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Abstract

Cvetković, Rajković, and Ivković proved that the Hankel transform of the sequence

of sums of adjacent Catalan numbers is the bisection of the sequence of Fibonacci num-

bers. Here, we find recurrence relations for the Hankel transform of more general linear

combinations of Catalan numbers, involving up to four adjacent Catalan numbers, with

arbitrary coefficients. Using these, we make certain conjectures about the recurrence

relations satisfied by the Hankel transform of more extended linear combinations.

1 Introduction

Given a sequence of integers {an}
∞
n=0, the Hankel matrix of the sequence is the infinite matrix

H whose (i, j) entry is ai+j. Here, we allow i and j to be 0, so our rows and columns are
numbered beginning with 0. That is,

H =















a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
a3 a4 a5 · · ·
...

...
...

. . .















.
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In general, if A is an infinite matrix, with row and column indices beginning at 0, and n ≥ 0
is an integer, we let A(n) denote the upper-left (n+1)× (n+1) submatrix of A. Thus, H(0)
is the 1 × 1 matrix (a0), H(1) is the 2 × 2-matrix

H(1) =

(

a0 a1

a1 a2

)

,

and

H(2) =





a0 a1 a2

a1 a2 a3

a2 a3 a4



 .

We let hn = det(H(n)). Then the sequence {hn}
∞
n=0 is called the Hankel transform of the

sequence {an}
∞
n=0.

The Hankel transform is particularly interesting when applied to the Catalan numbers.
Recall that the Catalan numbers cn are defined by the recurrence relation

cn+1 = cnc0 + cn−1c1 + cn−2c2 + · · · + c0cn

where c0 = 1. It is well-known that the Hankel transform of the sequence of Catalan numbers
is the sequence of all 1’s. Mays and Wojciechowski [6] found the Hankel transform of the
sequences obtained by removing 1, 2, or 3 terms from the beginning of the Catalan number
sequence. If we remove 1 term, then the Hankel transform is a sequence of 1’s; if we remove
2 terms, the Hankel transform is the sequence {n + 2}∞n=0; if we remove 3 terms, the Hankel

transform is the sequence
{

(n+2)(n+3)(2n+5)
6

}∞

n=0
. (Note that our n is k− 1 in [6].) Cvetković,

Rajković, and Ivković [5] proved that the Hankel transform of the sequence {cn +cn+1} is the
sequence 2, 5, 13, 34, 89, · · · consisting of every other Fibonacci number. Benjamin, Cameron,
Quinn, and Yerger [2] also reproved this result using a more combinatorial approach. Notice
that, in particular, the Hankel transform of the sequence {cn+cn+1} satisfies the homogeneous
linear recurrence relation

hn+2 − 3hn+1 + hn = 0. (1)

In this paper, we take up the question of finding recurrence relations satisfied by more
general linear combinations of Catalan numbers. In particular, we ask

Question 1. Suppose given k + 1 integers α0, α1, α2, · · · , αk. Let {hn} denote the Han-
kel transform of the sequence whose nth term is

∑k

i=0 αicn+i. What homogeneous linear
recurrence relation, if any, is satisfied by the sequence hn?

For example, in the case where k = 1 and α0 = α1 = 1, we know that hn satisfies the
recurrence relation of Equation 1. Of course, if k = 0 and α0 = 1, then {hn} is just the
Hankel transform of the sequence of Catalan numbers, so hn = 1 for all n. From this, it is
easy to see that when k = 0 and α0 is arbitrary, we have hn = αn+1

0 . Thus, the sequence
{hn} satisfies the first-order homogeneous linear recurrence relation

hn+1 − α0hn = 0.

Our next three theorems, which we will prove in this paper, answer Question 1 when
k = 1, k = 2, and k = 3. For ease of reading, we adjust our notation, replacing α0, α1, α2,
and α3 by α, β, γ, δ.

2



Theorem 2. The Hankel transform of the sequence {αcn +βcn+1} satisfies the second-order

homogeneous linear recurrence relation

hn+2 − (α + 2β)hn+1 + β2hn = 0.

Theorem 3. The Hankel transform of the sequence {αcn + βcn+1 + γcn+2} satisfies the

fourth-order homogeneous linear recurrence relation

hn+4 + (−α − 2β − 4γ)hn+3 + (β2 − 2αγ + 4βγ + 6γ2)hn+2

+(−α − 2β − 4γ)γ2hn+1 + γ4hn = 0.

Theorem 4. The Hankel transform of the sequence {αcn + βcn+1 + γcn+2 + δcn+3} satisfies

the eighth-order homogeneous linear recurrence relation

hn+8

+(−α − 2β − 4γ − 8δ)hn+7

+(β2 − 2αγ + 4βγ + 6γ2 − 12αδ + 4βδ + 24γδ + 28δ2)hn+6

+(−αγ2 − 2βγ2 − 4γ3 + 2αβδ + 4β2δ − 4αγδ − 24γ2δ − 7αδ2 + 2βδ2 − 60γδ2 − 56δ3)hn+5

+(γ4 − 4βγ2δ + 8γ3δ + α2δ2 + 4αβδ2 + 6β2δ2 + 12αγδ2 − 8βγδ2 + 36γ2δ2 + 40αδ3 − 8βδ3 + 80γδ3 + 70δ4)hn+4

+(−αγ2 − 2βγ2 − 4γ3 + 2αβδ + 4β2δ − 4αγδ − 24γ2δ − 7αδ2 + 2βδ2 − 60γδ2 − 56δ3)δ2hn+3

+(β2 − 2αγ + 4βγ + 6γ2 − 12αδ + 4βδ + 24γδ + 28δ2)δ4hn+2

+(−α − 2β − 4γ − 8δ)δ6hn+1

+δ8hn = 0.

Of course, Theorem 3 follows from Theorem 4 by setting δ equal to 0, and Theorem 2
follows from Theorem 3 by setting γ = 0. Notice also that the result of Cvetković, Rajković,
and Ivković [5] follows from Theorem 2 by setting α = β = 1. In this case, it is trivial to
check that the initial two terms of the Hankel transform are 2 and 5, and then the recurrence
relation implies the rest.

While the recurrence relations given above quickly grow in complexity as k increases,
there are several features of these recurrence relations that seem interesting. On the basis
of these features, we make the following conjectures. First, we note that the order of the
recurrence relations doubles each time we increase k by 1.

Conjecture 5. The Hankel transform of the sequence whose nth term is

k
∑

i=0

αicn+i

satisfies a homogeneous linear recurrence relation of order 2k.

We also notice that the coefficient of hn+2k−1 is of a particularly simple form.

Conjecture 6. The coefficient of hn+2k−1 in the recurrence relation of Conjecture 5 is

−(α0 + 2α1 + 4α2 + · · · + 2kαk).
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Finally, we note that the coefficients of hn+2k−r and hn+r seem to be related. For example,
in Theorem 3, the coefficient of hn+1 is the product of γ2 and the coefficient of hn+3. Likewise,
the coefficient of hn is the product of γ4 and the coefficient of hn+4.

Conjecture 7. When r < 2k−1, the coefficient of hn+r in the recurrence relation of Conjec-

ture 5 is equal to the product of α2k−2r
k and the coefficient of hn+2k−r.

Using Theorem 3, we can show that certain sequences in the OEIS [7] are Hankel trans-
forms of linear combinations of Catalan numbers. For example, if we set α = 1, β = 1, γ = 1,
we get the sequence

4, 20, 111, 624, 3505, 19676, 110444, 619935, 3479776, 19532449, . . .

which is sequence A014523 in the OEIS, the number of Hamiltonian paths in a 4× (2n + 1)
grid (see also [4]). To see this, we simply observe from the OEIS that sequence A014523
satisfies the recurrence relation

an+4 − 7an+3 + 9an+2 − 7an+1 + an = 0.

By Theorem 3, this is the same as the recurrence relation satisfied by the Hankel transform
of cn + cn+1 + cn+2. One now simply observes that the first four terms of the two sequences
coincide!

Likewise, if we set α = 1, β = 2, γ = 1, we get the sequence

5, 30, 199, 1355, 9276, 63565, 435665, 2986074, 20466835, 140281751, . . .

which is sequence A103433 in the OEIS, namely the sequence
∑n

i=0 F 2
2i−1 where Fk denotes

the kth Fibonacci number. To see this, we note from the OEIS that sequence A103433 has
generating function

G(x) =
x(1 − 4x + x2)

(1 − 7x + x2)(1 − x)2
=

x − 4x2 + x3

x4 − 9x3 + 16x2 − 9x + 1
.

From here, it is easy to check that the sequence satisfies the recurrence relation

hn+4 − 9hn+3 + 16hn+2 − 9hn+1 + hn = 0.

By Theorem 3, this is the same as the recurrence relation satisfied by the Hankel transform
of cn+2cn+1+cn+2. Again, one simply observes that the first four terms of the two sequences
coincide.

Our paper is organized as follows. In Section 2, we state some basic results concerning
Hankel matrices and shifts of Catalan numbers. These results are proved in Section 3. Using
only these basic results, we prove Theorem 2 in Section 2. For Theorems 3 and 4 we need
somewhat more sophisticated arguments. To prepare for these, we state and prove two
easy lemmas about recurrence relations in Section 4. The work of Section 2 shows that we
can simplify our study of the Hankel matrices of linear combinations of Catalan numbers by
investigating a class of matrices which we call hyperdiagonal. We carry out this investigation
in Section 5, and use the results from there to finish off the proofs of Theorems 3 and 4 in
Section 6.
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2 Catalan Numbers and Hankel Matrices

In this section, we state some results about the Hankel matrices of shifts of the sequence of
Catalan numbers; we will prove these results in the next section. Using these results, we
give an easy proof of Theorem 2. To begin, we need some definitions.

Definition 8. Let C be the Hankel matrix of the sequence of Catalan numbers, so Ci,j = ci+j,
where i, j are non-negative integers. Let C{k} denote the Hankel matrix of the sequence
of Catalan numbers with the first k terms removed, so C{k}i,j = ci+j+k. In particular,
C = C{0}.

Definition 9. Let L be the infinite matrix defined by Li,j = (−1)i+j
(

i+j

i−j

)

. (When i < j,

Li,j = 0.) Let U = LT , so Ui,j = (−1)i+j
(

i+j

j−i

)

.

Notation 10. For an infinite matrix A and an integer n ≥ 0, let A(n) denote the upper-left
(n + 1) × (n + 1) submatrix of A.

In the next section, we will prove

Proposition 11. The matrix product LCU is the identity matrix. The matrix LC{1}U is

tridiagonal with

(LC{1}U)i,j =











1, if |i − j| = 1 or i = j = 0;

2, if i = j ≥ 1;

0, otherwise.

That is, LC{1}U takes the form



















1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
0 1 2 1 0 · · ·
0 0 1 2 1 · · ·
0 0 0 1 2 · · ·
...

...
...

...
...

. . .



















.

Assuming this result, we now obtain an elementary proof of Theorem 2.

Proof. Let {hn} be the Hankel transform of the sequence αcn + βcn+1. The Hankel matrix
of this sequence is αC + βC{1}. Recall that for an infinite matrix A, A(n) denotes the
upper-left (n + 1) × (n + 1) submatrix of A. Then, we have

hn = det((αC + βC{1})(n))

Since L(n) and U(n) are triangular (n + 1)× (n + 1) matrices with 1’s on the diagonal, they
both have determinant 1, so we now have

hn = det(L(n)(αC + βC{1})(n)U(n))
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= det((L(αC + βC{1})U)(n)) = det((αLCU + βLC{1}U)(n)).

By Proposition 11, αLCU + βLC{1}U is equal to



















β + α β 0 0 0 · · ·
β 2β + α β 0 0 · · ·
0 β 2β + α β 0 · · ·
0 0 β 2β + α β · · ·
0 0 0 β 2β + α · · ·
...

...
...

...
...

. . .



















.

Thus,

hn+2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β + α β · · · 0 0 0
β 2β + α · · · 0 0 0
...

...
. . .

...
...

0 0 · · · 2β + α β 0
0 0 · · · β 2β + α β
0 0 · · · 0 β 2β + α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where the given matrix has n+ 3 rows and n+ 3 columns. Expanding along the last column
gives

(2β + α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β + α β · · · 0 0
β 2β + α · · · 0 0
...

...
. . .

...
0 0 · · · 2β + α β
0 0 · · · β 2β + α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β + α β · · · 0 0
β 2β + α · · · 0 0
...

...
. . .

...
...

0 0 · · · 2β + α β
0 0 · · · 0 β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Expanding the right-hand matrix along the bottom row now yields

(2β + α)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β + α β · · · 0 0
β 2β + α · · · 0 0
...

...
. . .

...
0 0 · · · 2β + α β
0 0 · · · β 2β + α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− β2

∣

∣

∣

∣

∣

∣

∣

∣

∣

β + α β · · · 0
β 2β + α · · · 0
...

...
. . .

...
0 0 · · · 2β + α

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (2β + α)hn+1 − β2hn.

Thus, hn+2 − (2β + α)hn+1 + β2hn = 0 for all n ≥ 0.

In the next section, we will also prove the following Proposition:

Proposition 12. When i + j ≥ k ≥ 0, (LC{k}U)i,j =
(

2k

k+i−j

)

.
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Again,
(

n

m

)

is defined to be 0 when m < 0 or m > n. We will later use this proposition
in the proofs of Theorems 3 and 4. As an example, LC{2}U takes the form























2 3 1 0 0 0 · · ·
3 6 4 1 0 0 · · ·
1 4 6 4 1 0 · · ·
0 1 4 6 4 1 · · ·
0 0 1 4 6 4 · · ·
0 0 0 1 4 6 · · ·
...

...
...

...
...

. . .























.

The 3 entries in the top left (the 2 and the two 3’s) are not given by Proposition 12, but can
easily be computed directly. Likewise, LC{3}U takes the form



























5 9 5 1 0 0 0 · · ·
9 19 15 6 1 0 0 · · ·
5 15 20 15 6 1 0 · · ·
1 6 15 20 15 6 1 · · ·
0 1 6 15 20 15 6 · · ·
0 0 1 6 15 20 15 · · ·
0 0 0 1 6 15 20 · · ·
...

...
...

...
...

. . .



























.

Again, the six entries in the top left (the three 5’s, the two 9’s, and the 19) are not given by
Proposition 12, but can easily be computed directly.

3 Proofs of Propositions 11 and 12

In this section, as the title suggests, we prove Propositions 11 and 12. The main technical
tool in these proofs is the following Lemma. The second author used this idea previously [3]
having found it originally in a paper by Bajunaid, Cohen, Colonna, and Signman [1].

Lemma 13. Let g(z) be the power series
∑∞

n=0 ckz
k. Then, g(z(1 − z)) =

∑∞
k=0 zk.

Proof. By definition of the Catalan numbers,

g(z)2 =
∞
∑

k=0

(

k
∑

l=0

clck−l

)

zk =
∞
∑

k=0

ck+1z
k.

Thus,

zg(z)2 =
∞
∑

k=0

ck+1z
k+1 =

∞
∑

k=1

ckz
k = g(z) − 1.

We may substitute z(1 − z) into this equation to obtain

z(1 − z)g(z(1 − z))2 = g(z(1 − z)) − 1.
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Multiplying by z(1 − z) yields

(z(1 − z)g(z(1 − z)))2 = (z(1 − z)g(z(1 − z))) − z(1 − z).

If we let h(z) = z(1−z)g(z(1−z)), then the above equation implies h(z)2−h(z)+z(1−z) = 0,
so that (h(z) − z)(h(z) − (1 − z)) = 0. Since the ring of power series is an integral domain,
this implies h(z) = z or h(z) = 1 − z. But we know h(0) = 0, so h(z) = z, whence
z(1 − z)g(z(1 − z)) = z. This implies g(z(1 − z)) = 1

1−z
=
∑∞

k=0 zk.

Corollary 14. Suppose i ≥ t ≥ 1. Then, we have

2i−t
∑

k=i−t

(−1)k+t

(

k + t

2i − t − k

)

ck = 0.

For any i ≥ 0, we have
2i
∑

k=i

(−1)k

(

k

2i − k

)

ck = 1,

and
2i+1
∑

k=i+1

(−1)k−1

(

k − 1

2i + 1 − k

)

ck = 2i + 1.

Proof. First, we have

(1 − z)tg(z(1 − z)) =
∞
∑

k=0

ckz
k(1 − z)k+t =

∞
∑

k=0

k+t
∑

m=0

(−1)m

(

k + t

m

)

ckz
k+m.

For an integer i ≥ 0, the coefficient of z2i−t is

2i−t
∑

k=i−t

(−1)k+t

(

k + t

2i − t − k

)

ck.

On the other hand, by Lemma 13, (1−z)tg(z(1−z)) = (1−z)t−1, so if i ≥ t, then 2i− t ≥ t,
so the coefficient of i − t is 0.

For the second formula, we have

g(z(1 − z)) =
∞
∑

k=0

ckz
k(1 − z)k =

∞
∑

k=0

k
∑

m=0

(−1)m

(

k

m

)

ckz
k+m.

For an integer i ≥ 0, the coefficient of z2i is

2i
∑

k=i

(−1)k

(

k

2i − k

)

ck.

By Lemma 13, this coefficient is equal to 1.
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Finally, we have

g(z(1 − z)) − 1

1 − z
=

∞
∑

k=1

ckz
k(1 − z)k−1 =

∞
∑

k=1

k−1
∑

m=0

(−1)m

(

k − 1

m

)

ckz
k+m.

For an integer i ≥ 0, the coefficient of z2i+1 is

2i+1
∑

k=i+1

(−1)k−1

(

k − 1

2i + 1 − k

)

ck.

But by Lemma 13 again,

g(z(1 − z)) − 1

1 − z
=

1/(1 − z) − 1

1 − z
=

z

(1 − z)2
=
∑

kzk,

so the coefficient of z2i+1 is 2i + 1.

Lemma 15. The product LC is an upper triangular matrix, with LCi,i = 1 for all i ≥ 0,
and LCi,i+1 = 2i + 1.

Proof. First, we observe that since L is lower triangular,

(LC)i,j =
∞
∑

k=0

Li,kCk,j =
i
∑

k=0

Li,kCk,j,

so that the matrix product LC is well-defined. Now, by definition of L and C,

(LC)i,j =
i
∑

k=0

(−1)i+k

(

i + k

i − k

)

ck+j =

i+j
∑

k=j

(−1)i−j+k

(

i − j + k

i + j − k

)

ck.

When j < i, let t = i − j. Then i ≥ t ≥ 1, and the sum becomes

2i−t
∑

k=i−t

(−1)k+t

(

k + t

2i − t − k

)

ck,

which is 0 by Corollary 14. The other two statements similarly follow from Corollary 14.

We are now ready to prove Proposition 11.

Proof. (of Proposition 11). First, LC and U are both upper triangular with 1’s on the
diagonal, so LCU is upper triangular with 1’s on the diagonal. Also, (LCU)t = U tCtLt =
LCtU . Since C is symmetric, this is LCU . Thus, LCU is also symmetric, so LCU is the
identity.
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Now, (LC{1})i,j = 0 if i > j + 1. Since Ui,j = 0 for i > j, it follows easily that
(LC{1}U)i,j = 0 whenever i > j + 1. Moreover, when i ≥ 1, we have

(LC{1}U)i,i−1 =
∞
∑

k=0

(LC{1})i,kUk,i−1

=
i−1
∑

k=i−1

(LC{1})i,kUk,i−1 = (LC{1})i,i−1Ui−1,i−1 = LCi,iUi−1,i−1.

By Lemma 15, this is 1. When i ≥ 1, we have

(LC{1}U)i,i =
∞
∑

k=0

(LC{1})i,kUk,i

=
i
∑

k=i−1

(LC{1})i,kUk,i = (LC{1})i,i−1Ui−1,i + (LC{1})i,iUi,i

= (LC)i,iUi−1,i + LCi,i+1Ui,i.

By Lemma 15 and the definition of U , this is −(2i−1)+2i+1 = 2. Likewise, (LC{1}U)0,0 =
(LC{1})0,0U0,0 = (LC)0,1U0,0 = 1. The rest of the claim follows since LC{1}U is symmetric.

We now turn to considering LC{k}U . The following definition will be useful.

Definition 16. Let S be the infinite matrix defined by Si,j = δi,j+1, where δ is the Kronecker
delta symbol.

We note that if A is an infinite matrix, then AS is the matrix obtained by removing the
first column of A. In particular, if A is the Hankel matrix of a sequence {ai}

∞
i=0, then AS is

the Hankel matrix of the sequence {ai}
∞
i=1. Thus, CSk = C{k}.

Proposition 17. For any k ≥ 0, we have (LC{1}U)k = LC{k}U .

Proof. We have seen already in Proposition 11 that LCU = I, so LC{0}U = (LC{1}U)0.
It is easy to check that if A and B are both upper triangular, then (AB)(n) = A(n)B(n).
Thus, (LC)(n)U(n) is the n + 1 × n + 1 identity matrix. Thus, LC(n) = U(n)−1, so
(ULC)(n) = U(n)(LC)(n) is the n + 1 × n + 1 identity matrix for each n. Therefore, ULC
is the infinite identity matrix. Thus,

(LC{1}U) = (LCSU)k = LCS(ULCS)k−1U

= LCS(Sk−1)U = LCSkU = LC{k}U.

We now can prove Proposition 12.
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Proof. (of Proposition 12) We prove this by induction on k. The cases when k = 0 or k = 1
follow easily from Proposition 11. Now, suppose the claim holds when k = t ≥ 1. Then by
Proposition 17 we have

LC{t + 1}U = (LC{1}U)t(LC{1}U) = (LC{t}U)(LC{1}U).

Thus, we have

(LC{t + 1}U)i,j =
∑

l

(LC{t}U)i,l(LC{1}U)l,j.

If j ≥ 1, then by Proposition 11, we get

(LC{t + 1}U)i,j = (LC{t}U)i,j−1 + 2(LC{t}U)i,j + (LC{t}U)i,j+1.

Now, assuming i + j ≥ t + 1, we have i + (j − 1) ≥ t, so by the inductive hypothesis, the
above sum is

(

2t

t + i − j + 1

)

+ 2

(

2t

t + i − j

)

+

(

2t

t + i − j − 1

)

=

((

2t

t + i − j + 1

)

+

(

2t

t + i − j

))

+

((

2t

t + i − j

)

+

(

2t

t + i − j − 1

))

=

(

2t + 1

t + i − j + 1

)

+

(

2t + 1

t + i − j

)

=

(

2(t + 1)

(t + 1) + i − j

)

,

as needed.
On the other hand, if j = 0, then by Proposition 11, we get

(LC{t + 1}U)i,j =
∑

l

(LC{t}U)i,l(LC{1}U)l,j = (LC{t}U)i,0 + (LC{t}U)i,1.

Now, since we may assume i + j ≥ t + 1, we have i ≥ t + 1, so by the inductive hypothesis,
the above term is

(

2t

t+i

)

+
(

2t

t+i−1

)

=
(

2t+1
t+i

)

. If i = t + 1, then

(

2t + 1

t + i

)

= 1 =

(

2(t + 1)

(t + 1) + i

)

,

while if i > t + 1, then
(

2t + 1

t + i

)

= 0 =

(

2(t + 1)

(t + 1) + i

)

,

as needed.

4 Recurrence Relations

In this section, we make two observations about solutions to recurrence relations. The second
observation, Lemma 20, is an easy application of the Cayley-Hamilton theorem to recurrence
relations. The first observation, Lemma 19, describes a technique for showing that a given
solution of a recurrence relation in fact satisfies a recurrence relation of lower order. An
example will help to illustrate this idea.
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Example 18. Suppose a sequence {xn} satisfies the recurrence relation

an+3 − 2an+2 + an = 0,

and suppose that x2 = x1 + x0. Then the sequence {xn} satisfies the recurrence relation

an+2 − an+1 − an = 0.

To see this, define a new sequence {yn} by yn = xn+2 − xn+1 − xn. Then

yn+1 − yn = (xn+3 − xn+2 − xn+1) − (xn+2 − xn+1 − xn)

= xn+3 − 2xn+2 + xn = 0,

so yn+1 = yn for all n. At the same time, y0 = x2 − x1 − x0 = 0. Thus, yn = 0 for all n, so
that xn+2 − xn+1 − xn = 0 for all n.

To generalize the example above, recall that a recurrence relation

ckan+k + ck−1an+k−1 + · · · + c1an+1 + c0an = 0

has an associated characteristic polynomial

p(x) = ckx
k + ck−1x

k−1 + · · · + c1x + c0.

In the following lemma, we suppose given two polynomials of degree k1 and k2 respec-
tively:

p1(x) =
∑

j

cj,1x
j, p2(x) =

∑

j

cj,2x
j.

Here, the summations are over all integers, but cj,1 = 0 for all j > k1 and all j < 0, while
cj,2 = 0 for all j > k2 and all j < 0. We let

q(x) = p1(x) · p2(x) =
∑

j

(

∑

l

cl,1cj−l,2

)

xj.

Lemma 19. Suppose given a sequence {xn} such that for some positive integer m, we have

1. {xn} satisfies the recurrence relation with characteristic polynomial q(x) for n ≥ m,

and

2. For 0 ≤ n ≤ m + k1 − 1, we have
∑

j cj,2xn+j = 0. That is, for 0 ≤ n ≤ m + k1 − 1,
{xn} satisfies the recurrence relation with characteristic polynomial p2(x).

Then {xn} satisfies the recurrence relation with characteristic polynomial p2(x) for all n ≥ 0.
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Proof. Let yn =
∑

j cj,2xn+j. Then

∑

l

cl,1yn+l =
∑

l

∑

j

cl,1cj,2xn+l+j =
∑

j

(

∑

l

cl,1cj−l,2

)

xn+j.

By our first hypothesis, this last term is 0 whenever n ≥ m, so {yn} satisfies the kth
1 -order

homogeneous linear recurrence relation with characteristic polynomial p1(x) for n ≥ m. By
our second hypothesis, yn = 0 for 0 ≤ n ≤ m + k1 − 1, which includes the k1 consecutive
values of n beginning at m. It follows by induction that yn = 0 for all n ≥ 0. Thus, {xn}
satisfies the recurrence relation with characteristic polynomial p2(x).

Now, we turn to our application of the Cayley-Hamilton theorem. Consider a sequence
{~vn} of vectors in R

m; we let vi
n denote the ith component of ~vn.

Lemma 20. Suppose {~vn} satisfies the recurrence relation ~vn+1 = A~vn, where A is an m×m
matrix. Then for each i ∈ {1, 2, . . . ,m}, the sequence vi

n satisfies a recurrence relation

whose characteristic polynomial is equal to the characteristic polynomial of the matrix A,

det(λI − A).

Proof. Let p(λ) = det(λI −A) = cmλm + cm−1λ
m−1 + · · ·+ c0. Then by the Cayley-Hamilton

theorem, p(A) = 0, so for any n,

cmAm~vn + cm−1A
m−1~vn + · · · + c0~vn = ~0.

Since ~vn+1 = A~vn for all n, this yields

cm~vn+m + cm−1~vn+m−1 + · · · + c0~vn = ~0.

Now, taking the ith component of the above equation yields the result.

5 Hyperdiagonal matrices

Just as Proposition 11 allowed us to study the Hankel transform of the sequence αcn +βcn+1

in the proof of Theorem 2, so Proposition 12 allows us to investigate the Hankel transforms
of more complicated linear combinations of Catalan numbers. Proposition 12 motivates
studying a class of matrices which we now describe.

Definition 21. An infinite matrix M is k-hyperdiagonal if Mi,j = 0 whenever |j − i| > k,
and for j + i ≥ k, Mi,j only depends on |j − i|. We let mt and m−t denote the value of Mi,j

when |j − i| = t and j + i ≥ k (so mt = 0 when t > k or t < −k.)

Example 22. By Proposition 12, the matrix LC{k}U is k-hyperdiagonal, with mt =
(

2k

k−t

)

=
(

2k

k+t

)

.

In this section, we will investigate the determinants of the sequence of upper left (n +
1) × (n + 1) submatrices of a k-hyperdiagonal matrix M .
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Notation 23. Suppose M is a k-hyperdiagonal infinite matrix, and let ~r denote the integer-
valued vector 〈r1, r2, · · · , rk〉, where −k < r1 < r2 < · · · < rk ≤ k. Let M(n)~r denote the
(n + 1) × (n + 1) matrix whose (i, j) entry is given by

{

Mi,j, 0 ≤ i ≤ n and 0 ≤ j < max{0, n − k + 1};

Mi,n+rj−(n−k)
, 0 ≤ i ≤ n and max{0, n − k + 1} ≤ j ≤ n.

Thus, when n ≥ k, M(n)~r is obtained by removing all rows of M past the nth row,
retaining the 0th through (n−k)th columns, removing all columns past the (n+k)th column,
and retaining the (n + ri)

th columns for 1 ≤ i ≤ k.

Remark 24. If ~r = 〈1 − k, 2 − k, 3 − k, . . . , 0〉, then M(n)~r = M(n), where we recall from
Notation 10 that M(n) denotes is the upper left (n + 1) × (n + 1)-submatrix of M . Indeed,
in this case, ri = i − k, so n + rj−(n−k) = j, whence Mi,n+rj−(n−k)

= Mi,j.

Example 25. Suppose k = 2 and

M =



























∗ ∗ x 0 0 0 0 · · ·
∗ z y x 0 0 0 · · ·
x y z y x 0 0 · · ·
0 x y z y x 0 · · ·
0 0 x y z y x · · ·
0 0 0 x y z y · · ·
0 0 0 0 x y z · · ·
...

...
...

...
...

...
...

. . .



























.

Then

M(6)〈0,2〉 =





















∗ ∗ x 0 0 0 0
∗ z y x 0 0 0
x y z y x 0 0
0 x y z y 0 0
0 0 x y z x 0
0 0 0 x y y 0
0 0 0 0 x z x





















.

Here, we have retained columns numbered 0 through 4, together with columns numbered
6 = 6 + 0 and 8 = 6 + 2. As another example, if we retain columns numbered 5 = 6 + (−1)
and 7 = 6 + 1, we get

M(6)〈−1,1〉 =





















∗ ∗ x 0 0 0 0
∗ z y x 0 0 0
x y z y x 0 0
0 x y z y x 0
0 0 x y z y 0
0 0 0 x y z x
0 0 0 0 x y y





















.
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Observe that the determinant of M(6)〈0,2〉 is equal to the product of x and the determinant
of M(5)〈−1,1〉. Likewise, the determinant of M(6)〈−1,1〉 is

x
(

det(M(5)〈0,2〉)
)

− y
(

det(M(5)〈−1,2〉)
)

+ y
(

det(M(5)〈−1,0〉)
)

.

As we will shortly show, the determinant of M(n)~r can be expressed as a linear combination
of determinants of the form M(n−1)~s for various vectors ~s. We now describe how the needed
vectors ~s can be obtained from ~r.

Notation 26. Suppose 0 ≤ l ≤ k, and suppose given a vector ~r with

−k < r1 < r2 < · · · < rk ≤ k.

If rk < k or l = k, let δl~r be the vector obtained by inserting −k as a 0th term, removing
the lth term, and then adding one to all the components of ~r. If rk = k and l < k, then δl~r
is undefined.

Thus, if l = k, then

δl~r = 〈−k + 1, r1 + 1, r2 + 1, · · · , rk−1 + 1〉.

When 1 ≤ l ≤ k − 1, and rk < k, we have

δl~r = 〈−k + 1, r1 + 1, r2 + 1, · · · , rl−1 + 1, rl+1 + 1, · · · , rk + 1〉.

If l = 0 and rk < k, then

δ0~r = 〈r1 + 1, r2 + 1, · · · , rk + 1〉.

Lemma 27. Suppose 0 ≤ l ≤ k, n ≥ k − l, and ~r is a vector with

−k < r1 < r2 < · · · < rk ≤ k.

If rk = k and l < k, then removing the nth row and the (n− k + l)th column of M(n)~r yields

a matrix with a column of all zeros. If rk < k or l = k, then removing the nth row and the

(n − k + l)th column of M(n)~r yields M(n − 1)δl~r.

Proof. First, if rk = k and l < k, then for 0 ≤ i ≤ n− 1, the (i, n)-entry of M(n)~r is Mi,n+k,
which is 0 since n+k− i > k and M is k-hyperdiagonal. Thus, since n−k + l < n, it follows
that removing the nth row and (n − k + l)th of M(n)~r yields a matrix whose last column is
all 0’s.

Now, suppose rk < k or l = k. Let M ′ denote the n × n matrix obtained by removing
the nth row and the (n − k + l)th column from M(n)~r. Then M ′

i,j is equal to the (i, j)
entry of M(n)~r when 0 ≤ j < n − k + l and is equal to the (i, j + 1) entry of M(n)~r when
n − k + l ≤ j ≤ n − 1. Thus,

M ′
i,j =











Mi,j, if 0 ≤ i ≤ n − 1 and 0 ≤ j < max{0, n − k + 1};

Mi,n+rj−(n−k)
, if 0 ≤ i ≤ n − 1 and max{0, n − k + 1} ≤ j < n − k + l;

Mi,n+rj+1−(n−k)
, if 0 ≤ i ≤ n − 1 and n − k + l ≤ j ≤ n − 1.
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Now, for a sequence −k < s1 < s2 < · · · < sk ≤ k, the (i, j) entry of the n × n matrix
M(n − 1)~s is

{

Mi,j, if 0 ≤ i ≤ n − 1 and 0 ≤ j < max{0, n − k};

Mi,(n−1)+sj−(n−1−k)
, if 0 ≤ i ≤ n − 1 and max{0, n − k} ≤ j ≤ n − 1.

When s1 = −k + 1 and j = n − k, Mi,(n−1)+sj−(n−1−k)
= Mi,j, so the above can be rewritten

as
{

Mi,j, if 0 ≤ i ≤ n − 1 and 0 ≤ j < max{0, n − k + 1};

Mi,(n−1)+sj−(n−1−k)
, if 0 ≤ i ≤ n − 1 and max{0, n − k + 1} < j ≤ n − 1.

If we set ~s = δl~r, then we see that M(n − 1)~s = M ′, as needed.

Notation 28. Let d(M,~r)n = det(M(n)~r). In general, there are
(

2k

k

)

vectors ~r with −k <
r1 < r2 < · · · < rk ≤ k, and we will order these lexicographically, starting from 〈−k+1,−k+
2, · · · , 0〉 and ending at 〈1, 2, 3, · · · , k〉. For a fixed value of n, the set of numbers d(M,~r)n

thus forms a column vector of length
(

2k

k

)

, which we will denote d(M)n.

Corollary 29. Suppose n ≥ k, and suppose ~r = 〈r1, r2, · · · , rk〉 where

−k < r1 < r2 < · · · < rk < k.

Let r0 = −k. Then

d(M,~r)n =
k
∑

l=0

(−1)k−lmrl
d(M, δl~r)n−1.

If rk = k, then d(M,~r)n = mrk
d(M, δk~r)n−1.

Proof. This follows immediately from Lemma 27 using cofactor expansion along the bottom
row.

Using Corollary 29, we may find a recurrence relation for the sequence d(M)n in R
(2k

k ).

Example 30. Suppose k = 1. Then there are 2 permissible vectors ~r of length k = 1,
namely 〈0〉 and 〈1〉. By Corollary 29, we have for n ≥ 1

d(M, 〈0〉)n = −m1d(M, 〈1〉)n−1 + m0d(M, 〈0〉)n−1,

and
d(M, 〈1〉)n = m1d(M, 〈0〉)n−1.

We will write z, y for m0,m1 respectively. Then, the system of equations above can be
written in matrix form as

d(M)n =

(

z −y
y 0

)

d(M)n−1

for all n ≥ 1. Shifting indices, we have for all n ≥ 0:

d(M)n+1 =

(

z −y
y 0

)

d(M)n.
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By Lemma 20, for each permissible vector ~r, the sequence d(M,~r)n satisfies a recurrence
relation with characteristic polynomial equal to the characteristic polynomial of the matrix
(

z −y
y 0

)

, which is λ2 − zλ + y2. By Remark 24, the sequence of determinants det(M(n))

coincides with the sequence d(M, 〈0〉)n. Thus, the sequence of determinants det(M(n))
satisfies the recurrence relation with characteristic polynomial equal to λ2 − zλ + y2.

Example 31. Now suppose k = 2. Then there are 6 permissible vectors ~r of length k = 2,
namely 〈−1, 0〉, 〈−1, 1〉, 〈−1, 2〉, 〈0, 1〉, 〈0, 2〉, 〈1, 2〉. Now we will write z, y, x for m0,m1,m2

respectively. Using Corollary 29 again (and again shifting indices), we can compute that for
n ≥ 1

d(M)n+1 =

















z −y 0 x 0 0
y 0 −y 0 x 0
x 0 0 0 0 0
0 y −z 0 0 x
0 x 0 0 0 0
0 0 x 0 0 0

















d(M)n.

Here, the characteristic polynomial of the matrix in the above equation is

λ6 − zλ5 + (y2 − x2)λ4 + (2x2z − 2xy2)λ3 + (x2y2 − x4)λ2 − x4zλ + x6,

which factors as

(λ − x)2(λ4 + (2x − z)λ3 + (2x2 + y2 − 2xz)λ2 + (2x3 − x2z)λ + x4).

Again, it follows from Lemma 20 and Remark 24 that the sequence of determinants
det(M(n)) satisfies a recurrence relation with the above characteristic polynomial for n ≥ 1.

Example 32. Now suppose k = 3. In this case, there are
(

6
3

)

= 20 permissible vectors ~r of
length 3. We then use Corollary 29 as in Example 31 above, and we get a 20× 20 matrix A
such that

d(M)n+1 = A · d(M)n

for all n ≥ 2. The matrix A can be expressed as follows, where we write z, y, x, w for
m0,m1,m2,m3 respectively.

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

z −y 0 0 x 0 0 0 0 0 −w 0 0 0 0 0 0 0 0 0
y 0 −y 0 0 x 0 0 0 0 0 −w 0 0 0 0 0 0 0 0
x 0 0 −y 0 0 x 0 0 0 0 0 −w 0 0 0 0 0 0 0
w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 y −z 0 0 0 0 x 0 0 0 0 0 −w 0 0 0 0 0 0
0 x 0 −z 0 0 0 0 x 0 0 0 0 0 −w 0 0 0 0 0
0 w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 x −y 0 0 0 0 0 x 0 0 0 0 0 −w 0 0 0 0
0 0 w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 y −z 0 y 0 0 0 0 0 0 0 0 −w 0 0 0
0 0 0 0 x 0 −z 0 y 0 0 0 0 0 0 0 0 −w 0 0
0 0 0 0 w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 x −y 0 0 y 0 0 0 0 0 0 0 0 −w 0
0 0 0 0 0 w 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 w 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x −y z 0 0 0 0 0 0 0 0 0 −w

0 0 0 0 0 0 0 w 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 w 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 w 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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The characteristic polynomial of the above matrix factors as the product

(λ6 − xλ5 + wyλ4 − w2zλ3 + w3yλ2 − w4xλ + w6)2·

(λ8 + (2x − z)λ7 + (w2 + 2x2 − 2wy + y2 − 2xz)λ6

+(2w2x + 2x3 − 4wxy − w2z − x2z + 2wyz)λ5

+(4w2x2 + x4 − 4w3y − 4wx2y + 2w2y2 + w2z2)λ4

+(2w4x + 2w2x3 − 4w3xy − w4z − w2x2z + 2w3yz)λ3

+(w6 + 2w4x2 − 2w5y + w4y2 − 2w4xz)λ2 + (2w6x − w6z)λ + w8

Again, it follows from Lemma 20 and Remark 24 that the sequence of determinants
det(M(n)) satisfies a recurrence relation with the above characteristic polynomial for n ≥ 2.

6 Proofs of Theorems 3 and 4

Before turning to the proofs of Theorems 3 and 4, we give another proof of Theorem 2. As
in our previous proof, we let {hn} denote the Hankel transform of the sequence αcn +βcn+1,
and we recall that

hn = det((αLCU + βLC{1}U)(n)).

Thus, if we let M = αLCU + βLC{1}U , then hn = det(M(n)). Now, by Proposition 12,
the matrix M is a 1-hyperdiagonal matrix, with m1 = β and m0 = 2β + α. By Example 30,
substituting y = β and z = 2β + α, the sequence det(M(n)) satisfies a recurrence relation
with characteristic polynomial λ2 − zλ + y2 for all n ≥ 0. That is, for all n ≥ 0, we have

hn+2 − (2β + α)hn+1 + β2hn = 0.

Our proofs of Theorems 3 and 4 follow a similar pattern.

Proof. (Theorem 3). We let {hn} denote the Hankel transform of the sequence αcn +βcn+1+
γcn+2. We then have

hn = det((αLCU + βLC{1}U + γLC{2}U)(n)).

Thus, if we let
M = αLCU + βLC{1}U + γLC{2}U,

then hn = det(M(n)). Now, by Proposition 12, the matrix M is a 2-hyperdiagonal matrix,
with

m2 = γ,m1 = 4γ + β,m0 = 6γ + 2β + α.

By Example 31, substituting x = γ, y = 4γ + β and z = 6γ + 2β + α, we find that for
n ≥ 1, the sequence hn = det(M(n)) satisfies the recurrence relation whose characteristic
polynomial is the product of (λ − γ)2 and

λ4 + (−α − 2β − 4γ)λ3 + (β2 − 2αγ + 4βγ + 6γ2)λ2 + (−α − 2β − 4γ)γ2λ + γ4.
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We compute directly that for 0 ≤ n ≤ 2, hn satisfies the recurrence relation with character-
istic polynomial

λ4 + (−α − 2β − 4γ)λ3 + (β2 − 2αγ + 4βγ + 6γ2)λ2 + (−α − 2β − 4γ)γ2λ + γ4.

Our result now follows from Lemma 19 with m = 1, k1 = 2, and k2 = 4.

Proof. (Theorem 4). We let {hn} denote the Hankel transform of the sequence

αcn + βcn+1 + γcn+2 + δcn+3.

We then have

hn = det((αLCU + βLC{1}U + γLC{2}U + δLC{3}U)(n)).

Thus, if we let
M = αLCU + βLC{1}U + γLC{2}U + δLC{3}U,

then hn = det(M(n)). Now, by Proposition 12, the matrix M is a 3-hyperdiagonal matrix,
with

m3 = δ,m2 = 6δ + γ,m1 = 15δ + 4γ + β,m0 = 20δ + 6γ + 2β + α.

By Example 32, substituting w = δ, x = 6δ+γ, y = 15δ+4γ+β and z = 20δ+6γ+2β+α, we
find that the sequence hn = det(M(n)) satisfies the recurrence relation whose characteristic
polynomial factors as the product of the square of

(λ6 + (−γ − 6δ)λ5 + (β + 4γ + 15δ)δλ4 + (−α − 2β − 6γ − 20δ)δ2λ3 + (β + 4γ + 15δ)δ3λ2 + (−γ − 6δ)δ4 + δ6)

and

λ8

+(−α − 2β − 4γ − 8δ)λ7

+(β2 − 2αγ + 4βγ + 6γ2 − 12αδ + 4βδ + 24γδ + 28δ2)λ6

+(−αγ2 − 2βγ2 − 4γ3 + 2αβδ + 4β2δ − 4αγδ − 24γ2δ − 7αδ2 + 2βδ2 − 60γδ2 − 56δ3)λ5

+(γ4 − 4βγ2δ + 8γ3δ + α2δ2 + 4αβδ2 + 6β2δ2 + 12αγδ2 − 8βγδ2 + 36γ2δ2 + 40αδ3 − 8βδ3 + 80γδ3 + 70δ4)λ4

+(−αγ2 − 2βγ2 − 4γ3 + 2αβδ + 4β2δ − 4αγδ − 24γ2δ − 7αδ2 + 2βδ2 − 60γδ2 − 56δ3)δ2λ3

+(β2 − 2αγ + 4βγ + 6γ2 − 12αδ + 4βδ + 24γδ + 28δ2)δ4λ2

+(−α − 2β − 4γ − 8δ)δ6λ1

+δ8λ0

We compute directly that for 0 ≤ n ≤ 13, hn satisfies the recurrence relation with
characteristic polynomial equal to the second polynomial above. Our result now follows
from Lemma 19 with m = 2, k1 = 12, and k2 = 8.
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