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Abstract

In this paper, we consider a two-dimensional model for finite set partitions which

arises in conjunction with a special case of a general non-linear recurrence. We in-

vestigate properties of some of the related counting sequences, including recurrences

and generating functions. In particular, we obtain, by combinatorial arguments, some

formulas relating these sequences to the Stirling numbers of the first kind. Specializing

these arguments yields bijective proofs of some recent identities of Gould and Quain-

tance involving the Bell numbers, which were established using algebraic methods.
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1 Introduction

In this paper, we consider a combinatorial model which explains a special case of the general
non-linear recurrence

Tn =
n−1
∑

j=0

(

n − 1

j

)

ajTn−j−1, (1)

with the initial conditions T0 = 1 and Tn = 0 for n < 0, where an is any given sequence. In
particular, we investigate a concept of two-dimensional set partition and derive properties of
some of the associated counting sequences. See [2, 5, 13] and [1, Chap. 11] for comparable
considerations involving higher dimensional analogues of integer partitions. See also the
related paper [12] on “hierarchical orderings”.

We remark that the recurrence relation (1) may be solved analytically, using generating
functions, as follows. Let A(x) =

∑

n≥0
an

n!
xn and T (x) =

∑

n≥0
Tn

n!
xn. Then rewriting (1)

gives

Tn

(n − 1)!
=

n−1
∑

j=0

aj

j!

Tn−j−1

(n − j − 1)!
.

Multiplying by xn−1 and summing over all n ≥ 1, we obtain d
dx

T (x) = A(x)T (x), which

implies T (x) = e
R x

0
A(t)dt+c. Noting the initial value T0 = T (0) = 1, we obtain the following

result:
T (x) = e

R x

0
A(t)dt. (2)

Example 1. If an = 1 for all n, then A(x) = ex and hence T (x) = eex−1, in which case
Tn is the n-th Bell number. For another example, suppose an = 1 + δn,0 for all n. Then
A(x) = ex + 1 and hence T (x) = eex+x−1 = d

dx
eex−1, which implies that Tn is the (n + 1)-st

Bell number.

Example 2. If an = Bn+1 for all n, then A(x) = eex+x−1 and hence T (x) = eeex
−1−1.

In the next section, we investigate a concept of a two-dimensional (2D) partition which
arises in conjunction with the special case an = Bn+1 above. We then exhibit several
properties of 2D set partitions, some of which are higher-dimensional analogues of properties
for standard set partitions. The final section is devoted to the proofs of higher dimensional
versions of recent identities of Gould and Quaintance [7] relating Bell numbers to the Stirling
numbers of the first kind. The proofs we give for our relations are combinatorial in nature and
specialize to the identities occurring in [7] which were proven there using algebraic methods.
We also obtain, as a consequence, bijective proofs of simple relations which express the Bell
and Stirling numbers in terms of sequences which count 2D partitions.

Recall that a partition of the set [n] = {1, 2, . . . , n} is any collection of nonempty, disjoint
subsets, called blocks, whose union is [n]. A partition B having k blocks (called a k-partition)
is often denoted by B = B1/B2/ · · · /Bk, where the blocks of B are arranged in the standard
order: min(B1) < · · · < min(Bk). The partition B will be said to be in standard form. For
example, the partitions of [3] in standard form are given by 123, 1/23, 12/3, 13/2 and 1/2/3.
We denote the set of all partitions of [n] having exactly k blocks by B(n, k) and the set of all
partitions of [n] by B(n). Recall that |B(n, k)| = Sn,k, the classical Stirling number of the
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second kind, and |B(n)| = Bn, the n-th Bell number (see, e.g., [14] or [16]). Throughout,
empty sums will take the value 0 and empty products the value 1, with 00 := 1.

2 Combinatorial Interpretation via 2D Set Partitions

We give a combinatorial solution of the recurrence relation (1) for the specialization an =
Bn+1. We first consider a class of shapes in the plane which will be used to define our
combinatorial object.

Definition 3. Consider the two dimensional (2D) grid G of unit squares whose vertices are
the lattice points and any finite subset S of G having left-justified rows with no restriction
on the row lengths. We will call such configurations 2D shapes.

See Figure 1 below for some examples of 2D shapes. Clearly, our 2D shapes are more general
than the classical Ferrers shapes (see, e.g., [1]). The individual unit squares of a 2D shape
will be called cells.

Figure 1: Examples of 2D-shapes with 5 rows and at most 5 columns.

We now give our definition for two-dimension set partitions.

Definition 4. A two-dimensional partition of [n] is a distribution of the elements of [n]
among the cells of a 2D shape according to the following rules:
(1) If a row consists of i non-empty cells, then the first i cells, from left to right, are non-
empty (gap-free row condition);
(2) If the first column consists of i non-empty cells, then the first i cells, from top to bottom,
are non-empty (first column gap-free condition);
(3) In each row, and in the first column, the cells appear in order of their increasing smallest
elements.

A non-empty cell of a 2D partition will also be called a block of the partition. Thus “a 2D
partition with r blocks” will be taken to mean “a partition in which the 2D shape consists
of r non-empty cells.” To illustrate, the following are 2D partitions of [13]:

1, 2 10
3, 11

4 5 12
6, 7, 13 8, 9

,

1, 2
3, 11 10

4 6, 7, 13 8, 9
5 12

,

1, 2 10
3, 11

4 5 6, 7, 13 8, 9
12

.

A 2D partition may also be viewed as the target of a mapping of the set of blocks of a
standard set partition into the cells of a 2D shape in accordance with the aforementioned
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rules. Thus each of the partitions in the previous example corresponds to a single standard
partition of [13], namely, 1, 2/3, 11/4/5/6, 7, 13/8, 9/10/12, up to rearrangements. We also
say that the latter is the support of each 2D partition.

Denote the set of 2D partitions of [n] by PPn, and the subset of PPn with r rows by
PPn,r. Let the respective cardinalities of the sets be Pn and Pn,r. For example, PP3 contains
the twelve partitions shown below:

1, 2, 3 , 1, 2 3 , 1, 3 2 , 1 2, 3 , 1 2 3 ,
1, 2
3

,

1 2
3

,
1, 3
2

,
1 3
2

,
1

2, 3
,

1
2 3

,
1
2
3

.

A standard partition of [n] will also be referred to as a 1D partition of [n]. We now
provide a combinatorial explanation of (1) in the case when aj = Bj+1.

Theorem 5. The number Pn,r of 2D partitions of [n] with r rows satisfies the recurrence,

Pn,r =
n−1
∑

j=0

(

n − 1

j

)

Bj+1Pn−j−1,r−1, n ≥ 1, (3)

where Pn,0 = δn,0. The number Pn of 2D partitions of [n] satisfies the recurrence,

Pn =
n−1
∑

j=0

(

n − 1

j

)

Bj+1Pn−j−1, n ≥ 1, (4)

where P0 = 1.

Proof. We construct a partition A ∈ PPn,r. Select j elements from [n]−{1}, in
(

n−1
j

)

ways,

and form the first row of A, using a 1D partition of the j +1 elements (including 1), in Bj+1

ways, and then distribute the remaining n − j − 1 elements so as to form the other r − 1
rows of A, in Pn−j−1,r−1 ways. Summing over j yields (3) which we sum over r to get (4).
The initial values are clear. For example, the partition π ∈ PP5,3 given by

π =
1 4

2, 3
5

is formed from α = 1/2 ∈ B(2) and β ∈ PP3,2 given by

β =
1, 2
3

,

upon selecting {4} ⊆ [5] − {1}.
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Corollary 6. We have

∞
∑

n=0

Pn

xn

n!
= eeex

−1−1 and
∞

∑

n=0

Pn,r

xn

n!
=

(eex−1 − 1)r

r!
. (5)

Proof. Let Pn(y) :=
∑n

r=0 Pn,ry
r. Theorem 5 gives Pn(y) = y

n−1
∑

j=0

(

n−1
j

)

Bj+1Pn−j−1(y). Pro-

ceeding as in Example 2 above implies P (x, y) :=
∞
∑

n=0

Pn(y)xn

n!
= ey(eex

−1−1). Thus, the

generating function
∞
∑

n=0

Pn
xn

n!
is P (x, 1) = eeex

−1−1, and the generating function
∞
∑

n=0

Pn,r
xn

n!
is

the coefficient of yr in P (x, y), which is (eex
−1−1)r

r!
.

Remark 7. For further analytic information on the function g(x) = eeex
−1−1, see p. 571 of

[6]. See also A000258 of [11] for further information concerning the number Pn, which is
defined there as the coefficient of xn

n!
in the Taylor series expansion of g(x). Example 5.2.4

of [15] supplies a k-fold generalization of g(x).

The following explicit formula may be established by extracting the coefficients of xn/n!
from both sides of the first equation in (5), but we supply a direct combinatorial proof.

Corollary 8. If n ≥ 0, then

Pn =
n

∑

k=0

Sn,kBk. (6)

Proof. Let B = B1/B2/ · · · /Bk denote a member of B(n, k) in standard form. Regard the
blocks of B as single elements and group these elements together according to any λ ∈ B(k).
Within each block of λ, assume that the Bi are written in increasing order of their indices
and that the blocks of λ themselves are arranged in increasing order according to the index
of the first element. Now take the first block of λ, say λ1 = {Bt1 , Bt2 , . . . , Bti}, and insert
the members of block Btj in the j-th cell of the first row for each j ∈ [i]. Repeat this for the
remaining blocks of λ and the subsequent rows to obtain a 2D shape having k cells altogether
(each labelled by a block of B). Allowing B to vary over B(n, k), we obtain all members of
PPn which have k blocks. Summing over all possible k completes the proof.

Similarly, the solution of the recurrence (3) can be explicitly given as follows.

Corollary 9. If n, r ≥ 0, then

Pn,r =
n

∑

k=r

Sn,kSk,r. (7)

Proof. The general summand counts the members of PPn,r according to the number of blocks
k, r ≤ k ≤ n, by the reasoning used in the proof of the preceding corollary. Place the blocks
of a member of B(n, k) in r rows so that no row is left empty and the blocks within any row
and within the first column are arranged by increasing smallest elements.
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Remark 10. Note that transforms (6) and (7) are special cases, respectively, of the Sheffer
polynomial transforms (31) and (27) found in [10]. It would be interesting to see if our
combinatorial explanations of (6) and (7) could be extended to explain some of the more
general Stirling transforms in [10].

It does not appear that the Pn,r satisfy a simple two-term recurrence like the Sn,k. The
following recurrence though for Pn,r furnishes a higher dimensional analogue of the Stirling
number recurrence (6.28) found in [8].

Proposition 11. If ℓ,m, n ≥ 0, then

(

ℓ + m

ℓ

)

Pn,ℓ+m =
n−m
∑

k=ℓ

(

n

k

)

Pk,ℓPn−k,m. (8)

Proof. We may assume n ≥ ℓ + m, for otherwise both sides of (8) are zero, by convention.
Consider circling ℓ of the ℓ+m rows within members of PPn,ℓ+m, noting that there are clearly
(

ℓ+m

ℓ

)

Pn,ℓ+m possibilities. We may also obtain such partitions by designating k members of
[n] and arranging them to go in the ℓ circled rows in

(

n

k

)

Pk,ℓ ways and then arranging the
remaining n − k members of [n] in m rows (which are not to be circled) in Pn−k,m ways,
where ℓ ≤ k ≤ n − m. Finally, order the ℓ + m rows so obtained from top to bottom in
increasing order according to the size of the smallest element in a given row.

Table 1 below shows some small values of Pn,r. Note that Pn =
∑

r Pn,r.

n\r 1 2 3 4 5 6 7 8 Pn

1 1 1
2 2 1 3
3 5 6 1 12
4 15 32 12 1 60
5 52 175 110 20 1 358
6 203 1012 945 280 30 1 2471
7 877 6230 8092 3465 595 42 1 19302
8 4140 40819 70756 40992 10010 1120 56 1 167894

Table 1: Number Pn,r of 2D partitions of [n] with r rows, 1 ≤ r ≤ n ≤ 8.

3 Some Properties of 2D Set Partitions

In the next section, we exhibit some further basic properties of 2D set partitions.
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3.1 Specification by Number of Blocks and Number of Rows

The 2D partitions of [n] may be generated recursively from those of [n − 1] by extending
the familiar 1D procedure. Let PPn,k,r denote the set of 2D partitions having k blocks and
r rows and let Pn,k,r = |PPn,k,r|.

Theorem 12. Let n, k, r ≥ 0. Then

Pn,k,r = Pn−1,k−1,r−1 + rPn−1,k−1,r + kPn−1,k,r, n, k, r ≥ 1, (9)

where P0,0,0 = 1 and Pn,k,r = 0 if nkr = 0, with n, k, r not all zero.

Proof. We construct a partition A ∈ PPn,k,r, recursively, as follows:

1. Insert the singleton block {n} at the end of the first column of a member of PPn−1,k−1,r−1

or insert {n} at the end of each row of a member of PPn−1,k−1,r. The number of partitions
A so obtained is Pn−1,k−1,r−1 + rPn−1,k−1,r.

2. Insert n into each block of a member of PPn−1,k,r to get a total of kPn−1,k,r partitions A.

Adding these two contributions yields (9). The initial values are clear.

Now we solve algebraically the recurrence in the statement of Theorem 12. Let Pk,r(x) :=
∑

n≥k Pn,k,rx
n. Then Theorem 12 gives

Pk,r(x) = xPk−1,r−1(x) + rxPk−1,r(x) + kxPk,r(x),

which is equivalent to

Pk,r(x) =
x

1 − kx
Pk−1,r−1(x) +

rx

1 − kx
Pk−1,r(x).

Let Qk,r(x) be defined by xk

(1−x)···(1−kx)
Qk,r(x) = Pk,r(x). Then the last recurrence implies

Qk,r(x) = Qk−1,r−1(x) + rQk−1,r(x), Qr,r(x) = 1.

Let Qr(x, y) :=
∑

k≥r Qk,r(x)yk. We then have

Qr(x, y) = yQr−1(x, y) + ryQr(x, y),

which implies

Qr(x, y) =
y

1 − ry
Qr−1(x, y),

with Q0(x, y) = 1. By induction on r, we have Qr(x, y) = yr

(1−y)···(1−ry)
, and using the fact

yr

(1−y)···(1−ry)
=

∑

j≥r Sj,ry
j, we obtain Qk,r(x) = Sk,r. By the definitions, we can state

Pk,r(x) =
Sk,rx

k

(1 − x) · · · (1 − kx)
,

which implies the following result.
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Theorem 13. If n, k, r ≥ 0, then

Pn,k,r = Sn,kSk,r. (10)

One can also give a combinatorial proof for (10) similar to that given above for (7). The
following Stirling number relation is a consequence of Theorem 13.

Corollary 14. If n, k, r ≥ 1 with k ≥ r, then

Sn+r+1,kSk,r =
r

∑

i=1

(2i + k − r)Sn+i,i+k−rSi+k−r,i. (11)

Proof. By (10), relation (11) is equivalent to

Pn+r+1,k,r =
r

∑

i=1

(2i + k − r)Pn+i,i+k−r,i.

To show this, we argue that the right-hand side counts the members of PPn+r+1,k,r according
to the largest index i, 1 ≤ i ≤ r, such that the element n + i + 1 does not occupy a row
by itself (note that there must be at least one such index i, for otherwise there would be
no rows in which to place the elements 1, 2, . . . , n + 1). Then there are Pn+i,i+k−r,i ways to
place the elements of [n + i] and (i + k − r) + i = 2i + k − r choices regarding the placement
of the element n + i + 1, since it can either go in a block with at least one member of
[n + i] or occur as a singleton block at the end of one of the first i rows. The elements
n + i + 2, n + i + 3, . . . , n + r + 1 are then all placed as singleton blocks within their own
rows.

The next identity relates Pn,r with Pn,k,r.

Proposition 15. If n,m, r ≥ 0, then

Pn+m+1,r+1 =
n+m
∑

i=r

i
∑

j=r

n+m−i
∑

k=0

(

n + m − i

k

)

(j + r)n+m−i−kBk+1Pi,j,r. (12)

Proof. We may assume r ≤ n + m, for otherwise both sides of (12) are clearly zero. We
argue that the right-hand side of (12) counts the members of PPn+m+1,r+1 according to the
smallest element, i + 1, in the (r + 1)-st row. Note that if i + 1 is the smallest element in
the (r + 1)-st row, then the elements of [i] would constitute a member of PPi,j,r for some j,
r ≤ j ≤ i. Select k of the n + m − i elements of [n + m + 1] − [i + 1] and form a partition
together with i + 1 in

(

n+m−i

k

)

Bk+1 ways, writing the blocks in the (r + 1)-st row. Finally,
place the remaining n + m − i − k elements of [n + m + 1] − [i + 1] in the first r rows in
(j + r)n+m−i−k ways.
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3.2 On 2D Partitions with 2 Rows

Taking r = 2 in (3), and recalling Pn,1 = Bn, implies that the number of 2D partitions of [n]
with 2 rows is given by

Pn,2 =
n−2
∑

j=0

(

n − 1

j

)

Bj+1Bn−j−1.

On the other hand, the explicit formula in Corollary 9 gives

Pn,2 =
n

∑

k=2

Sn,kSk,2 =
n

∑

k=2

(2k−1 − 1)Sn,k =
n

∑

k=1

2k−1Sn,k − Bn.

Combining the two expressions for Pn,2 yields the following formula for the Bell numbers.

Proposition 16. If n ≥ 1, then

Bn =
n

∑

k=1

2k−1Sn,k −
n−1
∑

j=1

(

n − 1

j − 1

)

BjBn−j. (13)

Proof. We may provide a combinatorial proof of formula (13) as follows. If n ≥ 1, then
the first sum on the right-hand side of (13) counts all the partitions of [n] in which one is
allowed to circle any block not containing the element 1 (which we’ll call circled partitions)
according to the number of blocks k; note that there are 2k−1Sn,k circled partitions containing
k blocks. Alternatively, one may specify beforehand the number of elements j of [n] to occupy
the uncircled blocks. There are

(

n−1
j−1

)

Bj ways to select j − 1 members of [n] − {1} and to
arrange them in uncircled blocks together with the element 1. Then place the remaining
n− j elements of [n] in circled blocks in Bn−j ways. The second sum on the right-hand side
of (13) then counts all the circled partitions of [n] in which there is at least one circled block
and subtracting this from the first gives all circled partitions of [n] in which there are no
circled blocks, which clearly number Bn.

Let hn,2 denote the number of 2D partitions of [n] with 2 rows such that the number of
blocks in the second row does not exceed the number in the first row.

Proposition 17. If n ≥ 2, then

hn,2 =
n−1
∑

j=0

j+1
∑

r=1

r
∑

t=1

(

n − 1

j

)

Sj+1,rSn−j−1,t. (14)

Proof. We construct an enumerated partition A. Select j elements from [n] − {1}, in
(

n−1
j

)

ways, 0 ≤ j ≤ n − 1, and form the first row of A with a standard r-partition of the j + 1
elements (including 1), in Sj+1,r ways, 1 ≤ r ≤ j + 1. The second row is then formed with a
standard t-partition of the remaining n − j − 1 elements, 1 ≤ t ≤ r, in Sn−j−1,t ways. Thus
the total number of possibilities for A is

hn,2 =
n−1
∑

j=0

(

n − 1

j

) j+1
∑

r=1

Sj+1,r

r
∑

t=1

Sn−j−1,t.
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4 A 2D Analogue of a Bell Number Formula of Gould

and Quaintance

Gould and Quaintance [7] have recently proven the following Bell number formula by com-
bining the binomial and Stirling inversion principles:

Bn =
n

∑

k=0

(−p)n−k

(

n

k

) p
∑

m=0

Bk+msp,m, n, p ≥ 0, (15)

where sp,m is the Stirling number of the first kind. Recall that cp,m := (−1)p−msp,m (called
the signless Stirling number of the first kind) counts all of the permutations of [p] containing
exactly m cycles (see, e.g., [14]). One may then rewrite (15) slightly as

(−1)n+pBn =
n

∑

k=0

pn−k

(

n

k

) p
∑

m=0

(−1)k+mBk+mcp,m, n, p ≥ 0. (16)

We establish below the following analogue of (16) involving cp,m and the numbers Pn and
Pn,r.

Theorem 18. If n, p ≥ 0, then

(−1)n+p

n
∑

i=0

Pn,i

p
∑

j=0

(

p

j

)

ip−jBj =
n

∑

k=0

pn−k

(

n

k

) p
∑

m=0

(−1)k+mPk+mcp,m. (17)

Taking n = 0 in (17) yields the following simple relation.

Corollary 19. If p ≥ 0, then

Bp =

p
∑

m=0

Pmsp,m. (18)

We prove (17) using a combinatorial argument in the sense of [3] and [4] by defining a sign-
changing involution whose set of survivors has cardinality given by the absolute value of the
left-hand side. By allowing objects to occupy only a single row, our involution particularizes
to provide a direct bijective proof of (16) and hence of (15). We have not been able to find
such proofs of formulas (15) or (16) in the literature.

4.1 An Involution for (16) and (17)

We first prove (17), where we may clearly assume p ≥ 1 (note that both sides reduce to
(−1)nPn when p = 0). We will also assume n ≥ 1, for it will be apparent what adjustments
must be made to handle the n = 0 case, which is simpler. We first provide a combinatorial
interpretation of the right-hand side of (17) as a signed sum over a set of configurations
A. To do so, consider a collection of 4-tuples (S, λ, α, β), where S, λ, α and β are given as
follows. First select any subset S of [n] of cardinality k, 0 ≤ k ≤ n, and any permutation λ
of [p] having exactly m cycles, 0 ≤ m ≤ p. Let α be any function from [n]−S to [p] and let β
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be any 2D partition having k +m elements comprising the k members of S and the m cycles
of λ. (Cycles of λ are considered as distinct objects and are written so that the smallest
element is first and are to be ordered according to the size of first elements; any member of
S will be considered less any cycle of λ.) Let A denote the collection of all possible 4-tuples
(S, λ, α, β) as k and m vary.

Define the sign of (S, λ, α, β) ∈ A as (−1)k+m, where k denotes the cardinality of S
and m denotes the number of cycles of λ. For example, let n = 8, p = 6, k = 6, m = 3,
S = {1, 4, 5, 6, 7, 8} ⊆ [8], and λ = (1, 4, 3), (2), (5, 6), with α : {2, 3} 7→ [6] given by α(2) = 3,
α(3) = 1. Let β be the 2D partition having two rows and comprising nine elements (the six
members of S and the three cycles of λ) given by

β ={1, 4, (1, 4, 3)}, {5, 8};

{6, 7}, {(2), (5, 6)}.

Then the 4-tuple c = (S, λ, α, β) would have sign (−1)6+3 = −1. Given k and m, note
that there are pn−k

(

n

k

)

choices for S and α and Pk+mc(p,m) choices for λ and β. Thus, the
right-hand side of (17) above gives the signed sum over all possible configurations in A.

For the remainder of the proof, we will express members of A in the following manner.
First assume that given a configuration (S, λ, α, β), the blocks of β are expressed canonically
as follows: (i) any members of S occurring within a block of β are written in increasing order
prior to any cycles of λ; (ii) any cycles of λ occurring within a block of β are arranged from
left-to-right by increasing order of first (= smallest) elements; (iii) blocks are arranged from
left-to-right by increasing smallest elements within a row (recall any cycle of λ is considered
greater than any member of S), and (iv) rows are ordered from top to bottom according to
the size of the first (= smallest) element in the first block. Note that the blocks of β in the
configuration c given above are expressed canonically.

We now observe that we are able to pair up, with opposite signs, almost all of the
configurations of A except a certain subset C, the details of which are given below. Hence,
counting A is the same as counting the remainder set C. The set C consists of those members
of A with S = [n] and λ = ιd and whose 2D partition β completely isolates the 1-cycles of λ
in individual cells. Note that every member of C has sign (−1)n+p. If n = 5 and p = 6, then
c = ([5], ιd, ∅, β) is a member of C, where β is the 2D partition with three rows given by

β ={1, 3}, {(2)}, {(5)};

{2, 5}, {4}, {(3)}, {(6)};

{(1)}, {(4)}.

Furthermore, the sum on the left-hand side of (17) above gives the cardinality of C
according to the number of rows i occupied by the elements of S = [n]. For once the
elements of S are arranged in i rows in one of Pn,i ways within β, there are

∑p

j=0

(

p

j

)

ip−jBj

ways to arrange the p 1-cycles of λ = ιd. To see this, first pick p − j of the cycles and place
them one-by-one in the first i rows of c in

(

p

j

)

ip−j ways (note that they must be written
at the end of these rows in their own blocks in increasing order after the elements of S
occurring in a row). Then arrange the remaining j cycles in additional rows (following the
first i rows) according to a member of B(j) (where two cycles belonging to the same row
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here is considered as equivalent to two members of [j] belonging to the same block in some
member of B(j)). Now sum over all possible values of j.

We now define an involution of A. Given a configuration x = (S, λ, α, β), suppose that
within β, there is a block on some row containing two or more members of [p] within the
cycles of λ lying in that block. Identify the lowest numbered row containing such a block
and within that row, identify the left-most such block, which we will denote by M. Let
a < b be the two smallest elements of [p] lying within cycles in M. If a and b belong to the
same cycle (a, . . . , b, . . .), then split that cycle at b to obtain the two smaller cycles (a, . . .),
(b, . . .), both belonging to M, and conversely, merge the two cycles at b if a and b belong to
different cycles (recall that within a block of β, the cycles are arranged by increasing smallest
[= first] elements and are written following any elements of S occurring in the block). If
x′ denotes the resulting configuration, then it may be verified that the mapping x 7→ x′ is
a sign-reversing involution on the set A − B, where B denotes the set consisting of those
configurations (S, λ, α, β) such that λ = ιd and no block of β contains two or more 1-cycles
of λ. Note that neither S nor α is changed by the mapping x 7→ x′. We illustrate it in Figure
2 below; note that M = {5, (2, 4, 3, 5), (6, 8)}, a = 2 and b = 3 in this example.

Configuration u = (S, λ, α, β) Configuration u′ = (S, λ′, α, β′)
S = {1, 4, 5, 6, 7, 8, 9, 10, 12} S = {1, 4, 5, 6, 7, 8, 9, 10, 12}
λ = (1), (2, 4, 3, 5), (6, 8), (7) λ′ = (1), (2, 4), (3, 5), (6, 8), (7)

α : {2, 3, 11} 7→ [8], α : {2, 3, 11} 7→ [8],
α(2) = 3, α(3) = 1, α(11) = 5 −→ α(2) = 3, α(3) = 1, α(11) = 5

β = {1, 6}, {4, 9, (7)}, {(1)}; β′ = {1, 6}, {4, 9, (7)}, {(1)};
{5, (2, 4, 3, 5), (6, 8)}, {7, 10}; {5, (2, 4), (3, 5), (6, 8)}, {7, 10};
{8, 12} {8, 12}

Figure 2: An example of the mapping x 7→ x′ when n = 12, p = 8, k = 9 and m = 4.

To complete the proof, we define an involution on B. Suppose y = (S, λ = ιd, α, β) ∈ B
satisfies one of the following two conditions:

(i) S 6= [n], or
(ii) S = [n] and a block in some row of β contains both a 1-cycle of λ and a member of S.

Given y, let ℓo denote the smallest index ℓ, 1 ≤ ℓ ≤ p, such that at least one of the following
holds:

(i) At least one member of [n] − S maps to ℓ under α, or
(ii) The cycle (ℓ) lies within a block in some row of β containing at least one member of S.

Once ℓo is identified, then let jo denote the smallest index j, 1 ≤ j ≤ n, such that one of the
following holds:

(i) j ∈ [n] − S and α(j) = ℓo, or
(ii) j ∈ S and j lies in the same block as (ℓo) within β.

12



Switch jo to the other option with regard to (i) and (ii). It may be verified that switching
options concerning jo defines a sign-changing involution x 7→ x̂ on the set B − C, where
C consists of those pairs (S, λ = ιd, α, β) in B such that S = [n] (whence α is the empty
function) and no block of β contains both a cycle of λ and a member of S. Note that S, α,
and β all change under the mapping x 7→ x̂. We illustrate it in Figure 3 below; note that
ℓo = 3 and jo = 4 in this example. Combining this mapping with the one above yields the
required sign-changing involution of A− C. This completes the proof of (17).

Configuration v = (S, ιd, α, β) Configuration v̂ = (Ŝ, ιd, α̂, β̂)

S = {1, 2, 3, 4, 5, 8} Ŝ = {1, 2, 3, 5, 8}
λ = (1)(2)(3)(4)(5) λ = (1)(2)(3)(4)(5)

α : {6, 7} 7→ [5], α̂ : {4, 6, 7} 7→ [5],
α(6) = 3, α(7) = 4 −→ α̂(4) = 3, α̂(6) = 3, α̂(7) = 4

β = {1, 2}, {3, 8}, {5}, {(1)}; β̂ = {1, 2}, {3, 8}, {5}, {(1)};
{4, (3)}, {(4)}, {(5)}; {(2)};
{(2)} {(3)}, {(4)}, {(5)}

Figure 3: An example of the mapping x 7→ x̂ when n = 8, p = 5, k = 6 and m = 5.

The same argument also applies to (16), upon requiring members of β to have only one
row. The following adjustments to the above argument must be made. Throughout, replace
2D partition by partition. The signed weight of all possible 4-tuples (S, λ, α, β) in A is now
given by the sum on the right-hand side of (16). The involution is defined the same way,
and the set B now consists of those configurations (S, λ, α, β) such that λ = ιd with no block
of β containing two or more cycles of λ (note that β is now a one-dimensional partition
whose elements are the members of S and the cycles of λ). The set C then consists of those
configurations (S, ιd, α, β) in B such that S = [n] and no block of β contains both a cycle of λ
and a member of S. Every member of C has sign (−1)n+p and there are Bn in all, since each
1-cycle of λ comprises its own block within β and since the elements of S = [n] themselves
may comprise any partition. This yields the left-hand side of (16).

4.2 Other Identities

In this section, we discuss some other identities which follow from modifying in various ways
the proof above. First, if we require that the 2D partition β contain a fixed number r of
rows in the proof above for (17), then we obtain an analogous relation for Pn,r since the
involution is seen to preserve the number of rows.

Theorem 20. If n, p, r ≥ 0, then

(−1)n+p

r
∑

i=0

Pn,i

p
∑

j=r−i

(

p

j

)

ip−jSj,r−i =
n

∑

k=0

pn−k

(

n

k

) p
∑

m=0

(−1)k+mPk+m,rcp,m. (19)
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Taking n = 0 in (19) yields the following simple relation.

Corollary 21. If p, r ≥ 0, then

Sp,r =

p
∑

m=0

Pm,rsp,m. (20)

Similarly, by requiring the 1D partition β to contain a fixed number j of blocks in the
proof of (16) above, then we obtain the following Stirling number identity analogous to (15)
which does not seem to have been previously noted.

Theorem 22. If n, p, j ≥ 0 with j ≥ p, then

Sn,j−p =
n

∑

k=0

(−p)n−k

(

n

k

) p
∑

m=0

Sk+m,jsp,m. (21)

If we require further that the 2D partition β contain a fixed number t of blocks and a
fixed number r of rows in the proof of (17) above, then we obtain the following relation for
Pn,t,r since the involution is seen to preserve both the number of blocks and the number of
rows.

Theorem 23. If n, p, r, t ≥ 0 with t ≥ max{r, p}, then

(−1)n+p

r
∑

i=0

Pn,t−p,i

p
∑

j=r−i

(

p

j

)

ip−jSj,r−i =
n

∑

k=0

pn−k

(

n

k

) p
∑

m=0

(−1)k+mPk+m,t,rcp,m. (22)

We note the following special case.

Corollary 24. If n, p ≥ 0, then

δn,0 =
n

∑

k=0

(−p)n−k

(

n

k

) p
∑

m=0

Sk+m,psp,m. (23)

Proof. Taking t = p in (22) yields the following identity:

δn,0 · Sp,r =
n

∑

k=0

(−p)n−k

(

n

k

) p
∑

m=0

Pk+m,p,rsp,m,

where n, p, r ≥ 0 with p ≥ r. This relation is equivalent to (23), since Pk+m,p,r = Sk+m,pSp,r,
by (10). Note that (23) also follows from setting j = p in (21).

Other identities involving the Bell numbers can be given combinatorial proofs using the
involution above.
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Remark 25. The following identity occurs as Lemma 1 in [7]:

n
∑

k=0

(

n

k

)

Bn−kp
k =

p
∑

m=0

Bn+msp,m, n, p ≥ 0, (24)

which may be rewritten as

(−1)p

n
∑

k=0

(

n

k

)

Bn−kp
k =

n
∑

m=0

(−1)mBn+mcp,m, n, p ≥ 0. (25)

The argument above for (16) applies. To see this, restrict the involution of A−B used in the
proof of (16) to the subset of A consisting of the configurations (S, λ, α, β) for which S = [n]
(whence α is the empty function). The survivors of this involution are the configurations
of the form ([n], ιd, ∅, β) in which the cycles of λ = ιd all belong to different blocks of β.
The sum on the left-hand side of (25) then counts these survivors (each has sign (−1)n+p)
according to the number, k, of elements of [n] sharing a block of β with a cycle of λ. Note
that we have cancelled factors of (−1)n from both sides in (25).

Remark 26. Consider the n-th Bell polynomial φn(t) given by

φn(t) =
n

∑

k=0

Sn,kt
k,

which reduces to Bn when t = 1. It satisfies the relations

tpφn(t) =
n

∑

k=0

(−p)n−k

(

n

k

) p
∑

m=0

φk+m(t)sp,m, n, p ≥ 0, (26)

and

tp
n

∑

k=0

(

n

k

)

φn−k(t)p
k =

p
∑

m=0

φn+m(t)sp,m, n, p ≥ 0, (27)

which reduce to (15) and (24), respectively, when t = 1. See identities (17) and (16) in [7].
The involution used to show (16) above also applies to (26) and (27) since it preserves the
number of blocks.

5 Final Remarks

It is well known that the multiset of block sizes of a 1D partition of [n] is a standard partition
of the integer n. However, there is no such clear relation between 2D partitions and classical
plane partitions in general. Rather the block sizes of 2D partitions form a more general type
of splitting of a positive integer into summands that lie in the cells of a 2D shape.

Let us denote a 2D partition A, with r rows and k blocks, in the one-line form:

A = A11, . . . , A1k1
//A21, . . . , A2k2

// · · · //Ak1, . . . , Arkr
, (28)

where Ai1, . . . , Aiki
is the sequence of blocks in the i-th row, i ∈ [r], and k1 + · · · + kr = k.
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Definition 27. Consider the 2D partition A of [n] given by (28) above and denote the
cardinality of a block Aij by aij, where n ≥ 1. Let cc(A) denote the distribution of integers
in a 2D shape obtained by replacing each Aij with aij. That is,

cc(A) = a11, . . . , a1k1
//a21, . . . , a2k2

// · · · //ak1, . . . , arkr
, (29)

where
∑

i

∑

j aij = n. We call cc(A) a plane-type (PT) composition of n. We call a PT
composition of n in which the entries of each row are non-increasing a plane-type (PT)
partition of n, which we denote by cp(n).

If we restrict the 2D shapes in Definition 27 to Ferrers shapes, then the resulting subset of
the PT compositions are synonymous with the plane compositions studied in [9]. The same
restriction applied to the PT partitions of an integer n yields the classical plane partitions
of n studied in [2].

Clearly, a given PT composition cc(n) (or PT partition cp(n)) with r entries can corre-
spond to several members A of PPn,r, upon replacing each block in A with its cardinality.
We will say that cc(n) generates A. The set of all PT compositions of n clearly generates
all of PPn. The subset of all PT compositions of n consisting of those members for which
ai,j = 1 for each i and j (note that they are in 1 − 1 correspondence with the set of all 2D
shapes) generates a subset of PPn having cardinality Bn, upon writing (in increasing order)
the elements of the i-th block of a partition of [n] (expressed in standard form) in the i-th
row of a 2D-shape. The further subset of these compositions whose members have exactly r
rows generates a subset of PPn,r containing Sn,r elements. In other cases, it is unclear as to
the subset of PPn generated.

Question 1: How many 2D partitions of [n] are generated by the set of PT partitions of n?
by the set of plane compositions of n studied in [9]?

Question 2: Given an arbitrary PT composition or partition, is it possible to specify the
subset of 2D partitions it generates?

One might also consider placing various restrictions on 2D partitions. For example, one
could place restrictions on the size of and/or on the members contained within a particular
block or row. A non-crossing 2D partition of [n] might be one in which each row is itself
a non-crossing 1D partition or one in which, in addition, no two blocks in distinct rows are
allowed to form a crossing either. Similar definitions could be made for non-nesting 2D
partitions of [n]. Furthermore, perhaps some of the statistics on 1D partitions of [n] could
be extended to yield interesting q-generalizations of Pn or Pn,r.
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