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Abstract

In this article we first prove a general theorem on integer sequences An such that
the following asymptotic formula holds,

An

An−1
∼ Cnαf(n)β ,

where f(x) is a function of slow increase, C > 0, α > 0 and β is a real number.
We also obtain some results on the Bell numbers Bn using well-known formulae.

We compare the Bell numbers with an (a > 0) and (n!)h (0 < h ≤ 1).
Finally, applying the general statements proved in the article we obtain the formula

Bn+1 ∼ e (Bn)1+
1
n .

1 Integer Sequences. A General Theorem.

We shall need the following well-known lemmas [12, pp. 332, 294].

Lemma 1. If sn is a sequence of positive numbers with limit s then the sequence

n
√

s1s2 · · · sn

has also limit s.
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Lemma 2. The following limit holds,

lim
n→∞

n
√

n!

n
=

1

e
.

We recall the definition of function of slow increase [7, Definition 1 ].

Definition 3. Let f(x) be a function defined on interval [a,∞) such that f(x) > 0,
limx→∞ f(x) = ∞ and with continuous derivative f ′(x) > 0 . The function f(x) is of
slow increase if and only if the following condition holds

lim
x→∞

f ′(x)
f(x)

x

= lim
x→∞

xf ′(x)

f(x)
= 0. (1)

Typical functions of slow increase are f(x) = log x, f(x) = log2 x and f(x) = log log x.

Lemma 4. If f(x) is a function of slow increase on the interval [b,∞) then the following
asymptotic formula holds

n

√

f(b)f(b + 1) · · · f(n) ∼ f(n), (2)

where b is a positive integer.

Proof. Note that we always can suppose that f(x) > 1 on the interval [b,∞).
Since log f(x) is increasing and positive in the interval [b,∞) we find that

n
∑

i=b

log f(i) =
n

∑

i=b

(1 · log f(i)) =

∫ n

b

log f(x) dx + O(log f(n)) = n log f(n)

+

∫ n

b

xf ′(x)

f(x)
dx + O(log f(n)). (3)

Note that the second equation in (3) is a sum of areas of rectangles of height log f(i) and
base 1. Consequently the third equation in (3) is immediate.

L’Hôpital’s rule gives (see (1))

lim
x→∞

log f(x)

x
= lim

x→∞

f ′(x)

f(x)
= 0.

Therefore
O(log f(n)) = o(n). (4)

If the integral
∫ x

b

tf ′(t)
f(t)

dt converges we obtain

lim
x→∞

∫ x

b

tf ′(t)
f(t)

dt

x
= 0.

On the other hand, if the integral
∫ x

b

tf ′(t)
f(t)

dt diverges we obtain from L’Hôpital’s rule and

(1) that

lim
x→∞

∫ x

b

tf ′(t)
f(t)

dt

x
= 0.
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Therefore
∫ n

b

xf ′(x)

f(x)
dx = o(n). (5)

Equations (3), (4) and (5) give

n
∑

i=b

log f(i) = n log f(n) + o(n). (6)

That is,
1

n

n
∑

i=b

log f(i) = log f(n) + o(1).

That is (2).

Theorem 5. Let An (n ≥ 0) be a sequence of positive numbers (in particular integers) such
that

An

An−1

∼ Cnαf(n)β, (7)

where f(x) is a function of slow increase on the interval [b,∞), C > 0, α > 0 and β is a
real number. If 1 ≤ n < b we put f(n) = 1.

The following formulae hold,

n

√

A1

A0

A2

A1
· · · An

An−1

An

An−1

→
1

eα
, (8)

An+1 ∼ eαA
1+ 1

n
n , (9)

log An = αn log n + βn log f(n) + (−α + log C)n + o(n), (10)

log An ∼ αn log n, (11)

An =

(

Cnαf(n)β
)n

e(α+o(1))n
. (12)

Proof. We have (see (7))
An

An−1

Cnαf(n)β
→ 1. (13)

Consequently (13) and Lemma 1 give

n

√

√

√

√

n
∏

k=1

Ak

Ak−1

Ckαf(k)β
=

n

√

∏n

k=1
Ak

Ak−1

n

√
∏n

k=1 Ckαf(k)β
→ 1.
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That is

n

√

An ∼ n

√

A1

A0

A2

A1

· · ·
An

An−1

∼ n

√

√

√

√

n
∏

k=1

Ckαf(k)β. (14)

Lemma 2 and Lemma 4 give

n

√

√

√

√

n
∏

k=1

Ckαf(k)β = C
(

n
√

n!
)α (

n

√

f(1)f(2) · · · f(n)
)β

∼ C
nα

eα
f(n)β. (15)

Equations (14), (15) and (7) give

n

√

An ∼ n

√

A1

A0

A2

A1

· · ·
An

An−1

∼ C
nα

eα
f(n)β ∼

1

eα

An

An−1

. (16)

Equation (16) gives (8). Equation (16) and [7, Theorem 8] give

A
1
n
n ∼ A

1
n−1

n−1. (17)

Equations (17) and (16) give

An ∼ eαA
1+ 1

n−1

n−1 .

That is (9). Equation (16) gives

1

n
log An = log

(

C
nα

eα
f(n)β

)

+ o(1).

That is (10). Equation (10) gives (11), since (from L’Hôpital’s rule and (1))

lim
x→∞

log f(x)

log x
= lim

x→∞

xf ′(x)

f(x)
= 0.

Finally, equation (12) is an immediate consequence of equation (10).

Remark 6. Note that: (i) The following limit holds Cnαf(n)β → ∞ (see(7)).
If β ≥ 0 the proof is trivial. If β < 0 use [7, Theorem 2 and Theorem 4]. Consequently

we have

lim
n→∞

An+1

An

= ∞.

(ii) This last limit implies the following formula (An+1 − An) ∼ An+1.
(iii) Equation (7) implies the more general relation,

An

An−m

=
An

An−1

An−1

An−2

· · ·
An−m+1

An−m

∼ Cm

n
∏

k=n−m+1

kαf(k)β.
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2 Introduction to Bell Numbers.

The n-th Bell number Bn is the number of partitions of a set of n elements in disjoint subsets.
The Bell numbers satisfy the following recurrence relation [1, p. 216].

B0 = 1,

Bn+1 =
n

∑

k=0

(

n

k

)

Bk. (18)

The first Bell numbers are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203,
B7 = 877, B8 = 4140, B9 = 21147, B10 = 115975.

N. G. de Bruijn [6, pp. 102–109] proved the following asymptotic formula,

log Bn = n log n − n log log n − n + o(n). (19)

L. Lovász [10, Ex. 9(b), p. 17] proved the following asymptotic formula

Bn ∼ n−
1
2 (λ(n))n+ 1

2 eλ(n)−n−1, (20)

where
λ(n) =

n

W (n)
. (21)

The function x = W (y) is the inverse function of y = xex on the interval (0,∞). The
function x = W (y) is called Lambert W-function.

The following results are well-known [5]. We establish these results in the next lemma.
For sake of completeness we give a proof of the lemma.

Lemma 7. The function x = W (y) is positive, strictly increasing on the interval (0,∞) and
limy→∞ W (y) = ∞.

The following formulae hold.
W (y) ∼ log y, (22)

W ′(y) =
W (y)

y(1 + W (y))
. (23)

Proof. The first statement is trivial.
We have (definition of x = W (y))

y = W (y)eW (y). (24)

Consequently
1 = W ′(y)eW (y) + W (y)eW (y)W ′(y).

That is

W ′(y) =
1

eW (y)(1 + W (y))
=

W (y)

y(1 + W (y))
.
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On the other hand (24) gives

log y = log W (y) + W (y).

Therefore
W (y)

log y
= 1 −

log W (y)

log y
. (25)

Also (from L’Hôpital’s rule and (23))

lim
y→∞

log W (y)

log y
= lim

y→∞

yW ′(y)

W (y)
= lim

y→∞

1

1 + W (y)
= 0. (26)

Finally, equations (25) and (26) give (22).

Remark 8. Note that the Lambert W-function W (y) is a function of slow increase since (see
(1) and (23))

lim
y→∞

yW ′(y)

W (y)
= lim

y→∞

1

1 + W (y)
= 0.

3 Some Results on Bell Numbers.

The limit

lim
n→∞

Bn

n!
= 0.

is well-known [9, p. 64]. In the following Theorem we include it for sake of completeness.

Theorem 9. The following limits hold.

lim
n→∞

Bn

an
= ∞ (a > 0), (27)

lim
n→∞

Bn

(n!)h
= ∞ (0 < h < 1), (28)

lim
n→∞

Bn

n!
= 0.

Proof. Equation (19) gives

log

(

Bn

an

)

= log Bn − n log a = n log n − n log a + o(n log n).

Therefore

lim
n→∞

log

(

Bn

an

)

= ∞,

and consequently

lim
n→∞

Bn

an
= ∞.
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That is (27).
The well-known Stirling formula is

n! ∼
√

2π
nn

√
n

en
.

Therefore

log n! = n log n − n +
1

2
log n + log

√
2π + o(1) = n log n − n + o(n),

and
log(n!)h = hn log n − hn + o(n).

Consequently (see (19))

log

(

Bn

(n!)h

)

= (1 − h)n log n − n log log n − n + hn + o(n). (29)

If 0 < h < 1 equation (29) gives

lim
n→∞

log

(

Bn

(n!)h

)

= ∞.

That is,

lim
n→∞

Bn

(n!)h
= ∞.

On the other hand if h = 1 equation (29) gives

lim
n→∞

log

(

Bn

n!

)

= −∞.

That is,

lim
n→∞

Bn

n!
= 0.

M. Klazar [8, Proposition 2.6] and D. E. Knuth [9, eq. (30), p. 69] proved the following
asymptotic formula

Bn+1

Bn

∼
n

log n
.

This formula is derived as a consequence of the asymptotic formula obtained in the classical
paper [11].

In the following Theorem we derive this formula from the Lovász’s formula (20). We also
use the well-known properties of the Lambert W-function established in Lemma 7.

Theorem 10. The following asymptotic formula holds,

Bn+1

Bn

∼
n

log n
. (30)
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Proof. Substituting (21) into (20) we obtain

Bn ∼
nn

W (n)n+ 1
2

e
n

W (n)
−n−1

.

Consequently

Bn+1

Bn

∼
n + 1

W (n + 1)

√

W (n)

W (n + 1)

(

W (n)

W (n + 1)

)n

e(
n+1

W (n+1)
−

n

W (n)). (31)

Equation (22) gives
W (n + 1) ∼ W (n). (32)

Equations (32) and (22) give
n + 1

W (n + 1)
∼

n

log n
. (33)

Equation (32) gives
√

W (n)

W (n + 1)
→ 1. (34)

Let us consider the function y

W (y)
. The derivative of y

W (y)
is (see (23))

W (y) − yW ′(y)

W (y)2
=

W (y) − W (y)
1+W (y)

W (y)2
=

1

1 + W (y)
.

Consequently we have (Lagrange’s Theorem)

n + 1

W (n + 1)
−

n

W (n)
=

1

1 + W (n + ǫ(n))
→ 0, (35)

where 0 < ǫ(n) < 1.
We have

(

W (n + 1)

W (n)

)n

= exp (n (log W (n + 1) − log W (n))) . (36)

Let us consider the function log W (y). The derivative of log W (y) is (see (23))

W ′(y)

W (y)
=

1

y(1 + W (y))
.

Consequently we have (Lagrange’s Theorem)

n (log W (n + 1) − log W (n)) = n
1

(n + ǫ(n))(1 + W (n + ǫ(n)))

=
1

(1 + ǫ(n)
n

)(1 + W (n + ǫ(n)))
→ 0, (37)

where 0 < ǫ(n) < 1.
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Equations (36) and (37) give

(

W (n)

W (n + 1)

)n

→ 1. (38)

Finally, equations (31), (33), (34), (35) and (38) give (30).

The asymptotic formula (30) implies that the Bell numbers satisfy condition (7). In this
case C = 1, α = 1, β = −1 and f(n) = log n. Consequently we have the following Corollary.

Corollary 11. The following formulae hold,

lim
n→∞

Bn+1

Bn

= ∞,

(Bn+1 − Bn) ∼ Bn+1,

n

√

B1

B0

B2

B1

B3

B2
· · · Bn

Bn−1

Bn

Bn−1

=
n
√

Bn

Bn

Bn−1

→
1

e
,

Bn+1 ∼ e (Bn)1+ 1
n .

Proof. It is an immediate consequence of Theorem 5 and Remark 6.

The following Theorem is well-known [4, Ex. 1(2), p. 291] [2, Corollary 5 ]. We give a
short proof using equation (18).

Theorem 12. The sequence Bn+1 − Bn is strictly increasing.

Proof. We have (see (18))

Bn+2 − Bn+1 =
n

∑

k=0

(

n + 1

k

)

Bk, Bn+1 − Bn =
n−1
∑

k=0

(

n

k

)

Bk.

Consequently

(Bn+2 − Bn+1) − (Bn+1 − Bn) =
n−1
∑

k=1

((

n + 1

k

)

−
(

n

k

))

Bk + (n + 1)Bn > 0,

since
(

n + 1

k

)

>

(

n

k

)

(k = 1, . . . , n).

In closing the article we give one more property of the Bell numbers but before prove the
following general statement.
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Theorem 13. Let Fn be a strictly increasing sequence of positive integers such that

log Fn ∼ Cn log n (C > 0).

Let ω(x) be the number of Fn that do not exceed x. The following asymptotic formula holds.

ω(x) ∼
log x

C log log x
.

Proof. Let αn be a strictly increasing sequence of positive numbers and let α(x) be the
number of αn that do not exceed x. It is well-known [3, p. 129] that

αn ∼ Cn log n ⇔ α(x) ∼
x

C log x
.

Now,
Fn ≤ x ⇔ αn = log Fn ≤ log x.

Consequently

ω(x) = α(log x) ∼
log x

C log log x
.

Example 14. If Fn = Bn is the n-th Bell number and ω(x) is the number of Bell numbers
that do not exceed x then (see (19))

ω(x) ∼
log x

log log x
.
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