=n+\eta=: 1+\beta .
$$

It is clear that $n-1<\beta<n$. From the theory of regular continued fractions (see [5, formula (16)]) it follows that

$$
\begin{aligned}
\alpha & =\left\langle 1 ; 1, \ldots, 1, a_{2 k+1}, a_{2 k+2} \ldots\right\rangle=\frac{F_{2 k+2} r_{2 k+1}+F_{2 k+1}}{F_{2 k+1} r_{2 k+1}+F_{2 k}} \\
& =\frac{F_{2 k+2}(1+\beta)+F_{2 k+1}}{F_{2 k+1}(1+\beta)+F_{2 k}}=\frac{\beta F_{2 k+2}+F_{2 k+3}}{\beta F_{2 k+1}+F_{2 k+2}} .
\end{aligned}
$$

Similarly, we have

$$
\rho=\frac{F_{2 k+2} \rho+F_{2 k+1}}{F_{2 k+1} \rho+F_{2 k}},
$$

hence, by some straightforward computations,

$$
\begin{equation*}
\rho-\alpha=\frac{1+\beta-\rho}{\left(\rho F_{2 k+1}+F_{2 k}\right)\left(\beta F_{2 k+1}+F_{2 k+2}\right)}<\frac{n}{\left(\rho F_{2 k+1}+F_{2 k}\right)\left(\beta F_{2 k+1}+F_{2 k+2}\right)} . \tag{24}
\end{equation*}
$$

Here, we have applied the identities

$$
F_{2 k+2}^{2}-F_{2 k+1} F_{2 k+3}=-1, \quad F_{2 k+1}^{2}-F_{2 k} F_{2 k+2}=1
$$

and the inequality $1+\beta-\rho<1+n-\rho<n$. Since $\beta>n-1$ and, by (2),

$$
\begin{aligned}
\left|\varepsilon_{2 k}\right| & <\frac{1}{q_{2 k+1}}=\frac{1}{n F_{2 k+1}+F_{2 k}}, \\
\left|\varepsilon_{2 k+1}\right| & <\frac{1}{q_{2 k+2}}
\end{aligned}=\frac{1}{a_{2 k+2} q_{2 k+1}+F_{2 k+1}} \leq \frac{1}{(n+1) F_{2 k+1}+F_{2 k}} .
$$

(22) follows from

$$
\begin{equation*}
\frac{n\left(F_{2 k-1}-1\right)}{\left(\rho F_{2 k+1}+F_{2 k}\right)\left((n-1) F_{2 k+1}+F_{2 k+2}\right)}<\frac{1}{\rho^{2 k}}-\frac{1}{n F_{2 k+1}+F_{2 k}}-\frac{1}{(n+1) F_{2 k+1}+F_{2 k}} . \tag{25}
\end{equation*}
$$

In order to prove (25), we need three inequalities for Fibonacci numbers, which rely on Binet's formula. Let $\delta:=1 / \rho^{4}$. Then, for all integers $s \geq 1$, we have

$$
\begin{equation*}
\frac{\rho^{2 s+1}}{\sqrt{5}}<F_{2 s+1}<\frac{(1+\delta) \rho^{2 s+1}}{\sqrt{5}} \quad \text { and } \quad \frac{(1-\delta) \rho^{2 s}}{\sqrt{5}} \leq F_{2 s} \tag{26}
\end{equation*}
$$

We start to prove (25) by observing that

$$
\sqrt{5}\left(\frac{1+\delta}{\rho^{2}\left(\rho^{2}+1-\delta\right)}+\frac{1}{3 \rho+1-\delta}+\frac{1}{4 \rho+1-\delta}\right)<1
$$

Here, the left-hand side can be diminished by noting that

$$
\frac{1}{\rho}>\frac{n}{(n-1) \rho+(1-\delta) \rho^{2}}
$$

By $n \geq 3$ we get

$$
\sqrt{5}\left(\frac{(1+\delta) n}{\rho\left(\rho^{2}+1-\delta\right)\left((n-1) \rho+(1-\delta) \rho^{2}\right)}+\frac{1}{n \rho+1-\delta}+\frac{1}{(n+1) \rho+1-\delta}\right)<1
$$

or, equivalently,

$$
\begin{aligned}
& \frac{(1+\delta) n \rho^{2 k-1} / \sqrt{5}}{\left(\rho \cdot \rho^{2 k+1} / \sqrt{5}+(1-\delta) \rho^{2 k} / \sqrt{5}\right)\left((n-1) \rho^{2 k+1} / \sqrt{5}+(1-\delta) \rho^{2 k+2} / \sqrt{5}\right)} \\
< & \frac{1}{\rho^{2 k}}-\frac{1}{n \rho^{2 k+1} / \sqrt{5}+(1-\delta) \rho^{2 k} / \sqrt{5}}-\frac{1}{(n+1) \rho^{2 k+1} / \sqrt{5}+(1-\delta) \rho^{2 k} / \sqrt{5}} .
\end{aligned}
$$

From this inequality, (25) follows easily by applications of (26) with $s \in\{2 k-1,2 k, 2 k+$ $1,2 k+2\}$.

Case 2: Let $a_{2 k+1}=2$.
Case 2.1: Let $k \geq 2$.
We first consider the function

$$
f(\beta):=\frac{1-\rho+\beta}{\beta F_{2 k+1}+F_{2 k+2}} \quad(1 \leq \beta \leq 2) .
$$

The function f increases monotonically with β, therefore we have

$$
f(\beta) \leq f(2)=\frac{3-\rho}{2 F_{2 k+1}+F_{2 k+2}}
$$

and consequently we conclude from the identity stated in (24) that

$$
\rho-\alpha \leq \frac{3-\rho}{\left(\rho F_{2 k+1}+F_{2 k}\right)\left(2 F_{2 k+1}+F_{2 k+2}\right)}
$$

Hence, (23) follows from the inequality

$$
\begin{equation*}
\frac{(3-\rho) F_{2 k-1}}{\left(\rho F_{2 k+1}+F_{2 k}\right)\left(2 F_{2 k+1}+F_{2 k+2}\right)}+\frac{1}{q_{2 k+1}}+\frac{1}{q_{2 k+2}}+\frac{1}{q_{2 k+3}}+\frac{1}{q_{2 k+4}}<\frac{1}{\rho^{2 k}}+\frac{1}{\rho^{2 k+2}} . \tag{27}
\end{equation*}
$$

On the left-hand side we now replace the q 's by certain smaller terms in Fibonacci numbers. For $q_{2 k+2}, q_{2 k+3}$, and $q_{2 k+4}$, we find lower bounds by (15) in Lemma 7:

$$
\begin{aligned}
& q_{2 k+1}=a_{2 k+1} q_{2 k}+q_{2 k-1}=2 F_{2 k+1}+F_{2 k} \\
& q_{2 k+2} \geq F_{2 k+3}+F_{2} F_{2 k+1}=F_{2 k+3}+F_{2 k+1} \\
& q_{2 k+3} \geq F_{2 k+4}+F_{3} F_{2 k+1}=F_{2 k+4}+2 F_{2 k+1} \\
& q_{2 k+4} \geq F_{2 k+5}+F_{4} F_{2 k+1}=F_{2 k+5}+3 F_{2 k+1}
\end{aligned}
$$

Substituting these expressions into (27), we then conclude that (23) from

$$
\begin{gather*}
\frac{(3-\rho) F_{2 k-1}}{\left(\rho F_{2 k+1}+F_{2 k}\right)\left(2 F_{2 k+1}+F_{2 k+2}\right)}+\frac{1}{2 F_{2 k+1}+F_{2 k}}+\frac{1}{F_{2 k+3}+F_{2 k+1}} \\
+\frac{1}{F_{2 k+4}+2 F_{2 k+1}}+\frac{1}{F_{2 k+5}+3 F_{2 k+1}}<\frac{1}{\rho^{2 k}}\left(1+\frac{1}{\rho^{2}}\right) . \tag{28}
\end{gather*}
$$

We apply the inequalities in (26) for all $s \geq 2$ when δ is replaced by $\delta:=1 / \rho^{8}$. Using this redefined number δ, we have

$$
\begin{gathered}
\sqrt{5}\left(\frac{(3-\rho)(1+\delta)}{\rho\left(\rho^{2}+1-\delta\right)\left(2 \rho+(1-\delta) \rho^{2}\right)}+\frac{1}{2 \rho+1-\delta}+\frac{1}{\rho^{3}+\rho}+\frac{1}{(1-\delta) \rho^{4}+2 \rho}+\frac{1}{\rho^{5}+3 \rho}\right)-\frac{1}{\rho^{2}} \\
<1
\end{gathered}
$$

or, equivalently,

$$
\begin{aligned}
& \frac{(3-\rho)(1+\delta) \rho^{2 k-1} / \sqrt{5}}{\left(\rho \cdot \rho^{2 k+1} / \sqrt{5}+(1-\delta) \rho^{2 k} / \sqrt{5}\right)\left(2 \rho^{2 k+1} / \sqrt{5}+(1-\delta) \rho^{2 k+2} / \sqrt{5}\right)} \\
+ & \frac{1}{2 \rho^{2 k+1} / \sqrt{5}+(1-\delta) \rho^{2 k} / \sqrt{5}}+\frac{1}{\rho^{2 k+3} / \sqrt{5}+\rho^{2 k+1} / \sqrt{5}} \\
+ & \frac{1}{(1-\delta) \rho^{2 k+4} / \sqrt{5}+2 \rho^{2 k+1} / \sqrt{5}}+\frac{1}{\rho^{2 k+5} / \sqrt{5}+3 \rho^{2 k+1} / \sqrt{5}} \\
< & \frac{1}{\rho^{2 k}}\left(1+\frac{1}{\rho^{2}}\right) .
\end{aligned}
$$

From this inequality, (28) follows by applications of (26) with $s \in\{2 k-1,2 k, 2 k+1,2 k+$ $2,2 k+3,2 k+4,2 k+5\}$ for $k \geq 2$ (which implies $s \geq 3$).

Case 2.2: \quad Let $k=1$.
From the hypotheses we have $a_{2 k+1}=a_{3}=2$. To prove (23) it suffices to check the inequality in (28) for $k=1$. We have

$$
\begin{aligned}
& F_{2 k-1}=F_{1}=1, \quad F_{2 k}=F_{2}=1, \quad F_{2 k+1}=F_{3}=2, \\
& F_{2 k+2}=F_{4}=3, \quad F_{2 k+3}=F_{5}=5, \\
& F_{2 k+4}=F_{6}=8, \quad F_{2 k+5}=F_{7}=13 .
\end{aligned}
$$

Then (28) is satisfied because

$$
\rho^{2}\left(\frac{3-\rho}{7(1+2 \rho)}+\frac{1}{5}+\frac{1}{7}+\frac{1}{12}+\frac{1}{19}\right)-\frac{1}{\rho^{2}}<1
$$

This completes the proof of Lemma 9.

Proof of Theorem 2: In the sequel we shall use the identity

$$
\begin{equation*}
F_{2 g}+F_{2 g+2}+F_{2 g+4}+\ldots+F_{2 n}=F_{2 n+1}-F_{2 g-1} \quad(n \geq g \geq 0) \tag{29}
\end{equation*}
$$

which can be proven by induction by applying the recurrence formula of Fibonacci numbers. Note that $F_{-1}=1$. Next, we prove (8).

Case 1: Let $\alpha \notin \mathcal{M}, \alpha=\left\langle 1 ; a_{1}, a_{2}, \ldots\right\rangle=\left\langle 1 ; 1, \ldots, 1, a_{2 k}, a_{2 k+1}, \ldots\right\rangle$ with $a_{2 k}>1$ for some subscript $k \geq 1$. This implies $\alpha>\rho$.

Case 1.1: Let $0 \leq n<2 k$.
Then $n_{0}=\lfloor n / 2\rfloor \leq k-1$. In order to treat $\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|$, we apply (6) with k replaced by $k-1$ in Proposition 1. For α the condition (7) with k replaced by $k-1$ is fulfilled. Note that the term $F_{2 m}(\rho-\alpha)$ in (6) is negative. Therefore, we have

$$
\begin{aligned}
S(n) & :=\sum_{\nu=2 g}^{n}\left|\varepsilon_{\nu}\right| \leq \sum_{m=g}^{\lfloor n / 2\rfloor}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \\
& <\sum_{m=g}^{n_{0}} \frac{1}{\rho^{2 m}}=\frac{\rho^{2-2 g}-\rho^{-2 n_{0}}}{\rho^{2}-1}=\rho^{1-2 g}-\rho^{-2 n_{0}-1} .
\end{aligned}
$$

Case 1.2: Let $n \geq 2 k$.
Case 1.2.1: \quad Let $k \geq g$.
Here, we get

$$
\begin{equation*}
S(n) \leq \sum_{m=g}^{k-1}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right)+\left(\left|\varepsilon_{2 k}\right|+\left|\varepsilon_{2 k+1}\right|\right)+\sum_{m=k+1}^{n_{0}}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \tag{30}
\end{equation*}
$$

When $n_{0} \leq k$, the right-hand sum is empty and becomes zero. The same holds for the left-hand sum for $k=g$.
a) We estimate the left-hand sum as in the preceding case applying (6), $\rho-\alpha<0$, and the hypothesis $a_{1} a_{2} \cdots a_{2 k-1}=1$:

$$
\sum_{m=g}^{k-1}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right)<\sum_{m=g}^{k-1} \frac{1}{\rho^{2 m}}
$$

b) Since $a_{2 k}>1$, the left-hand condition in (5) allows us to apply (4) for $m=k$:

$$
\left|\varepsilon_{2 k}\right|+\left|\varepsilon_{2 k+1}\right|<\frac{1}{\rho^{2 k}}
$$

c) We estimate the right-hand sum in (30) again by (4). To check the conditions in (5), we use $a_{1} a_{2} \cdots a_{2 m-1}>1$, which holds by $m \geq k+1$ and $a_{2 k}>1$. Hence,

$$
\sum_{m=k+1}^{n_{0}}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right)<\sum_{m=k+1}^{n_{0}} \frac{1}{\rho^{2 m}}
$$

Altogether, we find with (30) that

$$
\begin{equation*}
S(n)<\sum_{m=g}^{n_{0}} \frac{1}{\rho^{2 m}}=\rho^{1-2 g}-\rho^{-2 n_{0}-1} . \tag{31}
\end{equation*}
$$

Case 1.2.2: Let $k<g$.
In order to estimate $\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|$ for $g \leq m \leq n_{0}$, we use $k+1 \leq g$ and the arguments from c) in Case 1.2.1. Again, we obtain the inequality (31). The results from Case 1.1 and Case 1.2 prove (8) for $a_{2 k}>1$ with $k \geq 1$. It remains to investigate the following case.

Case 2: Let $\alpha \notin \mathcal{M}, \alpha=\left\langle 1 ; a_{1}, a_{2}, \ldots\right\rangle$ with $a_{1}>1$.
For $m=0$ (provided that $g=0$) the first condition in (5) is fulfilled by $a_{2 m} a_{2 m+1}=a_{0} a_{1}=$ $a_{1}>1$. For $m \geq 1$ we know that $a_{1} a_{2} \cdots a_{2 m-1}>1$ always satisfies one part of the second condition. Therefore, we apply the inequality from (4):

$$
S(n)<\sum_{m=g}^{n_{0}} \frac{1}{\rho^{2 m}}=\rho^{1-2 g}-\rho^{-2 n_{0}-1}
$$

Next, we prove (9). Let $\alpha \in \mathcal{M}, \alpha=\left\langle 1 ; a_{1}, a_{2}, \ldots\right\rangle=\left\langle 1 ; 1, \ldots, 1, a_{2 k+1}, a_{2 k+2}, \ldots\right\rangle$ with $a_{2 k+1}>1$ for some subscript $k \geq 1$. This implies $\rho>\alpha$.

Case 3.1: Let $0 \leq n<2 k$.
Then $n_{0}=\lfloor n / 2\rfloor \leq k-1$. In order to treat $\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|$, we apply (6) with k replaced by $k-1$ in Proposition 1. For α the condition (7) with k replaced by $k-1$ is fulfilled. Note
that the term $F_{2 m}(\rho-\alpha)$ in (6) is positive. Therefore we have, using (29),

$$
\begin{aligned}
S(n) & \leq \sum_{m=g}^{n_{0}}\left(\frac{1}{\rho^{2 m}}+(\rho-\alpha) F_{2 m}\right) \\
& =\rho^{1-2 g}-\rho^{-2 n_{0}-1}+(\rho-\alpha) \sum_{m=g}^{n_{0}} F_{2 m} \\
& =\rho^{1-2 g}-\rho^{-2 n_{0}-1}+(\rho-\alpha)\left(F_{2 n_{0}+1}-F_{2 g-1}\right) \\
& \leq \rho^{1-2 g}-\rho^{-2 n_{0}-1}+\left(F_{2 k-1}-F_{2 g-1}\right)(\rho-\alpha) .
\end{aligned}
$$

Here we have used that $2 n_{0}+1 \leq 2 k-1$.

Case 3.2: Let $n \geq 2 k$.
Our arguments are similar to the proof given in Case 1.2, using $a_{1} a_{2} \cdots a_{2 k-1}=1$ and $a_{2 k+1}>1$.

Case 3.2.1: \quad Let $k \geq g$.
Applying (29) again, we obtain

$$
\begin{aligned}
S(n) & \leq \sum_{m=g}^{k-1}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right)+\left(\left|\varepsilon_{2 k}\right|+\left|\varepsilon_{2 k+1}\right|\right)+\sum_{m=k+1}^{n_{0}}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \\
& <\sum_{m=g}^{k-1}\left(\frac{1}{\rho^{2 m}}+(\rho-\alpha) F_{2 m}\right)+\frac{1}{\rho^{2 k}}+\sum_{m=k+1}^{n_{0}} \frac{1}{\rho^{2 m}} \\
& =\sum_{m=g}^{n_{0}} \frac{1}{\rho^{2 m}}+(\rho-\alpha) \sum_{m=g}^{k-1} F_{2 m} \\
& =\rho^{1-2 g}-\rho^{-2 n_{0}-1}+\left(F_{2 k-1}-F_{2 g-1}\right)(\rho-\alpha) .
\end{aligned}
$$

Case 3.2.2: Let $k<g$.
From $g \geq k+1$ we get

$$
S(n) \leq \sum_{m=g}^{n_{0}} \frac{1}{\rho^{2 m}}=\rho^{1-2 g}-\rho^{-2 n_{0}-1}
$$

The results of Case 3.1 and Case 3.2 complete the proof of (9).
For the inequality (10) we distinguish whether α belongs to \mathcal{M} or not.
Case 4.1: Let $\alpha \notin \mathcal{M}$.
Then (10) is a consequence of the inequality in (8):

$$
\sum_{\nu=2 g}^{\infty}\left|\varepsilon_{\nu}\right| \leq \lim _{n_{0} \rightarrow \infty}\left(\rho^{1-2 g}-\rho^{-2 n_{0}-1}\right)=\rho^{1-2 g}
$$

Case 4.2: Let $\alpha \in \mathcal{M}$.
There is a subscript $k \geq 1$ satisfying $\alpha=\left\langle 1 ; 1, \ldots, 1, a_{2 k+1}, a_{2 k+2}, \ldots\right\rangle$ and $a_{2 k+1}>1$. To
simplify arguments, we introduce the function $\chi(k, g)$ defined by $\chi(k, g)=1$ (if $k>g$), and $\chi(k, g)=0$ (if $k \leq g$). We have

$$
\begin{align*}
S & :=\sum_{\nu=2 g}^{\infty}\left|\varepsilon_{\nu}\right|=\sum_{\nu=2 g}^{2 k-1}\left|\varepsilon_{\nu}\right|+\sum_{\nu=\max \{2 k, 2 g\}}^{\infty}\left|\varepsilon_{\nu}\right| \\
& =\chi(k, g)\left(\left(F_{2 k-1}-F_{2 g-1}\right)(\rho-\alpha)+\rho^{1-2 g}-\rho^{-2 k+1}\right)+\sum_{m=\max \{k, g\}}^{\infty}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \\
& \leq\left(F_{2 k-1}-F_{2 g-1}\right)(\rho-\alpha)+\rho^{1-2 g}-\rho^{-2 k+1}+\sum_{m=k}^{\infty}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \\
& \leq\left(F_{2 k-1}-1\right)(\rho-\alpha)+\rho^{1-2 g}-\rho^{-2 k+1}+\sum_{m=k}^{\infty}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \tag{32}
\end{align*}
$$

where we have used (9) with $n=2 k-1$ and $n_{0}=\lfloor n / 2\rfloor=k-1$.
Case 4.2.1: Let $a_{2 k+1} \geq 3$.
The conditions in Lemma 9 for (22) are satisfied. Moreover, the terms $\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|$ of the series in (32) for $m \geq k+1$ can be estimated using (4), since $a_{1} a_{2} \cdots a_{2 k+1}>1$. Therefore, we obtain

$$
\begin{aligned}
S & <\frac{1}{\rho^{2 k}}-\frac{1}{\rho^{2 k-1}}+\rho^{1-2 g}+\sum_{m=k+1}^{\infty}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \\
& <\frac{1}{\rho^{2 k}}-\frac{1}{\rho^{2 k-1}}+\rho^{1-2 g}+\frac{1}{\rho^{2 k+1}}=\rho^{1-2 g} .
\end{aligned}
$$

Case 4.2.2: \quad Let $a_{2 k+1}=2$.
Now the conditions in Lemma 9 for (23) are satisfied. Thus, from (32) and (4) we have

$$
\begin{aligned}
S & <\frac{1}{\rho^{2 k}}+\frac{1}{\rho^{2 k+2}}-\frac{1}{\rho^{2 k-1}}+\rho^{1-2 g}+\sum_{m=k+2}^{\infty}\left(\left|\varepsilon_{2 m}\right|+\left|\varepsilon_{2 m+1}\right|\right) \\
& <\frac{1}{\rho^{2 k}}+\frac{1}{\rho^{2 k+2}}-\frac{1}{\rho^{2 k-1}}+\rho^{1-2 g}+\sum_{m=k+2}^{\infty} \frac{1}{\rho^{2 m}} \\
& =\frac{1}{\rho^{2 k}}+\frac{1}{\rho^{2 k+2}}-\frac{1}{\rho^{2 k-1}}+\rho^{1-2 g}+\frac{1}{\rho^{2 k+3}}=\rho^{1-2 g} .
\end{aligned}
$$

This completes the proof of Theorem 2.

5 Concluding remarks

In this section we state some additional identities for error $\operatorname{sums} \varepsilon(\alpha)$. For this purpose let $\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots\right\rangle$ be the continued fraction expansion of a real irrational number. Then the numbers α_{n} are defined by

$$
\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots, a_{n-1}, \alpha_{n}\right\rangle \quad(n=0,1,2, \ldots) .
$$

Proposition 11. For every real irrational number α we have

$$
\varepsilon(\alpha)=\sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{1}{\alpha_{k}}
$$

and

$$
\binom{\varepsilon(\alpha)}{\cdot}=\sum_{n=0}^{\infty}(-1)^{n}\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{n-1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\binom{-1}{\alpha} .
$$

Next, let $\alpha=\left\langle a_{0} ; a_{1}, a_{2}, \ldots\right\rangle$ with $a_{0} \geq 1$ be a real number with convergents p_{m} / q_{m} ($m \geq 0$), where $p_{-1}=1, q_{-1}=0$. Then the convergents $\bar{p}_{m} / \bar{q}_{m}$ of the number $1 / \alpha=$ $\left\langle 0 ; a_{0}, a_{1}, a_{2}, \ldots\right\rangle$ satisfy the equations $\bar{q}_{m}=p_{m-1}$ and $\bar{p}_{m}=q_{m-1}$ for $m \geq 0$, since we know that $\bar{p}_{-1}=1, \bar{p}_{0}=0$ and $\bar{q}_{-1}=0, \bar{q}_{0}=1$. Therefore we obtain a relation between $\varepsilon(\alpha)$ and $\varepsilon(1 / \alpha)$:

$$
\begin{aligned}
\varepsilon(1 / \alpha) & =\sum_{m=0}^{\infty}\left|\frac{\bar{q}_{m}}{\alpha}-\bar{p}_{m}\right|=\sum_{m=0}^{\infty}\left|\frac{p_{m-1}}{\alpha}-q_{m-1}\right|=\frac{1}{\alpha} \sum_{m=0}^{\infty}\left|q_{m-1} \alpha-p_{m-1}\right| \\
& =\frac{1}{\alpha}\left(\left|q_{-1} \alpha-p_{-1}\right|+\sum_{m=0}^{\infty}\left|q_{m} \alpha-p_{m}\right|\right)=\frac{1}{\alpha}(1+\varepsilon(\alpha)) .
\end{aligned}
$$

This proves
Proposition 12. For every real number $\alpha>1$ we have

$$
\varepsilon(1 / \alpha)=\frac{1+\varepsilon(\alpha)}{\alpha}
$$

6 Acknowledgment

The author would like to thank Professor Iekata Shiokawa for helpful comments and useful hints in organizing the paper. I am very much obliged to the anonymous referee, who suggested the results stated in Section 5. Moreover, the presentation of the paper was improved by following the remarks of the referee.

References

[1] H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly 113 (2006), 57-62.
[2] C. Elsner, On arithmetic properties of the convergents of Euler's number, Colloq. Math. 79 (1999), 133-145.
[3] C. Elsner and T. Komatsu, On the residue classes of integer sequences satisfying a linear three term recurrence formula, Linear Algebra Appl. 429 (2008), 933-947.
[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1984.
[5] A. Khintchine, Kettenbrüche, Teubner, Leipzig, 1949.
[6] T. Komatsu, Arithmetical properties of the leaping convergents of $e^{1 / s}$, Tokyo J. Math. 27 (2004), 1-12.
[7] T. Komatsu, Some combinatorial properties of the leaping convergents, Integers 7 (2) (2007), \sharp A21. Available electronically at http://www.integers-ejcnt.org/vol7-2.html.
[8] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Company, New York, 1929.

2010 Mathematics Subject Classification: Primary 11J04; Secondary 11J70, 11B39.
Keywords: continued fractions, convergents, approximation of real numbers, error terms.
(Concerned with sequences $\underline{A 000045}, \underline{A 001519, ~} \underline{A 007676}, \underline{A 007677}$, $\underline{A 041008}$, and $\underline{A 041009 .)}$

Received July 12 2010; revised version received January 10 2011. Published in Journal of Integer Sequences, January 282011.

Return to Journal of Integer Sequences home page.

