On the Distribution of Perfect Powers

Rafael Jakimczuk
División Matemática
Universidad Nacional de Luján
Buenos Aires
Argentina
jakimczu@mail.unlu.edu.ar
In memory of my sister Fedra Marina Jakimczuk (1970-2010)

Abstract

Let $N(x)$ be the number of perfect powers that do not exceed x. In this article we obtain asymptotic formulae for the counting function $N(x)$.

1 Introduction

A natural number of the form m^{n} where m is a positive integer and $n \geq 2$ is called a perfect power. The first few terms of the integer sequence of perfect powers are

$$
1,4,8,9,16,25,27,32,36,49,64,81,100,121,125,128, \ldots,
$$

and they are sequence A001597 in Sloane's Encylopedia. Let $N(x)$ be the number of perfect powers that do not exceed x. M. A. Nyblom [3] proved the following asymptotic formula,

$$
N(x) \sim \sqrt{x}
$$

M. A. Nyblom [4] also obtained a formula for the exact value of $N(x)$ using the inclusionexclusion principle (also called the principle of cross-classification).

In this article we obtain more precise asymptotic formulae for the counting function $N(x)$. For example, we prove

$$
N(x)=\sqrt{x}+\sqrt[3]{x}+\sqrt[5]{x}-\sqrt[6]{x}+\sqrt[7]{x}+o(\sqrt[7]{x})
$$

Consequently

$$
\sqrt{x}+\sqrt[3]{x}<N(x)<\sqrt{x}+\sqrt[3]{x}+\sqrt[5]{x}
$$

2 Preliminary Results

Let A be a set. The number of elements in A we denote in the form $|A|$.
We need the following results.
Lemma 1. (Inclusion-exclusion principle) Let us consider a given finite collection of sets $A_{1}, A_{2}, \ldots, A_{n}$. The number of elements in $\cup_{i=1}^{n} A_{i}$ is

$$
\left|\cup_{i=1}^{n} A_{i}\right|=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|,
$$

where the expression $1 \leq i_{1}<\cdots<i_{k} \leq n$ indicates that the sum is taken over all the k-element subsets $\left\{i_{1}, \ldots, i_{k}\right\}$ of the set $\{1,2, \ldots, n\}$.

Proof. See for example either [1, page 233] or [2, page 84].
Let $A_{n}(x)(n \geq 2)$ be the set $\left\{k^{n}: k \in N, k^{n} \leq x\right\}$, that is, the set of perfect powers whose exponent is n that do not exceed x.

Lemma 2. We have

$$
\left|A_{n}(x)\right|=\lfloor\sqrt[n]{x}\rfloor
$$

where \lfloor.$\rfloor denotes the integer-part function.$
Proof. We have

$$
k^{n} \leq x \Leftrightarrow k \leq \sqrt[n]{x}
$$

M. A. Nyblom [4] proved the following Lemma and the following Theorem.

Lemma 3. For any set consisting of $m \geq 2$ positive integers $\left\{n_{1}, \ldots, n_{m}\right\}$ all greater than unity, we have the set equality

$$
\bigcap_{i=1}^{m} A_{n_{i}}(x)=A_{\left[n_{1}, \ldots, n_{m}\right]}(x),
$$

where $\left[n_{1}, \ldots, n_{m}\right]$ denotes the least common multiple of the m integers n_{1}, \ldots, n_{m}.
Let p_{n} be the n-th prime. Consequently we have,

$$
p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, p_{6}=13, \ldots
$$

Theorem 4. If $x \geq 4$ and $p_{1}, p_{2}, \ldots, p_{m}$ denote the prime numbers that do not exceed $\left\lfloor\log _{2} x\right\rfloor$, then for $k \geq m$ the number of perfect powers that do not exceed x is

$$
N(x)=\left|\bigcup_{i=1}^{k} A_{p_{i}}(x)\right| .
$$

Besides $A_{p_{i}}(x)=\{1\}$ for $i \geq m+1$.

We also need the following two well-known results.
The binomial formula

$$
\begin{equation*}
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \tag{1}
\end{equation*}
$$

and the following property of the absolute value

$$
\begin{equation*}
\left|a_{1}+a_{2}+\cdots+a_{r}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{r}\right|, \tag{2}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{r}$ are real numbers.

3 Main Results

Theorem 5. Let p_{n} be the n-th prime number with $n \geq 2$, where n is an arbitrary but fixed positive integer. Then

$$
\begin{equation*}
N(x)=\sum_{k=1}^{n-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n-1 \\ p_{i_{1}} \cdots p_{i_{k}}<p_{n}}} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}+g(x) x^{\frac{1}{p_{n}}} \tag{3}
\end{equation*}
$$

where $\lim _{x \rightarrow \infty} g(x)=1$ and the inner sum is taken over the k-element subsets $\left\{i_{1}, \ldots, i_{k}\right\}$ of the set $\{1,2, \ldots, n-1\}$ such that the inequality $p_{i_{1}} \cdots p_{i_{k}}<p_{n}$ holds.

Proof. Let $k=\left\lfloor\log _{2} x\right\rfloor+1=\left\lfloor\frac{\log x}{\log 2}\right\rfloor+1$, where $x \geq 4$. If $p_{1}, p_{2}, \ldots, p_{m}$ denote the prime numbers that do not exceed $\left\lfloor\log _{2} x\right\rfloor$, then we have

$$
\begin{equation*}
p_{1}<\cdots<p_{m} \leq\left\lfloor\log _{2} x\right\rfloor<\left\lfloor\log _{2} x\right\rfloor+1=k \leq p_{m+1}<p_{m+2}<\cdots \tag{4}
\end{equation*}
$$

Note that if $i \geq m+1$ we have $1<x^{\frac{1}{p_{i}}} \leq x^{\frac{1}{k}}<x^{\frac{1}{\log x}} \log 2$. . That is, $1<x^{\frac{1}{p_{i}}}<2$. Consequently if $i \geq m+1$ (see Lemma 2) $\left|A_{p_{i}}(x)\right|=1$. That is, $A_{p_{i}}(x)=\{1\}$. Note also that k and m are increasing functions of x. On the other hand $n \geq 2$ is an arbitrary but fixed positive integer.

Equation (4) gives

$$
\begin{equation*}
p_{m}<k . \tag{5}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
m<p_{m} \tag{6}
\end{equation*}
$$

Therefore (5) and (6) give

$$
\begin{equation*}
m<k \tag{7}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
p_{m}<p_{k} \tag{8}
\end{equation*}
$$

There exist three possible relations between m, k, n and $n+1$ and consequently between p_{m}, p_{k}, p_{n} and p_{n+1}.

First relation.

$$
m<k \leq n<n+1
$$

and hence

$$
p_{m}<p_{k} \leq p_{n}<p_{n+1} .
$$

Second relation.

$$
m \leq n<n+1 \leq k
$$

and hence

$$
p_{m} \leq p_{n}<p_{n+1} \leq p_{k}
$$

Third relation.

$$
n<n+1 \leq m<k
$$

and hence

$$
p_{n}<p_{n+1} \leq p_{m}<p_{k}
$$

If we define $S(x)=\max \{n+1, k\}$ then these three relations, Theorem 4 and Lemma 2 give us $(x \geq 4)$

$$
\begin{align*}
\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right| \leq N(x) & <\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right|+\sum_{i=n+1}^{S(x)}\left|A_{p_{i}}(x)\right| \\
& =\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right|+\sum_{i=n+1}^{S(x)}\left\lfloor x^{\frac{1}{p_{i}}}\right\rfloor \\
& \leq\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right|+(S(x)-n)\left\lfloor x^{\frac{1}{p_{n+1}}}\right\rfloor . \tag{9}
\end{align*}
$$

Note that there exists x_{0} such that if $x \geq x_{0}$ the third relation holds.
Note also that $S(x)-n$ is either equal to 1 or $k-n<k-1=\left\lfloor\frac{\log x}{\log 2}\right\rfloor \leq \frac{\log x}{\log 2}$, and so in either case

$$
\begin{equation*}
S(x)-n \leq \frac{\log x}{\log 2} \tag{10}
\end{equation*}
$$

as $x \geq 4$. Consequently (9) and (10) give

$$
\begin{equation*}
\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right| \leq N(x)<\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right|+\frac{\log x}{\log 2} x^{\frac{1}{p_{n+1}}} . \tag{11}
\end{equation*}
$$

Lemma 1 gives

$$
\begin{equation*}
\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right|=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{p_{i_{1}}}(x) \cap \cdots \cap A_{p_{i_{k}}}(x)\right| . \tag{12}
\end{equation*}
$$

On the other hand, Lemma 3 gives

$$
A_{p_{i_{1}}}(x) \cap \cdots \cap A_{p_{i_{k}}}(x)=A_{\left[p_{i_{1}}, \ldots, p_{i_{k}}\right]}(x)=A_{p_{i_{1} \cdots p_{i_{k}}}}(x) .
$$

Therefore (Lemma 2) we obtain

$$
\begin{equation*}
\left|A_{p_{i_{1}}}(x) \cap \cdots \cap A_{p_{i_{k}}}(x)\right|=\left|A_{p_{i_{1}} \cdots p_{i_{k}}}(x)\right|=\left\lfloor x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}\right\rfloor . \tag{13}
\end{equation*}
$$

Substituting (13) into (12) we find that

$$
\begin{align*}
\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right| & \left.=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \left\lvert\, x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}\right.\right\rfloor \\
& =\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x^{\overline{p_{i_{1}} \cdots p_{i_{k}}}} \\
& -\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}-\left\lfloor x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}\right\rfloor\right) . \tag{14}
\end{align*}
$$

Now

$$
\begin{equation*}
0 \leq x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}-\left\lfloor x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}\right\rfloor<1 \tag{15}
\end{equation*}
$$

Consequently (see (1) and (2))

$$
\begin{align*}
& \left|\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}-\left\lfloor x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}\right\rfloor\right)\right| \leq \sum_{k=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} 1 \\
& =\sum_{k=1}^{n}\binom{n}{k} \leq \sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n} \text {. } \tag{16}
\end{align*}
$$

That is,

Equations (14) and (17) give

$$
\begin{equation*}
\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right|=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x^{\frac{1}{\overline{p_{i_{1}} \cdots p_{i_{k}}}}+O(1), ~(1)}+ \tag{18}
\end{equation*}
$$

If

$$
\begin{equation*}
B(x)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ p_{i_{1}} \cdots p_{i_{k}}<p_{n}}} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
C(x)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ p_{i_{1}} \cdots p_{i_{k}}>p_{n+1}}} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}=o\left(x^{\frac{1}{p_{n+1}}}\right) \tag{20}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x^{\frac{1}{\overline{p i}_{1} \cdots p_{i_{k}}}}=B(x)+C(x) \tag{21}
\end{equation*}
$$

Equations (18) and (21) give

$$
\begin{equation*}
\left|\bigcup_{i=1}^{n} A_{p_{i}}(x)\right|=B(x)+C(x)+O(1) \tag{22}
\end{equation*}
$$

Equations (22) and (11) give

$$
B(x)+C(x)+O(1) \leq N(x)<B(x)+C(x)+O(1)+\frac{\log x}{\log 2} x^{\frac{1}{p_{n+1}}} .
$$

Therefore,

$$
\begin{equation*}
C(x)+O(1) \leq N(x)-B(x)<C(x)+O(1)+\frac{\log x}{\log 2} x^{\frac{1}{p_{n+1}}} . \tag{23}
\end{equation*}
$$

Equations (23) and (20) give

$$
-\epsilon<\frac{N(x)-B(x)}{\log x x^{\frac{1}{p_{n+1}}}}<\frac{1}{\log 2}+\epsilon \quad(\epsilon>0) .
$$

That is,

$$
\begin{equation*}
N(x)=B(x)+O\left(\log x x^{\frac{1}{p_{n+1}}}\right) . \tag{24}
\end{equation*}
$$

Note that (see (19)) if $k=1, \ldots, n$ then,

$$
\begin{equation*}
\sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ p_{i_{1}} \cdots p_{i_{k}}<p_{n+1}}} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}=\sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ p_{i_{1}} \cdots p_{i_{k}}<p_{n}}} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}+\sum_{\substack{\leq i_{1}<\cdots<i_{k} \leq n \\ p_{n} \leq p_{i_{1}} \cdots i_{k}<p_{n}<p_{n}}} x^{\frac{1}{p_{i_{1} \cdots p_{1}}}} \tag{25}
\end{equation*}
$$

Now, if $k=1, \ldots, n-1$ then

$$
\begin{equation*}
\sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ p_{i_{1}} \cdots p_{i_{k}}<p_{n}}} x^{\frac{1}{\overline{p_{1} \cdots p_{i_{k}}}}}=\sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n-1 \\ p_{i_{1}} \cdots p_{i_{k}}<p_{n}}} x^{\overline{p_{i_{1}} \cdots p_{i_{k}}}} \tag{26}
\end{equation*}
$$

and if $k=2, \ldots, n$ then

$$
\begin{equation*}
\sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ p_{n} \leq p_{1} \cdots p_{i_{k}}<p_{n+1}}} x^{\frac{1}{\overline{p_{i_{1}} \cdots p_{i_{k}}}}}=\sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ p_{n}<p_{i_{1}} \cdots p_{i_{k}}<p_{n+1}}} x^{\frac{1}{\overline{p_{i_{1}} \cdots p_{i_{k}}}}} \tag{27}
\end{equation*}
$$

On the other hand, if $k=1$ then

$$
\begin{equation*}
\sum_{\substack{1 \leq i_{1} \leq n \\ p_{n} \leq p_{i_{1}}<p_{n+1}}} x^{\frac{1}{p_{i_{1}}}}=x^{\frac{1}{p_{n}}} \tag{28}
\end{equation*}
$$

Equations (19), (25), (26), (27) and (28) give

$$
\begin{aligned}
& B(x)=\sum_{k=1}^{n-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n-1 \\
p_{i_{1}} \cdots p_{k_{k}} \leq p_{n}}} x^{\frac{1}{\bar{p}_{p_{1}} \cdots p_{i_{k}}}} \\
& \left.+x^{\frac{1}{p_{n}}}+\sum_{k=2}^{n}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\ldots<k^{i} \leq \leq \\
p_{n}<p_{1}+\ldots p_{k}}} x^{\frac{1}{p_{n}} p_{n+1}} \right\rvert\,
\end{aligned}
$$

That is,

$$
\begin{align*}
B(x) & =\sum_{k=1}^{n-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n-1 \\
p_{i_{1}} \cdots p_{i_{k}}<p_{n}}} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}} \\
& +x^{\frac{1}{p_{n}}}+o\left(x^{\frac{1}{p_{n}}}\right) \tag{29}
\end{align*}
$$

Finally, equations (29) and (24) give (3).

4 Examples

If $n=2$ then Theorem 5 becomes

$$
\begin{equation*}
N(x)=\sqrt{x}+g(x) \sqrt[3]{x} \tag{30}
\end{equation*}
$$

where $\lim _{x \rightarrow \infty} g(x)=1$.
If $n=3$ then Theorem 5 becomes

$$
N(x)=\sqrt{x}+\sqrt[3]{x}+g(x) \sqrt[5]{x}
$$

where $\lim _{x \rightarrow \infty} g(x)=1$.
If $n=4$ then Theorem 5 becomes

$$
N(x)=\sqrt{x}+\sqrt[3]{x}+\sqrt[5]{x}-\sqrt[6]{x}+g(x) \sqrt[7]{x}
$$

where $\lim _{x \rightarrow \infty} g(x)=1$. Consequently

$$
\sqrt{x}+\sqrt[3]{x}<N(x)<\sqrt{x}+\sqrt[3]{x}+\sqrt[5]{x}
$$

If $n=5$ then Theorem 5 becomes

$$
N(x)=\sqrt{x}+\sqrt[3]{x}+\sqrt[5]{x}-\sqrt[6]{x}+\sqrt[7]{x}-\sqrt[10]{x}+g(x) \sqrt[11]{x}
$$

where $\lim _{x \rightarrow \infty} g(x)=1$.
To finish, we shall establish two simple theorems.

Theorem 6. Let us consider the n open intervals $\left(0,1^{2}\right),\left(1^{2}, 2^{2}\right), \ldots,\left((n-1)^{2}, n^{2}\right) . \operatorname{Let} S(n)$ be the number of these n open intervals that contain some perfect power. Then

$$
\lim _{n \rightarrow \infty} \frac{S(n)}{n}=0
$$

Therefore, almost all the open intervals are empty.
Proof. We have (Nyblom's asymptotic formula)

$$
N(x)=\sqrt{x}+f(x) \sqrt{x}
$$

where $\lim _{x \rightarrow \infty} f(x)=0$. Consequently

$$
N\left(n^{2}\right)=n+f\left(n^{2}\right) n
$$

where n are the n squares $1^{2}, 2^{2}, \ldots, n^{2}$. Therefore

$$
0 \leq S(n) \leq N\left(n^{2}\right)-n=f\left(n^{2}\right) n
$$

That is

$$
0 \leq \frac{S(n)}{n} \leq f\left(n^{2}\right)
$$

Using equation (30) we can obtain a more strong result.
Theorem 7. Let us consider the n open intervals $\left(0,1^{2}\right),\left(1^{2}, 2^{2}\right), \ldots,\left((n-1)^{2}, n^{2}\right) . \operatorname{Let} F(n)$ be the number of perfect powers in these n open intervals. Then $F(n) \sim n^{\frac{2}{3}}$.

Proof. Equation (30) gives

$$
N\left(n^{2}\right)=n+g\left(n^{2}\right) n^{\frac{2}{3}},
$$

where n are the n squares $1^{2}, 2^{2}, \ldots, n^{2}$. Therefore

$$
F(n)=N\left(n^{2}\right)-n=g\left(n^{2}\right) n^{\frac{2}{3}} \sim n^{\frac{2}{3}} .
$$

5 Acknowledgements

The author would like to thank the anonymous referee for his/her valuable comments and suggestions for improving the original version of this article. The author is also very grateful to Universidad Nacional de Luján.

References

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1960.
[2] W. J. LeVeque, Topics in Number Theory, Addison-Wesley, 1958.
[3] M. A. Nyblom, A counting function for the sequence of perfect powers, Austral. Math. Soc. Gaz. 33 (2006), 338-343.
[4] M. A. Nyblom, Counting the perfect powers, Math. Spectrum 41 (2008), 27-31.

2000 Mathematics Subject Classification: Primary 11A99; Secondary 11B99.
Keywords: Perfect powers, counting function, asymptotic formulae.
(Concerned with sequence A001597.)

Received May 28 2011; revised version received August 16 2011. Published in Journal of Integer Sequences, September 252011.

Return to Journal of Integer Sequences home page.

