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Abstract

Let N(x) be the number of perfect powers that do not exceed x. In this article we
obtain asymptotic formulae for the counting function N(x).

1 Introduction

A natural number of the form mn where m is a positive integer and n ≥ 2 is called a perfect
power. The first few terms of the integer sequence of perfect powers are

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, . . . ,

and they are sequence A001597 in Sloane’s Encylopedia. Let N(x) be the number of perfect
powers that do not exceed x. M. A. Nyblom [3] proved the following asymptotic formula,

N(x) ∼
√

x.

M. A. Nyblom [4] also obtained a formula for the exact value of N(x) using the inclusion-
exclusion principle (also called the principle of cross-classification).

In this article we obtain more precise asymptotic formulae for the counting function N(x).
For example, we prove

N(x) =
√

x + 3
√

x + 5
√

x − 6
√

x + 7
√

x + o
(

7
√

x
)

.

Consequently √
x + 3

√
x < N(x) <

√
x + 3

√
x + 5

√
x.
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2 Preliminary Results

Let A be a set. The number of elements in A we denote in the form |A|.
We need the following results.

Lemma 1. (Inclusion-exclusion principle) Let us consider a given finite collection of sets
A1, A2, . . . , An. The number of elements in ∪n

i=1Ai is

|∪n
i=1Ai| =

n
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik | ,

where the expression 1 ≤ i1 < · · · < ik ≤ n indicates that the sum is taken over all the
k-element subsets {i1, . . . , ik} of the set {1, 2, . . . , n}.

Proof. See for example either [1, page 233] or [2, page 84].

Let An(x) (n ≥ 2) be the set {kn : k ∈ N, kn ≤ x}, that is, the set of perfect powers
whose exponent is n that do not exceed x.

Lemma 2. We have
|An(x)| =

⌊

n
√

x
⌋

,

where ⌊.⌋ denotes the integer-part function.

Proof. We have
kn ≤ x ⇔ k ≤ n

√
x.

M. A. Nyblom [4] proved the following Lemma and the following Theorem.

Lemma 3. For any set consisting of m ≥ 2 positive integers {n1, . . . , nm} all greater than
unity, we have the set equality

m
⋂

i=1

Ani
(x) = A[n1,...,nm](x),

where [n1, . . . , nm] denotes the least common multiple of the m integers n1, . . . , nm.

Let pn be the n-th prime. Consequently we have,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, . . .

Theorem 4. If x ≥ 4 and p1, p2, . . . , pm denote the prime numbers that do not exceed
⌊log2 x⌋, then for k ≥ m the number of perfect powers that do not exceed x is

N(x) =

∣

∣

∣

∣

∣

k
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

.

Besides Api
(x) = {1} for i ≥ m + 1.
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We also need the following two well-known results.
The binomial formula

(a + b)n =
n

∑

k=0

(

n

k

)

an−kbk, (1)

and the following property of the absolute value

|a1 + a2 + · · · + ar| ≤ |a1| + |a2| + · · · + |ar| , (2)

where a1, a2, . . . , ar are real numbers.

3 Main Results

Theorem 5. Let pn be the n-th prime number with n ≥ 2, where n is an arbitrary but fixed
positive integer. Then

N(x) =
n−1
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1

pi1
···pik

<pn

x
1

pi1
···pik + g(x)x

1
pn , (3)

where limx→∞ g(x) = 1 and the inner sum is taken over the k-element subsets {i1, . . . , ik} of
the set {1, 2, . . . , n − 1} such that the inequality pi1 · · · pik < pn holds.

Proof. Let k = ⌊log2 x⌋ + 1 =
⌊

log x

log 2

⌋

+ 1, where x ≥ 4. If p1, p2, . . . , pm denote the prime

numbers that do not exceed ⌊log2 x⌋, then we have

p1 < · · · < pm ≤ ⌊log2 x⌋ < ⌊log2 x⌋ + 1 = k ≤ pm+1 < pm+2 < · · · (4)

Note that if i ≥ m + 1 we have 1 < x
1
pi ≤ x

1
k < x

1
log x
log 2 = 2. That is, 1 < x

1
pi < 2.

Consequently if i ≥ m + 1 (see Lemma 2) |Api
(x)| = 1. That is, Api

(x) = {1}. Note also
that k and m are increasing functions of x. On the other hand n ≥ 2 is an arbitrary but
fixed positive integer.

Equation (4) gives
pm < k. (5)

On the other hand
m < pm. (6)

Therefore (5) and (6) give
m < k, (7)

and consequently
pm < pk. (8)

There exist three possible relations between m, k, n and n + 1 and consequently between
pm, pk, pn and pn+1.
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First relation.
m < k ≤ n < n + 1

and hence
pm < pk ≤ pn < pn+1.

Second relation.
m ≤ n < n + 1 ≤ k

and hence
pm ≤ pn < pn+1 ≤ pk.

Third relation.
n < n + 1 ≤ m < k

and hence
pn < pn+1 ≤ pm < pk.

If we define S(x) = max{n + 1, k} then these three relations, Theorem 4 and Lemma 2 give
us (x ≥ 4)

∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

≤ N(x) <

∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

+

S(x)
∑

i=n+1

|Api
(x)|

=

∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

+

S(x)
∑

i=n+1

⌊

x
1
pi

⌋

≤
∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

+ (S(x) − n)
⌊

x
1

pn+1

⌋

. (9)

Note that there exists x0 such that if x ≥ x0 the third relation holds.

Note also that S(x) − n is either equal to 1 or k − n < k − 1 =
⌊

log x

log 2

⌋

≤ log x

log 2
, and so in

either case

S(x) − n ≤ log x

log 2
(10)

as x ≥ 4. Consequently (9) and (10) give
∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

≤ N(x) <

∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

+
log x

log 2
x

1
pn+1 . (11)

Lemma 1 gives
∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

=
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

∣

∣

∣
Api1

(x) ∩ · · · ∩ Apik
(x)

∣

∣

∣
. (12)

On the other hand, Lemma 3 gives

Api1
(x) ∩ · · · ∩ Apik

(x) = A[pi1
,...,pik ]

(x) = Api1
···pik

(x).

4



Therefore (Lemma 2) we obtain

∣

∣

∣
Api1

(x) ∩ · · · ∩ Apik
(x)

∣

∣

∣
=

∣

∣

∣
Api1

···pik
(x)

∣

∣

∣
=

⌊

x
1

pi1
···pik

⌋

. (13)

Substituting (13) into (12) we find that

∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

=
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

⌊

x
1

pi1
···pik

⌋

=
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

x
1

pi1
···pik

−
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

(

x
1

pi1
···pik −

⌊

x
1

pi1
···pik

⌋)

. (14)

Now

0 ≤ x
1

pi1
···pik −

⌊

x
1

pi1
···pik

⌋

< 1. (15)

Consequently (see (1) and (2))

∣

∣

∣

∣

∣

n
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

(

x
1

pi1
···pik −

⌊

x
1

pi1
···pik

⌋)

∣

∣

∣

∣

∣

≤
n

∑

k=1

∑

1≤i1<···<ik≤n

1

=
n

∑

k=1

(

n

k

)

≤
n

∑

k=0

(

n

k

)

= (1 + 1)n = 2n. (16)

That is,
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

(

x
1

pi1
···pik −

⌊

x
1

pi1
···pik

⌋)

= O(1). (17)

Equations (14) and (17) give

∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

=
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

x
1

pi1
···pik + O(1) (18)

If

B(x) =
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

pi1
···pik

<pn+1

x
1

pi1
···pik (19)

and

C(x) =
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

pi1
···pik

>pn+1

x
1

pi1
···pik = o

(

x
1

pn+1

)

(20)
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then
n

∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

x
1

pi1
···pik = B(x) + C(x). (21)

Equations (18) and (21) give

∣

∣

∣

∣

∣

n
⋃

i=1

Api
(x)

∣

∣

∣

∣

∣

= B(x) + C(x) + O(1). (22)

Equations (22) and (11) give

B(x) + C(x) + O(1) ≤ N(x) < B(x) + C(x) + O(1) +
log x

log 2
x

1
pn+1 .

Therefore,

C(x) + O(1) ≤ N(x) − B(x) < C(x) + O(1) +
log x

log 2
x

1
pn+1 . (23)

Equations (23) and (20) give

−ǫ <
N(x) − B(x)

log x x
1

pn+1

<
1

log 2
+ ǫ (ǫ > 0).

That is,

N(x) = B(x) + O
(

log x x
1

pn+1

)

. (24)

Note that (see (19)) if k = 1, . . . , n then,

∑

1≤i1<···<ik≤n

pi1
···pik

<pn+1

x
1

pi1
···pik =

∑

1≤i1<···<ik≤n

pi1
···pik

<pn

x
1

pi1
···pik +

∑

1≤i1<···<ik≤n

pn≤pi1
···pik

<pn+1

x
1

pi1
···pik . (25)

Now, if k = 1, . . . , n − 1 then

∑

1≤i1<···<ik≤n

pi1
···pik

<pn

x
1

pi1
···pik =

∑

1≤i1<···<ik≤n−1

pi1
···pik

<pn

x
1

pi1
···pik , (26)

and if k = 2, . . . , n then

∑

1≤i1<···<ik≤n

pn≤pi1
···pik

<pn+1

x
1

pi1
···pik =

∑

1≤i1<···<ik≤n

pn<pi1
···pik

<pn+1

x
1

pi1
···pik (27)

On the other hand, if k = 1 then

∑

1≤i1≤n

pn≤pi1
<pn+1

x
1

pi1 = x
1

pn (28)
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Equations (19), (25), (26), (27) and (28) give

B(x) =
n−1
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1

pi1
···pik

<pn

x
1

pi1
···pik

+ x
1

pn +
n

∑

k=2

(−1)k+1
∑

1≤i1<···<ik≤n

pn<pi1
···pik

<pn+1

x
1

pi1
···pik

That is,

B(x) =
n−1
∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1

pi1
···pik

<pn

x
1

pi1
···pik

+ x
1

pn + o
(

x
1

pn

)

(29)

Finally, equations (29) and (24) give (3).

4 Examples

If n = 2 then Theorem 5 becomes

N(x) =
√

x + g(x) 3
√

x, (30)

where limx→∞ g(x) = 1.
If n = 3 then Theorem 5 becomes

N(x) =
√

x + 3
√

x + g(x) 5
√

x,

where limx→∞ g(x) = 1.
If n = 4 then Theorem 5 becomes

N(x) =
√

x + 3
√

x + 5
√

x − 6
√

x + g(x) 7
√

x,

where limx→∞ g(x) = 1. Consequently

√
x + 3

√
x < N(x) <

√
x + 3

√
x + 5

√
x

If n = 5 then Theorem 5 becomes

N(x) =
√

x + 3
√

x + 5
√

x − 6
√

x + 7
√

x − 10
√

x + g(x) 11
√

x,

where limx→∞ g(x) = 1.
To finish, we shall establish two simple theorems.
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Theorem 6. Let us consider the n open intervals (0, 12), (12, 22), . . . , ((n−1)2, n2). Let S(n)
be the number of these n open intervals that contain some perfect power. Then

lim
n→∞

S(n)

n
= 0.

Therefore, almost all the open intervals are empty.

Proof. We have (Nyblom’s asymptotic formula)

N(x) =
√

x + f(x)
√

x,

where limx→∞ f(x) = 0. Consequently

N(n2) = n + f(n2)n,

where n are the n squares 12, 22, . . . , n2. Therefore

0 ≤ S(n) ≤ N(n2) − n = f(n2)n.

That is

0 ≤ S(n)

n
≤ f(n2).

Using equation (30) we can obtain a more strong result.

Theorem 7. Let us consider the n open intervals (0, 12), (12, 22), . . . , ((n−1)2, n2). Let F (n)

be the number of perfect powers in these n open intervals. Then F (n) ∼ n
2
3 .

Proof. Equation (30) gives

N(n2) = n + g(n2)n
2
3 ,

where n are the n squares 12, 22, . . . , n2. Therefore

F (n) = N(n2) − n = g(n2)n
2
3 ∼ n

2
3 .
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