Journal of Integer Sequences, Vol. 14 (2011), Article 11.9.3

On Fibonacci and Lucas Numbers of the Form $c x^{2}$

Refik Keskin and Zafer Yosma
Department of Mathematics
Faculty of Science and Arts
Sakarya University
Sakarya
Turkey
rkeskin@sakarya.edu.tr
d085016004@sakarya.edu.tr

Abstract

In this paper, by using some congruences concerning with Fibonacci and Lucas numbers, we completely solve the Diophantine equations $L_{n}=2 L_{m} x^{2}, F_{n}=2 F_{m} x^{2}$, $L_{n}=6 L_{m} x^{2}, F_{n}=3 F_{m} x^{2}$, and $F_{n}=6 F_{m} x^{2}$.

1 Introduction

Fibonacci and Lucas sequences are defined as follows; $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ and $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$, respectively. F_{n} is called the n-th Fibonacci number and L_{n} is called the n-th Lucas number. Fibonacci and Lucas numbers for negative subscripts are given by $F_{-n}=(-1)^{n+1} F_{n}$ for $n \geq 1$ and $L_{-n}=(-1)^{n} L_{n}$ for $n \geq 1$. It can be seen that $L_{n}=F_{n-1}+F_{n+1}$ and $L_{n-1}+L_{n+1}=5 F_{n}$ for every $n \in \mathbb{Z}$. For more information about Fibonacci and Lucas sequences, one can consult [9], [18].

Let α and β denote the roots of the equation $x^{2}-x-1=0$. Then $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. It can be seen that $\alpha \beta=-1$ and $\alpha+\beta=1$. Moreover it is well known and easy to show that

$$
F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}
$$

and

$$
L_{n}=\alpha^{n}+\beta^{n}
$$

for every $n \in \mathbb{Z}$.
In the following section, we will give some congruences concerning with Fibonacci and Lucas numbers. By using these congruences, we may prove many properties known before.

2 Preliminaries

The problem of characterizing the square Fibonacci numbers was first introduced in the book by Ogilvy [12, p. 100]. In 1963, both Moser and Carlitz [10], and Rollet [17] proposed this problem. In 1964, the square conjecture was proved by Cohn [4] and independently by Wyler [19]. Later the problem of characterizing the square Lucas numbers was solved by Cohn [6] and by Alfred [1]. Moreover in 1965, Cohn solved the Diophantine equations $F_{n}=2 x^{2}$ and $L_{n}=2 x^{2}$ in [6].

We give the following theorem from [5].
Theorem 1. If $F_{n}=x^{2}$, then $n=1,2,12$. If $F_{n}=2 x^{2}$, then $n=3,6$. If $L_{n}=x^{2}$, then $n=1,3$ and if $L_{n}=2 x^{2}$, then $n=6$.

The proofs of the following two theorems are given in [8].
Theorem 2. Let $n \in \mathbb{N} \cup\{0\}$ and $k, m \in \mathbb{Z}$. Then

$$
\begin{equation*}
F_{2 m n+k} \equiv(-1)^{m n} F_{k}\left(\bmod F_{m}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{2 m n+k} \equiv(-1)^{m n} L_{k}\left(\bmod F_{m}\right) \tag{2}
\end{equation*}
$$

Theorem 3. Let $n \in \mathbb{N} \cup\{0\}$ and $k, m \in \mathbb{Z}$. Then

$$
\begin{equation*}
L_{2 m n+k} \equiv(-1)^{(m+1) n} L_{k}\left(\bmod L_{m}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2 m n+k} \equiv(-1)^{(m+1) n} F_{k}\left(\bmod L_{m}\right) . \tag{4}
\end{equation*}
$$

From the identity (2), it follows that $8 \nmid L_{n}$ for any natural number n.
Now we give two lemmas and a corollary, which will be needed later. The proofs of the lemmas can be achieved by induction. For the proof of the corollary, one can consult [2] or [11].

Lemma 4. $L_{2^{k}} \equiv 3(\bmod 4)$ for the all positive integers k with $k \geq 1$.
Lemma 5. If $r \geq 3$, then $L_{2^{r}} \equiv 2(\bmod 3)$.
Corollary 6. If $k \geq 1$, then there is no integer x such that $x^{2} \equiv-1\left(\bmod L_{2^{k}}\right)$.
The following lemma can be proved by induction.
Lemma 7. If $r \geq 2$, then $L_{2^{r}} \equiv 7(\bmod 8)$.
The proofs of the following theorems can be found in [3], [18] or [8].

Theorem 8. Let $m, n \in \mathbb{N}$ and $m \geq 2$. Then $L_{m} \mid L_{n}$ if and only if $m \mid n$ and $\frac{n}{m}$ is an odd integer.

Theorem 9. Let $m, n \in \mathbb{N}$ and $m \geq 3$. Then $F_{m} \mid F_{n}$ if and only if $m \mid n$.
Theorem 10. Let $m, n \in \mathbb{N}$ and $m \geq 2$. Then $L_{m} \mid F_{n}$ if and only if $m \mid n$ and $\frac{n}{m}$ is an even integer.

Also we give some identities about Fibonacci and Lucas numbers which will be needed in the sequel:

$$
\begin{gather*}
L_{2 n}=L_{n}^{2}-2(-1)^{n} \tag{5}\\
L_{3 n}=L_{n}\left(L_{n}^{2}-3(-1)^{n}\right) \tag{6}\\
F_{2 n}=F_{n} L_{n} \tag{7}\\
F_{3 n}=F_{n}\left(5 F_{n}^{2}+3(-1)^{n}\right) \tag{8}\\
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n} \tag{9}\\
2\left|F_{n} \Leftrightarrow 2\right| L_{n} \Leftrightarrow 3 \mid n \tag{10}\\
\left(F_{n}, L_{n}\right)=1 \text { or }\left(F_{n}, L_{n}\right)=2 \tag{11}
\end{gather*}
$$

Let $\left(\frac{a}{p}\right)$ represent the Legendre symbol. Then we have

$$
\begin{equation*}
\left(\frac{2}{p}\right)=1 \text { if and only if } p \equiv \pm 1(\bmod 8) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{-2}{p}\right)=1 \text { if and only if } p \equiv 1,3(\bmod 8) \tag{13}
\end{equation*}
$$

For the proof of (12) and (13), one can consult [2] or [11].

3 Main Theorems

Many authors investigated Fibonacci and Lucas numbers of the form $c x^{2}$. In [5], Cohn solved $F_{n}=c x^{2}$ and $L_{n}=c x^{2}$ for $c=1,2$. In [14], Robbins considered Fibonacci numbers of the form $p x^{2}$. Robbins solved the equation $F_{n}=p x^{2}$ for all p such that $p \equiv 3(\bmod 4)$ or $p<10000$. Later, in [15] Robbins considered Fibonacci numbers of the form $c x^{2}$. The author obtained all solutions of $F_{n}=c x^{2}$ for composite values of $c \leq 1000$. After that, in [16], the same author solved $L_{n}=p x^{2}$, where p is an odd prime and $p<1000$. Moreover,
in [20], Zhou dealt with Lucas numbers of the form $L_{n}=p x^{2}$, where p is a prime number, and he gave solutions for $1000<p<60000$. In this section, we consider the equations $L_{n}=2 L_{m} x^{2}, F_{n}=2 F_{m} x^{2}, L_{n}=6 L_{m} x^{2}, F_{n}=3 F_{m} x^{2}$, and $F_{n}=6 F_{m} x^{2}$.

In [13], Ribenboim considers square-classes of Fibonacci numbers. F_{m}, F_{n} are in the same square-class if there exist non-zero integers x, y such that $F_{m} x^{2}=F_{n} y^{2}$; or equivalently, when $F_{m} F_{n}$ is a square. In a similar way, he considers square-classes of Lucas numbers. A square-class will be called trivial if it consists of only one number. Ribenboim showed that the square-class of L_{m} is trivial when $m \neq 0,1,3$, and 6 . He also showed that the squareclass of F_{m} is trivial when $m \neq 1,2,3,6,12$. Now, we can give following two theorems, which can be obtained from Proposition 1 and Proposition 2 given in [13].

From now on, we will assume that n and m are positive integers.
Theorem 11. Let $m>3$ be an integer and $F_{n}=F_{m} x^{2}$ for some $x \in \mathbb{Z}$. Then $n=m$.
Theorem 12. Let $m \geq 2$ be an integer and $L_{n}=L_{m} x^{2}$ for some $x \in \mathbb{Z}$. Then $n=m$.
The proofs of the following two theorems can be obtained from Theorem 6 and Theorem 12 given in [7], but we will give a different proof.

Theorem 13. There is no integer x such that $L_{n}=2 L_{m} x^{2}$ for $m>1$.
Proof. Assume that $L_{n}=2 L_{m} x^{2}$. Then $L_{m} \mid L_{n}$ and therefore $n=m k$ for some odd natural number k by Theorem 8. Firstly assume that m is an odd integer. Since $2 \mid L_{n}$, we get $3 \mid n$ by (10). Thus we see that $3 \nmid m$. For if $3 \mid m$, then $L_{3} \mid L_{m}$, i.e., $4 \mid L_{m}$ by Theorem 8. This implies that $8 \mid L_{n}$, which is impossible. Since $3 \nmid m$, it follows that $3 \mid k$. That is, $k=3 t$ for some odd positive integer t. Thus $n=m k=3 m t$ and $m t$ is an odd integer. Therefore, since $3 \mid n$, it follows that $L_{3} \mid L_{n}$, i.e., $4 \mid 2 L_{m} x^{2}$ by Theorem 8 . Since $3 \nmid m, L_{m}$ is an odd integer. Therefore $2 \mid x^{2}$, i.e., x is an even integer. This implies that $8 \mid L_{n}$, which is impossible.

Now assume that m is an even integer. If x is an even integer, then we see that $8 \mid L_{n}$, which is impossible. Therefore x is an odd integer. Assume that $3 \mid m$. Then L_{m} is an even integer. Therefore $L_{3} \mid L_{n}$ by Theorem 8. It follows that $n=3 b$ for some odd integer b by Theorem 8. That is, n is an odd integer. But this is impossible. Because since m is an even integer, n is also an even integer. Assume that $3 \nmid m$. Then since $n=m k$ and $3 \mid n$, we get $3 \mid k$, i.e., $k=3 t$ for some odd integer t. Since t is an odd integer, $t=4 q \pm 1$ for some nonnegative integer t. Thus $n=m k=3 m(4 q \pm 1)=2 \cdot 6 m q \pm 3 m$. Then

$$
L_{n}=L_{2 \cdot 6 m q \pm 3 m} \equiv L_{ \pm 3 m}\left(\bmod F_{6}\right)
$$

and therefore

$$
2 L_{m} x^{2} \equiv L_{3 m}(\bmod 8)
$$

by (2). Since $x^{2} \equiv 1(\bmod 8)$ and m is even integer, we get

$$
2 L_{m} \equiv L_{m}\left(L_{m}^{2}-3\right)(\bmod 8)
$$

by (6). Moreover, since $3 \nmid m, L_{m}$ is odd integer. Therefore we get

$$
2 \equiv L_{m}^{2}-3(\bmod 8)
$$

Thus

$$
2 \equiv-2(\bmod 8)
$$

which is impossible. This completes the proof.
In [5], it is shown that, for $m=1,2$, the equation $F_{n}=2 F_{m} x^{2}=2 x^{2}$ has solution only for $n=3,6$. More generally, we can give the following theorem.

Theorem 14. If $F_{n}=2 F_{m} x^{2}$ and $m \geq 3$, then $m=3, x^{2}=36$, and $n=12$ or $m=6$, $x^{2}=9$, and $n=12$.

Proof. If $m=3$, then $F_{n}=2 F_{3} x^{2}=(2 x)^{2}$. Thus it can be seen that $n=12, x^{2}=36$ by Theorem 1. Assume that $m>3$ and $F_{n}=2 F_{m} x^{2}$. Then $F_{m} \mid F_{n}$ and therefore $n=m k$ for some natural number k by Theorem 9 .

Firstly, assume that k is an even integer. Then $k=2 t$ for some integer t. Therefore $n=m k=2 m t$. Thus

$$
F_{n}=F_{2 m t}=F_{m t} L_{m t}=2 F_{m} x^{2}
$$

by (7). This shows that $\left(F_{m t} / F_{m}\right) L_{m t}=2 x^{2}$. It can be easily seen that if $\left(F_{m t} / F_{m}, L_{m t}\right)=d$, then $d=1$ or $d=2$ by (11). Thus we have the following equations:

$$
\begin{gather*}
\frac{F_{m t}}{F_{m}}=u^{2}, L_{m t}=2 v^{2} \tag{14}\\
\frac{F_{m t}}{F_{m}}=2 u^{2}, L_{m t}=v^{2} \tag{15}\\
\frac{F_{m t}}{F_{m}}=2 u^{2}, \quad L_{m t}=(2 v)^{2}, \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{F_{m t}}{F_{m}}=(2 u)^{2}, \quad L_{m t}=2 v^{2} \tag{17}
\end{equation*}
$$

Assume that (14) is satisfied. Then $m t=m$, i.e., $t=1$ by Theorem 11. Therefore $L_{m}=2 v^{2}$ and this implies that $m=6$ by Theorem 1 . Thus we get $m=6, x^{2}=9$, and $n=12$. By using Theorem 1 and Theorem 11, it can be seen that the other three cases are impossible.

Secondly, assume that k is an odd integer. Suppose that m is an even integer, i.e., $m=2 r$ for some natural number r. Then we can write $n=m k=2 k r$. Thus

$$
F_{n}=F_{2 k r}=F_{k r} L_{k r}=2 F_{r} L_{r} x^{2}
$$

by (7). This shows that $\left(F_{k r} / F_{r}\right)\left(L_{k r} / L_{r}\right)=2 x^{2}$. A similar argument shows that the equation $\left(F_{k r} / F_{r}\right)\left(L_{k r} / L_{r}\right)=2 x^{2}$ has no solution. Now assume that m is an odd integer. Firstly, suppose that $3 \nmid k$. Since k is an odd integer, we can write $k=6 q \pm 1$ for some nonnegative integer q. Therefore $n=m k=m(6 q \pm 1)=2 \cdot 3 m q \pm m$. Thus we get

$$
F_{n}=F_{2 \cdot 3 m q \pm m} \equiv F_{ \pm m}\left(\bmod L_{3}\right),
$$

i.e.,

$$
F_{n} \equiv F_{m}(\bmod 4)
$$

by (4). Since F_{n} is even integer, F_{m} is also an even integer. Thus $3 \mid m$, and therefore $m=3 a$ for some integer a by (10). On the other hand, since F_{m} is even integer, $4 \mid F_{n}$, and thus $6 \mid n$ by Theorem 9. Since $n=m k=3 a k$, we get $6 \mid 3 a k$, i.e., $2 \mid a k$. Moreover, since k is odd integer, it is seen that $2 \mid a$. This implies that $2 \mid m$, which is impossible. Because m is an odd integer. Assume that $3 \mid k$. Then $k=3 s$ for some odd integer s. Therefore $n=m k=3 m s$. Thus since $m s$ is odd integer, we get

$$
F_{n}=F_{3 m s}=F_{m s}\left(5 F_{m s}^{2}-3\right)=2 F_{m} x^{2}
$$

by (8). This shows that $\left(F_{m s} / F_{m}\right)\left(5 F_{m s}^{2}-3\right)=2 x^{2}$. It can be easily seen that if $d=$ $\left(F_{m s} / F_{m}, 5 F_{m s}^{2}-3\right)$, then $d=1$ or $d=3$. Assume that $d=3$. Then $3 \mid F_{m s}$, and thus $4 \mid m s$ by Theorem 9. But this is impossible, since $m s$ is odd integer. Therefore $d=1$. Then we get

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=u^{2}, 5 F_{m s}^{2}-3=2 v^{2} \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=2 u^{2}, 5 F_{m s}^{2}-3=v^{2} \tag{19}
\end{equation*}
$$

for some integers u and v. Assume that (18) is satisfied. Then $m s=m$, i.e., $s=1$ by Theorem 11. Therefore $5 F_{m}^{2}-3=2 v^{2}$ and this shows that $2 v^{2}=5 F_{m}^{2}-3=L_{m}^{2}+1=L_{2 m}-1$ by (9) and (5). This implies that $L_{2 m}=2 v^{2}+1$. Since $L_{2 m}=2 v^{2}+1$, we get $3 \nmid m$. Thus we can write $m=6 q \pm 1=3 \cdot 2^{r+1} b \pm 1$, where $q=2^{r} b$ for some odd integer b with $r \geq 0$. This shows that

$$
L_{2 m}=L_{2 \cdot 2^{r+1} 3 b \pm 2} \equiv-L_{ \pm 2}\left(\bmod L_{2^{r+1}}\right)
$$

and therefore

$$
2 v^{2}+1 \equiv-3\left(\bmod L_{2^{r+1}}\right),
$$

i.e.,

$$
2 v^{2} \equiv-4\left(\bmod L_{2^{r+1}}\right)
$$

by (3). Since $L_{2^{r+1}}$ is an odd integer, we get

$$
v^{2} \equiv-2\left(\bmod L_{2^{r+1}}\right)
$$

This shows that $\left(\frac{-2}{p}\right)=1$ for every prime divisor of $L_{2^{r+1}}$. Then it follows that

$$
p \equiv 1,3(\bmod 8)
$$

by (13) and therefore

$$
L_{2^{r+1}} \equiv 1,3(\bmod 8)
$$

This shows that $r=0$ by Lemma 7. Consequently, q is an odd integer. Therefore it can be easily seen that $m=12 c+5$ or $m=12 c+7$ for some integer c. Thus we get

$$
L_{m} \equiv 3(\bmod 8)
$$

or

$$
L_{m} \equiv 5(\bmod 8)
$$

by (2). On the other hand, since

$$
2 v^{2}=L_{m}^{2}+1,
$$

we get

$$
2 v^{2} \equiv 1\left(\bmod L_{m}\right),
$$

and therefore

$$
(2 v)^{2} \equiv 2\left(\bmod L_{m}\right)
$$

This shows that $\left(\frac{2}{p}\right)=1$ for every prime divisor p of L_{m}. Then it follows that

$$
p \equiv \pm 1(\bmod 8)
$$

by (12) and therefore

$$
L_{m} \equiv \pm 1(\bmod 8)
$$

But this contradicts with the fact that $L_{m} \equiv 3,5(\bmod 8)$. Assume that (19) is satisfied. Then we get $v^{2}=5 F_{m s}^{2}-3=L_{m s}^{2}+1$ by (9). This implies that $L_{m s}=0$, which is impossible. This completes the proof.

Theorem 15. If $L_{n}=6 L_{m} x^{2}$ and $m \geq 1$, then $m=2, x^{2}=1$, and $n=6$.
Proof. Assume that $L_{n}=6 L_{m} x^{2}$ for some integer x. Then $3 \mid L_{n}$ and therefore $n=2 k_{0}$ for some odd integer k_{0} by Theorem 8. Moreover, since $2 \mid L_{n}$, we get $3 \mid n$ by (10). This shows that $3 \mid k_{0}$ and then $k_{0}=3 t$ for some odd integer t. Thus $n=6 t=6(2 u+1)=12 u+6$. Therefore

$$
L_{n}=L_{12 u+6} \equiv L_{6}(\bmod 8)
$$

by (2). That is,

$$
L_{n} \equiv 2(\bmod 8)
$$

Since $8 \nmid L_{n}$, it can be seen that x is an odd integer. Therefore

$$
x^{2} \equiv 1(\bmod 8)
$$

which implies that

$$
6 L_{m} x^{2} \equiv 6 L_{m}(\bmod 8)
$$

This shows that

$$
6 L_{m} \equiv 2(\bmod 8)
$$

which implies that $m \neq 1$. Now assume that $m>2$. Since $L_{m} \mid L_{n}$, there exists an odd integer k such that $n=m k$ by Theorem 8. On the other hand, since $2 \mid n$, it is seen that $2 \mid m$. Therefore $m=2 r$ for some odd integer r. If $r=6 q+3$, then $m=2 r=12 q+6$ and therefore

$$
L_{m} \equiv L_{6}(\bmod 8)
$$

by (2). That is,

$$
L_{m} \equiv 2(\bmod 8),
$$

which is impossible since

$$
6 L_{m} \equiv 2(\bmod 8)
$$

Therefore $3 \nmid r$. Since $n=m k, m=2 r$ and $3 \nmid r$, it follows that $3 \mid k$ and thus $k=3 s$ for some odd integer s. Then

$$
L_{n}=L_{m k}=L_{3 m s}=L_{m s}\left(L_{m s}^{2}-3\right)=6 L_{m} x^{2}
$$

by (6). It can be seen that $\left(L_{m s}, L_{m s}^{2}-3\right)=3$. Thus $\left(L_{m s}, \frac{L_{m s}^{2}-3}{3}\right)=1$. Then we get

$$
\frac{L_{m s}}{L_{m}}\left(\frac{L_{m s}^{2}-3}{3}\right)=2 x^{2}
$$

This shows that

$$
\begin{equation*}
\frac{L_{m s}}{L_{m}}=2 u^{2} \text { and } \frac{L_{m s}^{2}-3}{3}=v^{2} \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{L_{m s}}{L_{m}}=u^{2} \text { and } \frac{L_{m s}^{2}-3}{3}=2 v^{2} \tag{21}
\end{equation*}
$$

for some integers u and v. Assume that (20) is satisfied. Then $3\left(\frac{L_{m s}}{3}\right)^{2}-1=v^{2}$ and therefore

$$
v^{2} \equiv-1(\bmod 3),
$$

which is a contradiction. Now assume that (21) is satisfied. Then $L_{m s}=L_{m} u^{2}$, which implies that $m s=m$ by Theorem 12. That is, $s=1$. Thus $L_{m}^{2}-3=6 v^{2}$. Since $L_{m}^{2}=L_{2 m}+2$ by (5), we see that $L_{2 m}-1=6 v^{2}$. Moreover, since $m=2 r$, it follows that $L_{4 r}-1=6 v^{2}$. On the other hand, we can write $4 r$ as $4 r=4(4 u \pm 1)=16 u \pm 4=2 \cdot 2^{k} a \pm 4$ for some odd integer a with $k \geq 3$. This shows that

$$
L_{4 r}=L_{2 \cdot 2^{k} a \pm 4} \equiv-L_{ \pm 4}\left(\bmod L_{2^{k}}\right)
$$

by (3) and therefore

$$
1+6 v^{2} \equiv-7\left(\bmod L_{2^{k}}\right)
$$

Then we get

$$
6 v^{2} \equiv-8\left(\bmod L_{2^{k}}\right)
$$

That is,

$$
3 v^{2} \equiv-4\left(\bmod L_{2^{k}}\right)
$$

Thus

$$
(3 v)^{2} \equiv-12\left(\bmod L_{2^{k}}\right)
$$

This shows that $\left(\frac{-12}{p}\right)=1$ for every prime divisor p of $L_{2^{k}}$. Then it follows that

$$
p \equiv 1(\bmod 3)
$$

and therefore

$$
L_{2^{k}} \equiv 1(\bmod 3)
$$

But this contradicts with Lemma 5. This completes the proof.
In [8], the authors showed that $L_{n}=3 L_{m} x^{2}$ has no solution if $m>1$. Now we give a similar result for Fibonacci numbers.
Theorem 16. Let $m \geq 3$ be an integer and $F_{n}=3 F_{m} x^{2}$ for some integer x. Then $m=4$, $x^{2}=16$, and $n=12$.

Proof. Assume that $m \geq 3$ and $F_{n}=3 F_{m} x^{2}$ for some integer x. Then $F_{m} \mid F_{n}$ and therefore $n=m k$ for some integer k by Theorem 9 .

Firstly, assume that k is an even integer. Then $k=2 s$ for some $s \in \mathbb{N}$. Therefore $n=m k=2 m s$. Thus

$$
F_{n}=F_{2 m s}=F_{m s} L_{m s}=3 F_{m} x^{2}
$$

by (7). This shows that

$$
\left(F_{m s} / F_{m}\right) L_{m s}=3 x^{2}
$$

By using Theorem 1, Theorem 12, and Theorem 15, it can be shown that the equation $\left(F_{m s} / F_{m}\right) L_{m s}=3 x^{2}$ has no solution.

Now assume that k is an odd integer. Since $F_{n}=3 F_{m} x^{2}$, we get $4 \mid n$ by Theorem 9 . Moreover, since $n=m k$ and k is odd, we get $4 \mid m$. Assume that x is an even integer. Then $4 \mid F_{n}$. Thus $L_{3} \mid F_{n}$ and $3 \mid n$ by Theorem 10. Therefore since $4 \mid n$ and $3 \mid n$, we get $12 \mid n$. That is, $n=12 t$ for some $t \in \mathbb{N}$. On the other hand since $4 \mid m$, we get $m=4 r$ for some $r \in \mathbb{N}$. Therefore $12 t=n=m k=4 r k$. Then it follows that $3 t=r k$. Thus

$$
F_{n}=F_{12 t}=F_{6 t} L_{6 t}=3 F_{2 r} L_{2 r} x^{2}
$$

by (7). Since $(6 t / 2 r)=k$ and k is odd, we can write

$$
\frac{F_{6 t}}{F_{2 r}} \cdot \frac{L_{6 t}}{L_{2 r}}=3 x^{2}
$$

Assume that $3 \mid r$. Then, it can be seen that $\left(\frac{F_{6 t}}{F_{2 r}}, \frac{L_{6 t}}{L_{2 r}}\right)=1$. Therefore

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=u^{2}, \frac{L_{6 t}}{L_{2 r}}=3 v^{2} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=3 u^{2}, \frac{L_{6 t}}{L_{2 r}}=v^{2} \tag{23}
\end{equation*}
$$

for some integers u and v. A similar argument shows that (22) and (23) are impossible. Now assume that $3 \nmid r$. Then since $3 t=r k$, it follows that $3 \mid k$. Thus $k=3 s$ for some $s \in \mathbb{N}$. Then $3 t=r k=3 r s$ and therefore $t=r s$. Also since $3 \nmid r$, it can be seen that $\left(\frac{F_{6 t}}{F_{2 r}}, \frac{L_{6 t}}{L_{2 r}}\right)=2$. Therefore

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=2 u^{2}, \frac{L_{6 t}}{L_{2 r}}=6 v^{2} \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=6 u^{2}, \frac{L_{6 t}}{L_{2 r}}=2 v^{2} \tag{25}
\end{equation*}
$$

for some integers u and v. Assume that (24) is satisfied. Then $2 r=2$ by Theorem 15. This shows that $r=1$ and $t=s$. Thus $L_{6 t}=6 L_{2} v^{2}=L_{6} v^{2}$ and this implies that $6 t=6$, i.e., $t=1$ by Theorem 12. Therefore $k=3 s=3 t=3$ and $m=4 r=4$. Therefore $n=12$ and $x^{2}=16$.

Now assume that (25) is satisfied. Then it follows that

$$
L_{6 t}=2 L_{2 r} v^{2},
$$

which is impossible by Theorem 13 and Theorem 15.
Now assume that x is an odd integer. Then

$$
F_{n} \equiv 3 F_{m}(\bmod 8)
$$

Since $4 \mid m$, it follows that $m=12 q$ or $m=12 q \pm 4$ for some integer q. If $m=12 q \pm 4$, then

$$
F_{m} \equiv F_{12 q \pm 4} \equiv F_{ \pm 4} \equiv \pm 3(\bmod 8)
$$

by (1). Therefore

$$
F_{n} \equiv \pm 1(\bmod 8)
$$

which is impossible since $4 \mid n$. Because if $4 \mid n$, then $n=12 r \pm 4$ or $n=12 r$ for some integer r, and therefore $F_{n} \equiv \pm 3,0(\bmod 8)$ by (1). If $m=12 q$, then $n=m k=12 q k$. This shows that $6 q k / 6 q$ is an odd integer. Then from the identity

$$
F_{n}=F_{12 q k}=F_{6 q k} L_{6 q k}=3 F_{m} x^{2}=3 F_{6 q} L_{6 q} x^{2}
$$

it follows that

$$
\frac{F_{6 q k}}{F_{6 q}} \cdot \frac{L_{6 q k}}{L_{6 q}}=3 x^{2} .
$$

Since $\left(\frac{F_{6 q k}}{F_{6 q}}, \frac{L_{6 q k}}{L_{6 q}}\right)=1$, we get

$$
\begin{equation*}
\frac{F_{6 q k}}{F_{6 q}}=u^{2}, \frac{L_{6 q k}}{L_{6 q}}=3 v^{2} \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{6 q k}}{F_{6 q}}=3 u^{2}, \frac{L_{6 q k}}{L_{6 q}}=v^{2} \tag{27}
\end{equation*}
$$

for some integers u and v. Similarly, it can be seen that (26) and (27) are impossible. This completes the proof.

Lastly, we can give the following theorem without proof since its proof is similar to that of Theorem 16.

Theorem 17. There is no integer x such that $F_{n}=6 F_{m} x^{2}$.

References

[1] B. U. Alfred, On square Lucas numbers, Fibonacci Quart. 2 (1964), 11-12.
[2] D. M. Burton, Elementary Number Theory, McGraw-Hill, 1998.
[3] L. Carlitz, A note on Fibonacci numbers, Fibonacci Quart. 1 (1964), 15-28.
[4] J. H. E. Cohn, On square Fibonacci numbers, etc., J. London Math. Soc. 39 (1964), 537-540.
[5] J. H. E. Cohn, Square Fibonacci numbers, etc., Fibonacci Quart. 2.2 (1964), 109-113.
[6] J. H. E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965), 24-28.
[7] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631646.
[8] R. Keskin and B. Demirtürk, Fibonacci and Lucas congruences and their applications, Acta Math. Sin. (Engl. Ser.) 27 (2011), 725-736.
[9] T. Koshy, Fibonacci and Lucas Numbers With Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
[10] L. Moser and L. Carlitz, Advanced problem H-2, Fibonacci Quart. 1 (1963), 46.
[11] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to The Theory of Numbers, John Wiley \& Sons, 1991.
[12] S. C. Ogilvy, Tomorrow's Math: Unsolved Problems for the Amateur, Oxford University Press, 1962.
[13] P. Ribenboim, Square classes of Fibonacci and Lucas numbers, Portugal. Math. 46 (1989), 159-175.
[14] N. Robbins, On Fibonacci numbers of the form $p x^{2}$, where p is prime, Fibonacci Quart. 21 (1983), 266-271.
[15] N. Robbins, Fibonacci numbers of the form $c x^{2}$, where $1 \leq c \leq 1000$, Fibonacci Quart. 28 (1990), 306-315.
[16] N. Robbins, Lucas numbers of the form $p x^{2}$, where p is prime, Internat. J. Math. Math. Sci. 14 (1991), 697-703.
[17] A. P. Rollet, Advanced problem 5080, Amer. Math. Monthly 70 (1963), 216.
[18] S. Vajda, Fibonacci and Lucas Numbers and The Golden Section, Ellis Horwood, 1989.
[19] O. Wyler, In the Fibonacci series $F_{1}=1, F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ the first, second and twelfth terms are squares, Amer. Math. Monthly 71 (1964), 221-222.
[20] C. Zhou, A general conclusion on Lucas numbers of the form $p x^{2}$, where p is prime, Fibonacci Quart. 37 (1999), 39-45.

2010 Mathematics Subject Classification: Primary 11B37; Secondary 11B39.
Keywords: Fibonacci numbers, Lucas numbers, congruences.
(Concerned with sequence $\underline{\text { A000045. }}$)

Received April 29 2011; revised version received August 18 2011; September 25 2011. Published in Journal of Integer Sequences, October 162011.

Return to Journal of Integer Sequences home page.

