

On the Distribution of Perfect Powers

Rafael Jakimczuk División Matemática Universidad Nacional de Luján Buenos Aires Argentina jakimczu@mail.unlu.edu.ar

In memory of my sister Fedra Marina Jakimczuk (1970–2010)

Abstract

Let N(x) be the number of perfect powers that do not exceed x. In this article we obtain asymptotic formulae for the counting function N(x).

1 Introduction

A natural number of the form m^n where m is a positive integer and $n \ge 2$ is called a *perfect* power. The first few terms of the integer sequence of perfect powers are

 $1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, \ldots$

and they are sequence <u>A001597</u> in Sloane's *Encylopedia*. Let N(x) be the number of perfect powers that do not exceed x. M. A. Nyblom [3] proved the following asymptotic formula,

$$N(x) \sim \sqrt{x}.$$

M. A. Nyblom [4] also obtained a formula for the exact value of N(x) using the inclusionexclusion principle (also called the principle of cross-classification).

In this article we obtain more precise asymptotic formulae for the counting function N(x). For example, we prove

$$N(x) = \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x} - \sqrt[6]{x} + \sqrt[7]{x} + o\left(\sqrt[7]{x}\right).$$

Consequently

$$\sqrt{x} + \sqrt[3]{x} < N(x) < \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x}.$$

2 Preliminary Results

Let A be a set. The number of elements in A we denote in the form |A|.

We need the following results.

Lemma 1. (Inclusion-exclusion principle) Let us consider a given finite collection of sets A_1, A_2, \ldots, A_n . The number of elements in $\bigcup_{i=1}^n A_i$ is

$$|\cup_{i=1}^{n} A_{i}| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}|,$$

where the expression $1 \leq i_1 < \cdots < i_k \leq n$ indicates that the sum is taken over all the k-element subsets $\{i_1, \ldots, i_k\}$ of the set $\{1, 2, \ldots, n\}$.

Proof. See for example either [1, page 233] or [2, page 84].

Let $A_n(x)$ $(n \ge 2)$ be the set $\{k^n : k \in N, k^n \le x\}$, that is, the set of perfect powers whose exponent is n that do not exceed x.

Lemma 2. We have

$$|A_n(x)| = \left\lfloor \sqrt[n]{x} \right\rfloor,$$

where $\lfloor . \rfloor$ denotes the integer-part function.

Proof. We have

$$k^n \le x \Leftrightarrow k \le \sqrt[n]{x}$$

M. A. Nyblom [4] proved the following Lemma and the following Theorem.

Lemma 3. For any set consisting of $m \ge 2$ positive integers $\{n_1, \ldots, n_m\}$ all greater than unity, we have the set equality

$$\bigcap_{i=1}^{m} A_{n_i}(x) = A_{[n_1,\dots,n_m]}(x),$$

where $[n_1, \ldots, n_m]$ denotes the least common multiple of the *m* integers n_1, \ldots, n_m .

Let p_n be the *n*-th prime. Consequently we have,

$$p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, p_6 = 13, \dots$$

Theorem 4. If $x \ge 4$ and p_1, p_2, \ldots, p_m denote the prime numbers that do not exceed $\lfloor \log_2 x \rfloor$, then for $k \ge m$ the number of perfect powers that do not exceed x is

$$N(x) = \left| \bigcup_{i=1}^{k} A_{p_i}(x) \right|.$$

Besides $A_{p_i}(x) = \{1\}$ for $i \ge m + 1$.

We also need the following two well-known results. The binomial formula

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k,\tag{1}$$

and the following property of the absolute value

$$|a_1 + a_2 + \dots + a_r| \le |a_1| + |a_2| + \dots + |a_r|, \qquad (2)$$

where a_1, a_2, \ldots, a_r are real numbers.

3 Main Results

Theorem 5. Let p_n be the n-th prime number with $n \ge 2$, where n is an arbitrary but fixed positive integer. Then

$$N(x) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{\substack{1 \le i_1 < \dots < i_k \le n-1 \\ p_{i_1} \cdots p_{i_k} < p_n}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} + g(x) x^{\frac{1}{p_n}},$$
(3)

where $\lim_{x\to\infty} g(x) = 1$ and the inner sum is taken over the k-element subsets $\{i_1, \ldots, i_k\}$ of the set $\{1, 2, \ldots, n-1\}$ such that the inequality $p_{i_1} \cdots p_{i_k} < p_n$ holds.

Proof. Let $k = \lfloor \log_2 x \rfloor + 1 = \lfloor \frac{\log x}{\log 2} \rfloor + 1$, where $x \ge 4$. If p_1, p_2, \ldots, p_m denote the prime numbers that do not exceed $\lfloor \log_2 x \rfloor$, then we have

$$p_1 < \dots < p_m \le \lfloor \log_2 x \rfloor < \lfloor \log_2 x \rfloor + 1 = k \le p_{m+1} < p_{m+2} < \dots$$
(4)

Note that if $i \ge m+1$ we have $1 < x^{\frac{1}{p_i}} \le x^{\frac{1}{k}} < x^{\frac{1}{\log 2}} = 2$. That is, $1 < x^{\frac{1}{p_i}} < 2$. Consequently if $i \ge m+1$ (see Lemma 2) $|A_{p_i}(x)| = 1$. That is, $A_{p_i}(x) = \{1\}$. Note also that k and m are increasing functions of x. On the other hand $n \ge 2$ is an arbitrary but fixed positive integer.

Equation (4) gives

$$p_m < k. (5)$$

On the other hand

 $m < p_m. \tag{6}$

Therefore (5) and (6) give

$$m < k, \tag{7}$$

and consequently

$$p_m < p_k. \tag{8}$$

There exist three possible relations between m, k, n and n + 1 and consequently between p_m , p_k , p_n and p_{n+1} .

First relation.

and hence $p_m < p_k \le p_n < p_{n+1}.$ Second relation. $m \le n < n+1 \le k$

and hence

$$p_m \le p_n < p_{n+1} \le p_k$$

 $n < n + 1 \le m < k$

 $m < k \leq n < n+1$

Third relation.

and hence

$$p_n < p_{n+1} \le p_m < p_k.$$

If we define $S(x) = \max\{n+1, k\}$ then these three relations, Theorem 4 and Lemma 2 give us $(x \ge 4)$

$$\left| \bigcup_{i=1}^{n} A_{p_{i}}(x) \right| \leq N(x) < \left| \bigcup_{i=1}^{n} A_{p_{i}}(x) \right| + \sum_{i=n+1}^{S(x)} |A_{p_{i}}(x)| = \left| \bigcup_{i=1}^{n} A_{p_{i}}(x) \right| + \sum_{i=n+1}^{S(x)} \left\lfloor x^{\frac{1}{p_{i}}} \right\rfloor \leq \left| \bigcup_{i=1}^{n} A_{p_{i}}(x) \right| + (S(x) - n) \left\lfloor x^{\frac{1}{p_{n+1}}} \right\rfloor.$$
(9)

Note that there exists x_0 such that if $x \ge x_0$ the third relation holds.

Note also that S(x) - n is either equal to 1 or $k - n < k - 1 = \left\lfloor \frac{\log x}{\log 2} \right\rfloor \le \frac{\log x}{\log 2}$, and so in either case

$$S(x) - n \le \frac{\log x}{\log 2} \tag{10}$$

as $x \ge 4$. Consequently (9) and (10) give

$$\left| \bigcup_{i=1}^{n} A_{p_i}(x) \right| \le N(x) < \left| \bigcup_{i=1}^{n} A_{p_i}(x) \right| + \frac{\log x}{\log 2} x^{\frac{1}{p_{n+1}}}.$$
 (11)

Lemma 1 gives

$$\left| \bigcup_{i=1}^{n} A_{p_i}(x) \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} \left| A_{p_{i_1}}(x) \cap \dots \cap A_{p_{i_k}}(x) \right|.$$
(12)

On the other hand, Lemma 3 gives

$$A_{p_{i_1}}(x) \cap \dots \cap A_{p_{i_k}}(x) = A_{[p_{i_1},\dots,p_{i_k}]}(x) = A_{p_{i_1}\dots p_{i_k}}(x).$$

Therefore (Lemma 2) we obtain

$$\left|A_{p_{i_1}}(x)\cap\cdots\cap A_{p_{i_k}}(x)\right| = \left|A_{p_{i_1}\cdots p_{i_k}}(x)\right| = \left\lfloor x^{\frac{1}{p_{i_1}\cdots p_{i_k}}}\right\rfloor.$$
(13)

Substituting (13) into (12) we find that

$$\left| \bigcup_{i=1}^{n} A_{p_{i}}(x) \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} \left[x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}} \right]$$
$$= \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}$$
$$- \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} \left(x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}} - \left[x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}} \right] \right).$$
(14)

Now

$$0 \le x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} - \left\lfloor x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} \right\rfloor < 1.$$
(15)

Consequently (see (1) and (2))

$$\left|\sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} \left(x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} - \left\lfloor x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} \right\rfloor \right) \right| \le \sum_{k=1}^{n} \sum_{1 \le i_1 < \dots < i_k \le n} 1$$
$$= \sum_{k=1}^{n} \binom{n}{k} \le \sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n.$$
(16)

That is,

$$\sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} \left(x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} - \left\lfloor x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} \right\rfloor \right) = O(1).$$
(17)

Equations (14) and (17) give

$$\left| \bigcup_{i=1}^{n} A_{p_i}(x) \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} + O(1)$$
(18)

If

$$B(x) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_{i_1} \cdots p_{i_k} < p_{n+1}}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}}$$
(19)

and

$$C(x) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_{i_1} \cdots p_{i_k} > p_{n+1}}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} = o\left(x^{\frac{1}{p_{n+1}}}\right)$$
(20)

then

$$\sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} = B(x) + C(x).$$
(21)

Equations (18) and (21) give

$$\left| \bigcup_{i=1}^{n} A_{p_i}(x) \right| = B(x) + C(x) + O(1).$$
(22)

Equations (22) and (11) give

$$B(x) + C(x) + O(1) \le N(x) < B(x) + C(x) + O(1) + \frac{\log x}{\log 2} x^{\frac{1}{p_{n+1}}}.$$

Therefore,

$$C(x) + O(1) \le N(x) - B(x) < C(x) + O(1) + \frac{\log x}{\log 2} x^{\frac{1}{p_{n+1}}}.$$
(23)

Equations (23) and (20) give

$$-\epsilon < \frac{N(x) - B(x)}{\log x \ x^{\frac{1}{p_{n+1}}}} < \frac{1}{\log 2} + \epsilon \qquad (\epsilon > 0).$$

That is,

$$N(x) = B(x) + O\left(\log x \ x^{\frac{1}{p_{n+1}}}\right).$$
 (24)

Note that (see (19)) if $k = 1, \ldots, n$ then,

$$\sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_{i_1} \cdots p_{i_k} < p_{n+1}}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} = \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_{i_1} \cdots p_{i_k} < p_n}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} + \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_n \le p_{i_1} \cdots p_{i_k} < p_{n+1}}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}}.$$
 (25)

Now, if $k = 1, \ldots, n-1$ then

$$\sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_{i_1} \dots p_{i_k} < p_n}} x^{\frac{1}{p_{i_1} \dots p_{i_k}}} = \sum_{\substack{1 \le i_1 < \dots < i_k \le n-1 \\ p_{i_1} \dots p_{i_k} < p_n}} x^{\frac{1}{p_{i_1} \dots p_{i_k}}},$$
(26)

and if $k = 2, \ldots, n$ then

$$\sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_n \le p_{i_1} \cdots p_{i_k} < p_{n+1}}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} = \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_n < p_{i_1} \cdots p_{i_k} < p_{n+1}}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}}$$
(27)

On the other hand, if k = 1 then

$$\sum_{\substack{1 \le i_1 \le n \\ (m_1 \le m_{n-1})}} x^{\frac{1}{p_{i_1}}} = x^{\frac{1}{p_n}}$$
(28)

 $p_n {\leq} p_{i_1} {<} p_{n+1}$

Equations (19), (25), (26), (27) and (28) give

$$B(x) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{\substack{1 \le i_1 < \dots < i_k \le n-1 \\ p_{i_1} \cdots p_{i_k} < p_n}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} \\ + x^{\frac{1}{p_n}} + \sum_{k=2}^n (-1)^{k+1} \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ p_n < p_{i_1} \cdots p_{i_k} < p_{n+1}}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}}$$

That is,

$$B(x) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{\substack{1 \le i_1 < \dots < i_k \le n-1 \\ p_{i_1} \cdots p_{i_k} < p_n}} x^{\frac{1}{p_{i_1} \cdots p_{i_k}}} + x^{\frac{1}{p_n}} + o\left(x^{\frac{1}{p_n}}\right)$$
(29)

Finally, equations (29) and (24) give (3).

4 Examples

If n = 2 then Theorem 5 becomes

$$N(x) = \sqrt{x} + g(x)\sqrt[3]{x},\tag{30}$$

where $\lim_{x\to\infty} g(x) = 1$.

If n = 3 then Theorem 5 becomes

$$N(x) = \sqrt{x} + \sqrt[3]{x} + g(x)\sqrt[5]{x}$$

where $\lim_{x\to\infty} g(x) = 1$.

If n = 4 then Theorem 5 becomes

$$N(x) = \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x} - \sqrt[6]{x} + g(x)\sqrt[7]{x},$$

where $\lim_{x\to\infty} g(x) = 1$. Consequently

$$\sqrt{x} + \sqrt[3]{x} < N(x) < \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x}$$

If n = 5 then Theorem 5 becomes

$$N(x) = \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x} - \sqrt[6]{x} + \sqrt[7]{x} - \sqrt[10]{x} + g(x)\sqrt[11]{x}$$

where $\lim_{x\to\infty} g(x) = 1$.

To finish, we shall establish two simple theorems.

Theorem 6. Let us consider the n open intervals $(0, 1^2), (1^2, 2^2), \ldots, ((n-1)^2, n^2)$. Let S(n) be the number of these n open intervals that contain some perfect power. Then

$$\lim_{n \to \infty} \frac{S(n)}{n} = 0$$

Therefore, almost all the open intervals are empty.

Proof. We have (Nyblom's asymptotic formula)

$$N(x) = \sqrt{x} + f(x)\sqrt{x},$$

where $\lim_{x\to\infty} f(x) = 0$. Consequently

$$N(n^2) = n + f(n^2)n,$$

where n are the n squares $1^2, 2^2, \ldots, n^2$. Therefore

$$0 \le S(n) \le N(n^2) - n = f(n^2)n.$$

That is

$$\leq \frac{S(n)}{n} \leq f(n^2).$$

Using equation (30) we can obtain a more strong result.

0

Theorem 7. Let us consider the *n* open intervals $(0, 1^2), (1^2, 2^2), \ldots, ((n-1)^2, n^2)$. Let F(n) be the number of perfect powers in these *n* open intervals. Then $F(n) \sim n^{\frac{2}{3}}$.

Proof. Equation (30) gives

$$N(n^2) = n + g(n^2)n^{\frac{2}{3}},$$

where n are the n squares $1^2, 2^2, \ldots, n^2$. Therefore

$$F(n) = N(n^2) - n = g(n^2)n^{\frac{2}{3}} \sim n^{\frac{2}{3}}.$$

5 Acknowledgements

The author would like to thank the anonymous referee for his/her valuable comments and suggestions for improving the original version of this article. The author is also very grateful to Universidad Nacional de Luján.

References

- [1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1960.
- [2] W. J. LeVeque, Topics in Number Theory, Addison-Wesley, 1958.
- [3] M. A. Nyblom, A counting function for the sequence of perfect powers, Austral. Math. Soc. Gaz. 33 (2006), 338–343.
- [4] M. A. Nyblom, Counting the perfect powers, Math. Spectrum 41 (2008), 27–31.

2000 Mathematics Subject Classification: Primary 11A99; Secondary 11B99. Keywords: Perfect powers, counting function, asymptotic formulae.

(Concerned with sequence $\underline{A001597}$.)

Received May 28 2011; revised version received August 16 2011. Published in *Journal of Integer Sequences*, September 25 2011.

Return to Journal of Integer Sequences home page.