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Abstract

The aim of this paper is to present a method of generating inequalities and, under

certain conditions, some identities with sums that involve floor, ceiling and round

functions. We apply this method to sequences of nonnegative integers that could be

turned into periodical sequences.

1 Introduction

The floor and ceiling functions map a real number to the largest previous or the smallest
following integer, respectively. More precisely, the floor function ⌊x⌋ is the largest integer
not greater than x and the ceiling function ⌈x⌉ is the smallest integer not less than x. Iverson
[7, p. 127] introduced this notation and the terms floor and ceiling in the early 1960’s and
now this notation is standard in most areas of mathematics. Many properties of floor and
ceiling functions are presented in [1, 5].

If x, y are real numbers and n is an integer so that y − x < 1 and x ≤ n ≤ y then

⌈x⌉ = ⌊y⌋ = n . (1)

For all integers m and all positive integers n the following identities can be used to convert
floors to ceilings and vice-versa

⌈m

n

⌉

=

⌊

m + n − 1

n

⌋

. (2)
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When m is integer and n is a positive integer the quotient of m divided by n is
⌊

m
n

⌋

and
the value

m mod n = m − n
⌊m

n

⌋

is the remainder (or residue) of the division.
If the integers a and b have the same remainder when divided by n (i.e., if n divides a−b)

we say that a is congruent to b modulo n and we write

a ≡ b (mod n) .

The mod in a ≡ b (mod n) defines a binary relation, whereas the mod in a mod b is a binary
operation.

The nearest integer function [x], also called nint or the round function, is the integer clos-
est to x. Since this definition is ambiguous for half-integers, the additional rule is necessary
to adopt. In this work, the nearest integer function is defined by

[x] =

⌊

x +
1

2

⌋

. (3)

If x is a real number and n is an integer so that |x − n| < 1
2

then

[x] = n . (4)

In Section 2 we studied sums of the type
∑n

i=1 f
(

xi

m

)

where m is a positive integer, (xn) is
a sequence of nonnegative integers such that there exists a positive integer p with xn+p ≡ xn

(mod m), and f is either the floor, ceiling or the round functions. Our main results give
lower and upper bounds for the difference between

∑n

i=1 f
(

xi

m

)

and an adjusted version of
∑n

i=1
xi

m
. These results would allow one to obtain some further inequalities and identities for

∑n

i=1 f
(

xi

m

)

. As far as we know such an approach is new.
Section 3 is devoted to applications of these results to the three sequences: xn = nk,

xn = an, and the Fibonacci numbers Fn (k and a are positive integers). The examples
presented in this section illustrate how computers can be used to discover mathematical
inequalities or identities. Some identities, like

n
∑

i=1

[

i2k+1

3

]

=

[

1

3

n
∑

i=1

i2k+1

]

for all k ∈ N

or
n
∑

i=1

[

i2k+1

4

]

=

⌊

1

4

n
∑

i=1

i2k+1

⌋

for all k ∈ N

are proved in this way. Using computers to explore mathematical phenomena is not a new
idea. Binomial coefficient identities, multiple hypergeometric integral/sum identities, and q-
identities are investigated in [9]. Some Euler sum identities found by computer are presented
in [2] and for the first time in history a significant new formula for π was discovered by a
computer [3].

The calculations made in some of the examples presented in Section 3 allowed us to
discover three conjectures in number theory. These are presented in Section 4.

Another reason of this paper is to solve a problem published in [8].
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Problem 1. Let n be a nonnegative integer. Find the closed form of the sums

S1(n) =
n
∑

k=0

⌊

k2

12

⌋

and S2(n) =
n
∑

k=0

[

k2

12

]

,

where ⌊x⌋ denotes the largest integer not greater than x and [x] denotes the nearest integer
to x, i.e., [x] =

⌊

x + 1
2

⌋

.

2 Main results

Let m and p be positive integers, and let x = (x1, x2, x3, . . .) = (xn)n>0 be a nonnegative
integer sequence. We denote by M(m,n, x) the following arithmetic mean

M(m,n, x) =
1

n

n
∑

i=1

(xi mod m) .

Then we introduce the following notations:

F (m, p, n, x) =
1

m

(

n
∑

i=1

xi − n · M(m, p, x)

)

,

G(m, p, n, x) =
n

m
(M(m,n, x) − M(m, p, x)) ,

L(m, p, x) = min {G(m, p, i, x) |i = 1, . . . , p} ,

R(m, p, x) = max {G(m, p, i, x) |i = 1, . . . , p} .

Theorem 1. Let m and p be positive integers, and let x = (xn)n>0 be a nonnegative integer
sequence so that xn+p ≡ xn (mod m). Then

L(m, p, x) ≤ F (m, p, n, x) −
n
∑

i=1

⌊xi

m

⌋

≤ R(m, p, x) . (5)

Proof. Taking
⌊xi

m

⌋

=
xi

m
−

xi mod m

m
, i = 1, . . . , n

we have
n
∑

i=1

⌊xi

m

⌋

=
1

m

(

n
∑

i=1

xi −

n
∑

i=1

(xi mod m)

)

. (6)

We can write
n
∑

i=1

(xi mod m) =

⌊

n

p

⌋ p
∑

i=1

(xi mod m) +

n mod p
∑

i=1

(xi mod m)

=

(

n

p
−

n mod p

p

) p
∑

i=1

(xi mod m) +

n mod p
∑

i=1

(xi mod m)

= (n − n mod p) M(m, p, x) +

n mod p
∑

i=1

(xi mod m) . (7)
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By (6) and (7), we obtain

n
∑

i=1

⌊xi

m

⌋

= F (m, p, n, x) − G1(m, p, n, x) ,

where

G1(m, p, n, x) =
n mod p

m
(M(m,n mod p, x) − M(m, p, x)) .

Noting that
G1(m, p, n + p, x) = G1(m, p, n, x)

and
G1(m, p, i, x) = G(m, p, i, x) , i = 1, . . . , p

the inequality (5) is proved.

Theorem 2. Let m and p be positive integers, and let x = (xn)n>0 and y = (yn)n>0 be two
sequences of nonnegative integers, so that xn+p ≡ xn (mod m) and yn = xn + m− 1. Then

L(m, p, y) ≤ F (m, p, n, y) −
n
∑

i=1

⌈xi

m

⌉

≤ R(m, p, y) . (8)

Proof. By (2) we deduce that
⌈xi

m

⌉

=
⌊ yi

m

⌋

, i = 1, . . . , n .

Because yn+p − yn = xn+p −xn and xn+p ≡ xn (mod m), it follows that yn+p ≡ yn (mod m).
Thus, the inequality (8) is a consequence of inequality (5).

Theorem 3. Let m and p be positive integers, and let x = (xn)n>0 and z = (zn)n>0 be two
sequences of nonnegative integers, so that xn+p ≡ xn (mod m) and zn = 2xn + m. Then

L(2m, p, z) ≤ F (2m, p, n, z) −
n
∑

i=1

[xi

m

]

≤ R(2m, p, z) . (9)

Proof. Taking into account (3) we deduce that
[xi

m

]

=
⌊ zi

2m

⌋

, i = 1, . . . , n .

From zn+p−zn = 2(xn+p−xn) and xn+p ≡ xn (mod m), it follows that 2m divides zn+p−zn.
We conclude that zn+p ≡ zn (mod 2m). So, the inequality (9) is a consequence of the
inequality (5). The theorem is proved.

Note that for computing L(m, p, x) and R(m, p, x), we need only the remainders of the
division by m of the first p terms from the sequence (xn)n>0. Moreover, to determine
F (m, p, n, x), we also need the sum of the first n terms from the sequence (xn)n>0.

If we know the formula of calculating the sum
∑n

i=1 xi or if we know methods to determine
it, then the proved inequalities allow us to determine functions which approximate the sums
∑n

i=1

⌊

xi

m

⌋

,
∑n

i=1

⌈

xi

m

⌉

and
∑n

i=1

[

xi

m

]

or, in some situations, even to find formulas for these
sums.
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Corollary 4. Let m and p be positive integers, and let x = (xn)n>0 be a sequence of non-
negative integers, so that xn+p ≡ xn (mod m). Then
∣

∣

∣

∣

∣

F (m, p, n, x) −
R(m, p, x) + L(m, p, x)

2
−

n
∑

i=1

⌊xi

m

⌋

∣

∣

∣

∣

∣

≤
R(m, p, x) − L(m, p, x)

2
,

∣

∣

∣

∣

∣

F (m, p, n, y) −
R(m, p, y) + L(m, p, y)

2
−

n
∑

i=1

⌈xi

m

⌉

∣

∣

∣

∣

∣

≤
R(m, p, y) − L(m, p, y)

2
,

∣

∣

∣

∣

∣

F (2m, p, n, z) −
R(2m, p, z) + L(2m, p, z)

2
−

n
∑

i=1

[xi

m

]

∣

∣

∣

∣

∣

≤
R(2m, p, z) − L(2m, p, z)

2
,

where y = (yn)n>0 = (xn + m − 1)n>0, z = (zn)n>0 = (2xn + m)n>0.

Proof. If from every member of the inequality (5) we subtract 1
2
(R(m, p, x) + L(m, p, x)),

we obtain the first inequality. In the same way we obtain the other two inequalities.

Corollary 5. Let m and p be positive integers, and let x = (xn)n>0 be a sequence of non-
negative integers, so that xn+p ≡ xn (mod m). Then

⌈F (m, p, n, x) − R(m, p, x)⌉ ≤
n
∑

i=1

⌊xi

m

⌋

≤ ⌊F (m, p, n, x) − L(m, p, x)⌋ ,

⌈F (m, p, n, y) − R(m, p, y)⌉ ≤

n
∑

i=1

⌈xi

m

⌉

≤ ⌊F (m, p, n, y) − L(m, p, y)⌋ ,

⌈F (2m, p, n, z) − R(2m, p, z)⌉ ≤
n
∑

i=1

[xi

m

]

≤ ⌊F (2m, p, n, z) − L(2m, p, z)⌋ ,

where y = (yn)n>0 = (xn + m − 1)n>0, z = (zn)n>0 = (2xn + m)n>0.

Proof. To obtain the first inequality we have to subtract from each member of the inequality
(5) F (m, p, n, x), then to multiply the members of the inequality by −1 and finally to take
into account that

∑n

i=1

⌊

xi

m

⌋

is a nonnegative integer. We obtain the other two inequalities
in the same manner.

Taking into account (1) and (4), we can turn the established inequalities into identities.

Corollary 6. Let m and p be positive integers, and let x = (xn)n>0 be a sequence of non-
negative integers so that xn+p ≡ xn (mod m) and R(m, p, x) − L(m, p, x) < 1. Then

n
∑

i=1

⌊xi

m

⌋

=

[

F (m, p, n, x) −
R(m, p, x) + L(m, p, x)

2

]

,

n
∑

i=1

⌊xi

m

⌋

= ⌊F (m, p, n, x) − L(m, p, x)⌋ ,

n
∑

i=1

⌊xi

m

⌋

= ⌈F (m, p, n, x) − R(m, p, x)⌉ .

5



Corollary 7. Let m and p be positive integers, and let x = (xn)n>0 and y = (yn)n>0 be
two sequences of nonnegative integers, so that xn+p ≡ xn (mod m), yn = xn + m − 1 and
R(m, p, y) − L(m, p, y) < 1. Then

n
∑

i=1

⌈xi

m

⌉

=

[

F (m, p, n, y) −
R(m, p, y) + L(m, p, y)

2

]

,

n
∑

i=1

⌈xi

m

⌉

= ⌊F (m, p, n, y) − L(m, p, y)⌋ ,

n
∑

i=1

⌈xi

m

⌉

= ⌈F (m, p, n, y) − R(m, p, y)⌉ .

Corollary 8. Let m and p be positive integers, and let x = (xn)n>0 and z = (zn)n>0 be
two sequences of nonnegative integers, so that xn+p ≡ xn (mod m), zn = 2xn + m and
R(2m, p, z) − L(2m, p, z) < 1. Then

n
∑

i=1

[xi

m

]

=

[

F (2m, p, n, z) −
R(2m, p, z) + L(2m, p, z)

2

]

,

n
∑

i=1

[xi

m

]

= ⌊F (2m, p, n, z) − L(2m, p, z)⌋ ,

n
∑

i=1

[xi

m

]

= ⌈F (2m, p, n, z) − R(2m, p, z)⌉ .

Corollary 9. Let m and p be positive integers, and let x = (xn)n>0 be a sequence of non-
negative integers so that xn+p ≡ xn (mod m) and L(m, p, x), R(m, p, x) ∈

(

−1
2
, 1

2

)

. Then

n
∑

i=1

⌊xi

m

⌋

= [F (m, p, n, x)] .

Corollary 10. Let m and p be positive integers, and let x = (xn)n>0 and y = (yn)n>0 be
two sequences of nonnegative integers, so that xn+p ≡ xn (mod m), yn = xn + m − 1 and
L(m, p, y), R(m, p, y) ∈

(

−1
2
, 1

2

)

. Then

n
∑

i=1

⌈xi

m

⌉

= [F (m, p, n, y)] .

Corollary 11. Let m and p be positive integers, and let x = (xn)n>0 and z = (zn)n>0

be two sequences of nonnegative integers, so that xn+p ≡ xn (mod m), zn = 2xn + m and
L(2m, p, z), R(2m, p, z) ∈

(

−1
2
, 1

2

)

. Then

n
∑

i=1

[xi

m

]

= [F (2m, p, n, z)] .
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We analyze now another property of sums with integer functions.

Corollary 12. Let m and p be positive integers. Let x = (xn)n>0 be a sequence of nonnegative
integers such that xn+p ≡ xn (mod m) for all positive integers n. If f is any of these floor,
ceiling or round functions, then

n
∑

i=1

f
(xi

m

)

−

n−p
∑

i=1

f
(xi

m

)

−

p
∑

i=1

f
(xi

m

)

=
1

m

(

n
∑

i=1

xi −

n−p
∑

i=1

xi −

p
∑

i=1

xi

)

.

Proof. Using the notations from proof of Theorem 1 and having the relation

G1(m, p, n, x) = G1(m, p, n − p, x)

we write

n
∑

i=1

⌊xi

m

⌋

−

n−p
∑

i=1

⌊xi

m

⌋

= F (m, p, n, x) − F (m, p, n − p, x)

=
1

m

(

n
∑

i=1

xi −

n−p
∑

i=1

xi − p · M(m, p, x)

)

.

Since
p

m
· M(m, p, x) =

1

m

p
∑

i=1

xi −

p
∑

i=1

⌊xi

m

⌋

it follows that

n
∑

i=1

⌊xi

m

⌋

−

n−p
∑

i=1

⌊xi

m

⌋

−

p
∑

i=1

⌊xi

m

⌋

=
1

m

(

n
∑

i=1

xi −

n−p
∑

i=1

xi −

p
∑

i=1

xi

)

.

Similarly, we show that

n
∑

i=1

⌈xi

m

⌉

−

n−p
∑

i=1

⌈xi

m

⌉

−

p
∑

i=1

⌈xi

m

⌉

=

=
1

m

(

n
∑

i=1

(xi + m − 1) −

n−p
∑

i=1

(xi + m − 1) −

p
∑

i=1

(xi + m − 1)

)

,

n
∑

i=1

[xi

m

]

−

n−p
∑

i=1

[xi

m

]

−

p
∑

i=1

[xi

m

]

=

=
1

2m

(

n
∑

i=1

(2xi + m) −

n−p
∑

i=1

(2xi + m) −

p
∑

i=1

(2xi + m)

)

.
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Corollary 12 offers the possibility to describe the sum
∑n

i=1 f
(

xi

k

)

through linear recur-
rence relations. The effective determination of these recurrence relations depends on the
sum

∑n

i=1 xi. For precise m and p, the sum
∑p

i=1 f(xi

m
) is a constant that could be deter-

mined through numerical computation if we do not have formulas. For instance, if an, bn,
respectively, cn denote the partial sums of the sequences

(⌊

xi

m

⌋)

n>0
,
(⌈

xi

m

⌉)

n>0
, respectively,

([

xi

m

])

n>0
i.e.,

an =
n
∑

i=1

⌊xi

m

⌋

, bn =
n
∑

i=1

⌈xi

m

⌉

, cn =
n
∑

i=1

[xi

m

]

then, according to Corollary 12 we get the following recurrence relations:

an = an−p +
1

m

(

n
∑

i=1

xi −

n−p
∑

i=1

xi

)

−
p

m
· M(m, p, x) ,

bn = bn−p +
1

m

(

n
∑

i=1

yi −

n−p
∑

i=1

yi

)

−
p

m
· M(m, p, y) ,

cn = cn−p +
1

2m

(

n
∑

i=1

zi −

n−p
∑

i=1

zi

)

−
p

2m
· M(2m, p, z) ,

where y = (yn)n>0 = (xn + m − 1)n>0, z = (zn)n>0 = (2xn + m)n>0.
We can determine the constants M(m, p, x), L(m, p, x) and R(m, p, x) using computer

algebra system.

3 Applications to positive integer sequences

We can apply Theorem 1 to any periodic sequence modulo m. There are a lot of sequences
having this property. Here we have just presented several of them as applications.

3.1 Power sums

Let k be a positive integer. Faulhaber’s formula [6], named after Johann Faulhaber, expresses
the sum

n
∑

i=1

ik = 1k + 2k + 3k + · · · + nk

as a (k + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers,
written Bi. The formula says

n
∑

i=1

ik =
k+1
∑

i=1

bk,i ni . (10)

where

bk,i =
(−1)k+1−i Bk+1−i

k + 1

(

k + 1

i

)

.

8



For any integer m, m > 1, the sequence (xn)n>0, xn = nk (k ∈ N), has the property
xn+m ≡ xn (mod m). If f is any of these floor, ceiling or round functions, then by Corollary
12 and formula (10), we get the following recurrence relation:

n
∑

i=1

f

(

ik

m

)

−
n−m
∑

i=1

f

(

ik

m

)

−
m
∑

i=1

f

(

ik

m

)

−
1

m

k+1
∑

i=2

bk,i

(

ni − (n − m)i − mi
)

= 0 . (11)

Example 1. Since k = 2, it follows that

b2,2 =
(−1)2+1−2B2+1−2

2 + 1

(

2 + 1

2

)

= −B1 =
1

2
,

b2,3 =
(−1)2+1−3B2+1−3

2 + 1

(

2 + 1

3

)

=
B0

3
=

1

3
.

Having

3
∑

i=2

b2,i

(

ni − (n − m)i − mi
)

=
1

2

(

n2 − (n − m)2 − m2
)

+
1

3

(

n3 − (n − m)3 − m3
)

= nm − m2 + n2m − nm2 = m(n − m) + nm(n − m)

= m(n + 1)(n − m)

from (11), we get the following relation

an − an−m − am − (n + 1)(n − m) = 0 . (12)

That could be turned into linear homogeneous recurrence:

an − 3an−1 + 3an−2 − an−3 − an−m + 3an−m−1 − 3an−m−2 + an−m−3 = 0 (13)

where, an =
∑n

i=1 f
(

i2

m

)

and f is any of these floor, ceiling or round functions.

For any integer m, m > 1, the sequence x(f,k,m) =
(

x
(f,k,m)
n

)

n>0
,

x(f,k,m)
n =











nk, if f is the floor function,

nk + m − 1, if f is the ceiling function,

2nk + m, if f is the round function

has the property

x
(f,k,m)
n+m ≡

{

x
(f,k,m)
n (mod m), if f is the floor or the ceiling function,

x
(f,k,m)
n (mod 2m), if f is the round function.

We denote

Mf (m,n, k) =

{

M
(

m,n, x(f,k,m)
)

, if f is the floor or the ceiling function,

M
(

2m,n, x(f,k,m)
)

, if f is the round function,
(14)

9



Ff (m,n, k) =

{

F
(

m,m, n, x(f,k,m)
)

, if f is the floor or the ceiling function,

F
(

2m,m, n, x(f,k,m)
)

, if f is the round function,
(15)

Gf (m,n, k) =

{

G
(

m,m, n, x(f,k,m)
)

, if f is the floor or the ceiling function,

G
(

2m,m, n, x(f,k,m)
)

, if f is the round function,

Lf (m, k) =

{

L
(

m,m, x(f,k,m)
)

, if f is the floor or the ceiling function,

L
(

2m,m, x(f,k,m)
)

, if f is the round function,

Rf (m, k) =

{

R
(

m,m, x(f,k,m)
)

, if f is the floor or the ceiling function,

R
(

2m,m, x(f,k,m)
)

, if f is the round function,

b
(f,m)
k,1 = bk,1 +















−Mf (m,m, k), if f is the floor function,

m − 1 − Mf (m,m, k), if f is the ceiling function,
1

2
(m − Mf (m,m, k)) , if f is the round function,

(16)

b
(f,m)
k,i = bk,i , i > 1 .

According to (10), (14), (15) and (16), we obtain:

Ff (m,n, k) =
1

m

k+1
∑

i=1

b
(f,m)
k,i ni .

The theorems from Section 2 lead to the inequality

Lf (m, k) ≤
1

m

k+1
∑

i=1

b
(f,m)
k,i ni −

n
∑

i=1

f

(

ik

m

)

≤ Rf (m, k)

and we deduce
∣

∣

∣

∣

∣

1

m

k+1
∑

i=1

b
(f,m)
k,i ni −

Rf (m, k) + Lf (m, k)

2
−

n
∑

i=1

f

(

ik

m

)

∣

∣

∣

∣

∣

≤
Rf (m, k) − Lf (m, k)

2
, (17)

⌈

1

m

k+1
∑

i=1

b
(f,m)
k,i ni − Rf (m, k)

⌉

≤

n
∑

i=1

f

(

ik

m

)

≤

⌊

1

m

k+1
∑

i=1

b
(f,m)
k,i ni − Lf (m, k)

⌋

.

10



If Rf (m, k) − Lf (m, k) < 1, then we apply Corollary 6, Corollary 7 and Corollary 8 to
establish such identities as

n
∑

i=1

f

(

ik

m

)

=

[

1

m

k+1
∑

i=1

b
(f,m)
k,i ni −

Rf (m, k) − Lf (m, k)

2

]

(18)

=

⌊

1

m

k+1
∑

i=1

b
(f,m)
k,i ni − Lf (m, k)

⌋

(19)

=

⌈

1

m

k+1
∑

i=1

b
(f,m)
k,i ni − Rf (m, k)

⌉

. (20)

For Rf (m, k), Lf (m, k) ∈
(

−1
2
, 1

2

)

we apply Corollary 9, Corollary 10 and Corollary 11 to get
a simpler form of the identity (18)

n
∑

i=1

f

(

ik

m

)

=

[

1

m

k+1
∑

i=1

b
(f,m)
k,i ni

]

. (21)

Using Maple to determine the values Mf (m, k), Lf (m, k), Rf (m, k) and b
(f,m)
k,i , we can

generate many inequalities and identities.
For k = 2, in Table 1 we present only those values of m that allow us to apply Corollary

8, i.e., Rf (m, 2) − Lf (m, 2) < 1. Note that for all the values of m from Table 1, Corollary
11 can be also applied, i.e., Rf (m, 2), Lf (m, 2) ∈

(

−1
2
, 1

2

)

, when f is the round function.

Table 1: The values of m, M , L and R for (18), (19), (20), (21) when k = 2 and f = [ ]

m L R M OEIS m L R M OEIS

2 −1/4 0 1 A131941 13 −5/13 5/13 13 A177176
3 0 2/9 13/3 A181286 16 −13/32 3/8 15 A177189
4 0 1/8 5 A173196 17 −6/17 6/17 17 A177205
5 −1/5 1/5 5 A173690 19 −7/19 9/19 23 A177237
6 −4/9 11/36 13/3 A173691 20 −1/5 13/40 25 A177239
7 −2/7 2/7 7 A173721 28 −3/7 25/56 29 A177277
8 −1/3 3/16 7 A173722 29 −14/29 14/29 29 A177332
9 −1/3 11/27 31/3 A177100 36 −85/216 13/27 127/3 A177337
11 −3/11 5/11 15 A177166 44 −35/88 5/11 49 A177339
12 −1/8 2/9 43/3 A181120

Example 2. When f is the round function, k = 2 and m = 5, using Maple, we get the
following:

M = 5 , L = −
1

5
and R =

1

5
.

We have

b
(f,5)
2,1 = (−1)2B2 +

5 − M

2
=

1

6
+

5 − 5

6
=

1

6
.

11
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The values of b2,2 and b2,3 are those calculated in Example 1. By (17), we get the inequality

∣

∣

∣

∣

∣

1

15
n3 +

1

10
n2 +

1

30
n −

n
∑

i=1

[

i2

5

]

∣

∣

∣

∣

∣

≤
1

5
,

and by (18), (19), (20) and (21) we get the identities

an =
n
∑

i=1

[

i2

5

]

=

[

1

15
n3 +

1

10
n2 +

1

30
n

]

=

[

n(n + 1)(2n + 1)

30

]

(22)

=

⌊

1

15
n3 +

1

10
n2 +

1

30
n +

1

5

⌋

=

⌈

1

15
n3 +

1

10
n2 +

1

30
n −

1

5

⌉

.

By (12), we obtain the relation

an − an−5 − (n + 1)(n − 5) − 11 = 0 ,

and by (13) we get the following linear homogeneous recurrence

an − 3an−1 + 3an−2 − an−3 − an−5 + 3an−6 − 3an−7 + an−8 = 0 , n > 7 ,

where a0 = 0, a1 = 0, a2 = 1, a3 = 3, a4 = 6, a5 = 11, a6 = 18 and a7 = 28.

By (22), we deduce an interesting identity

n
∑

i=1

[

i2

5

]

=

[

1

5

n
∑

i=1

i2

]

.

Analyzing (16), (18) and (21), we note that an identity such as

n
∑

i=1

[

ik

m

]

=

[

1

m

n
∑

i=1

ik

]

, m > 1 , (23)

is true when

Mf (m,m, k) = m and Rf (m, k), Lf (m, k) ∈

(

−
1

2
,
1

2

)

, (24)

where f is the round function. This observation allows us to use Maple to establish many
identities such as (23). In Table 2 we present values of m and k for which identity (23) is
true.

Some values presented in Table 2 make us ask a few questions. For instance, is the
identity

n
∑

i=1

[

i2k+1

3

]

=

[

1

3

n
∑

i=1

i2k+1

]

(25)
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Table 2: The values of k and m for identities (23)

k m k m

1 3 21 3, 4, 7, 9, 36, 43, 49, 81, 196, 441
2 5, 7, 13, 17, 29 22 5, 7, 13, 17, 49, 121, 343
3 3, 4, 5, 7, 9, 11, 36, 52, 117 23 3, 4, 5, 11, 16, 47
4 7, 17, 49 24 17, 31, 73
5 3, 4, 11, 25 25 3, 4, 11, 25, 101, 125, 500
6 5, 13, 17 26 5, 7, 13, 29, 53, 157, 169
7 3, 4, 5, 11, 13, 16 27 3, 4, 5, 7, 9, 11, 16, 19, 27, 36,
8 7, 17, 31 37, 52, 81, 117, 171, 189, 324
9 3, 4, 7, 9, 11, 19, 27, 36, 171, 189 28 7, 43, 49, 113, 343
10 5, 7, 13, 25, 31, 49, 325 29 3, 4, 11, 17, 59
11 3, 4, 5, 16, 23, 25, 37, 121 30 5, 13, 25, 29, 61, 325
12 31 3, 4, 5, 13, 16, 25
13 3, 4, 11, 17 32 7
14 5, 7, 13, 29, 43, 49 33 3, 4, 7, 9, 11, 23, 36, 67, 81, 121
15 3, 4, 5, 7, 9, 11, 16, 25, 31, 36, 34 5, 7, 13, 17, 49, 289

52, 117 35 3, 4, 5, 11, 16, 25, 27, 71, 125
16 7, 23, 49 36 17, 53, 73
17 3, 4, 11, 27 37 3, 4, 11
18 5, 7, 13, 23, 37 38 5, 7, 13, 17, 23, 31
19 3, 4, 5, 11, 13, 16 39 3, 4, 5, 7, 9, 11, 16, 36, 52, 79, 117
20 7, 17, 31, 41 40 7, 17, 23, 31, 49

true for any nonnegative integer k? The answer to this question is affirmative as we will
prove. For this, it is sufficient to show that for any nonnegative integer k and for m = 3,
condition (24) is fulfilled. As 2 · 22k+1 ≡ 4 (mod 6) and 2 · 32k+1 ≡ 0 (mod 6), for any
nonnegative integer k, we write

Mf (3, 3, 2k + 1) =
1

3
(5 + 1 + 3) = 3 ,

Gf (3, 1, 2k + 1) =
1

6
(5 − 3) =

1

3
,

Gf (3, 2, 2k + 1) =
1

6
(5 + 1 − 2 · 3) = 0 ,

Gf (3, 3, 2k + 1) =
1

6
(5 + 1 + 3 − 3 · 3) = 0 ,

where f is the round function. Thus, identity (25) is true.

13



Similarly, we can prove the following identities

n
∑

i=1

[

ik

4

]

=

[

1

4

n
∑

i=1

ik

]

, k ≡ 1 (mod 2) , k > 1 ,

n
∑

i=1

[

ik

5

]

=

[

1

5

n
∑

i=1

ik

]

, k ≡ 2, 3 (mod 4) ,

n
∑

i=1

[

ik

7

]

=

[

1

7

n
∑

i=1

ik

]

, k ≡ 2, 3, 4 (mod 6) ,

n
∑

i=1

[

ik

9

]

=

[

1

9

n
∑

i=1

ik

]

, k ≡ 3 (mod 6) ,

n
∑

i=1

[

ik

11

]

=

[

1

11

n
∑

i=1

ik

]

, k ≡ 3, 5, 7, 9 (mod 10) ,

n
∑

i=1

[

ik

13

]

=

[

1

13

n
∑

i=1

ik

]

, k ≡ 2 (mod 4) ,

n
∑

i=1

[

ik

16

]

=

[

1

16

n
∑

i=1

ik

]

, k ≡ 3 (mod 4) , k > 3 ,

n
∑

i=1

[

ik

17

]

=

[

1

17

n
∑

i=1

ik

]

, k ≡ 2, 4, 6, 8, 13, 20, 22, 24, 29 (mod 32) ,

n
∑

i=1

[

ik

19

]

=

[

1

19

n
∑

i=1

ik

]

, k ≡ 9 (mod 18) ,

n
∑

i=1

[

ik

23

]

=

[

1

23

n
∑

i=1

ik

]

, k ≡ 11, 16, 18 (mod 22) ,

n
∑

i=1

[

ik

25

]

=

[

1

25

n
∑

i=1

ik

]

, k ≡ 5, 10, 11, 15 (mod 20) .

There is another question that rises from Table 2: is there any integer m, m > 1, for
k = 12 so that the identity (23) is true?

By (16) and (19) we deduce that an identity such as

n
∑

i=1

[

ik

m

]

=

⌊

1

m

n
∑

i=1

ik

⌋

, m > 1 , (26)

is true when

Mf (m,m, k) = m , Lf (m, k) = 0 and Rf (m, k) < 1 , (27)

where f is the round function. In Table 3 we present values of m and k for which the identity
(26) is true. For even values of k, I did not find any m so that condition (27) should be
fulfilled. Is identity (26) false for any even value of k?

14



Table 3: The values of k and m for identities (26)

k m k m

1 3, 5, 7 27 3, 4, 7, 8, 9, 17, 27, 81, 243
3 3, 4, 7, 8, 9, 27 29 3, 4, 5, 8, 13, 25, 59
5 3, 4, 5, 8, 11, 13, 25 31 3, 4, 7, 8, 9
7 3, 4, 7, 8, 9 33 3, 4, 5, 7, 8, 9, 23
9 3, 4, 5, 7, 8, 9, 25, 27, 81 35 3, 4, 8, 11, 43, 49, 71
11 3, 4, 8, 17, 23 37 3, 4, 5, 7, 8, 9
13 3, 4, 5, 7, 8, 9, 169 39 3, 4, 7, 8, 9, 27, 79
15 3, 4, 7, 8, 9, 11, 31 41 3, 4, 5, 8, 13, 83
17 3, 4, 5, 8, 13 43 3, 4, 7, 8, 9, 17
19 3, 4, 7, 8, 9 45 3, 4, 5, 7, 8, 9, 11, 25, 27, 31
21 3, 4, 5, 7, 8, 9, 27, 49 47 3, 4, 8
23 3, 4, 8, 47 49 3, 4, 5, 7, 8, 9, 25
25 3, 4, 5, 7, 8, 9, 11, 25, 31, 125 51 3, 4, 7, 8, 9, 103

Considering the demonstration of identity (25), we deduce the following identity

n
∑

i=1

[

i2k+1

3

]

=

⌊

1

3

n
∑

i=1

i2k+1

⌋

, k ≥ 0 .

For k > 0 we have 2 · 22k+1 ≡ 0 (mod 8), 2 · 32k+1 ≡ 6 (mod 8) and 2 · 42k+1 ≡ 0 (mod 8).
We can write

Mf (4, 4, 2k + 1) =
1

4
(6 + 4 + 2 + 4) = 4 ,

Gf (4, 1, 2k + 1) =
1

8
(6 − 4) =

1

4
,

Gf (4, 2, 2k + 1) =
1

8
(6 + 4 − 2 · 4) =

1

4
,

Gf (4, 3, 2k + 1) =
1

8
(6 + 4 + 2 − 3 · 4) = 0 ,

Gf (4, 4, 2k + 1) =
1

8
(6 + 4 + 2 + 4 − 4 · 4) = 0 ,

where f is the round function. Condition (27) being fulfilled, we get the identity

n
∑

i=1

[

i2k+1

4

]

=

⌊

1

4

n
∑

i=1

i2k+1

⌋

, k > 0 .
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Similarly, we get the following identities:

n
∑

i=1

[

ik

5

]

=

⌊

1

5

n
∑

i=1

ik

⌋

, k ≡ 1 (mod 4) ,

n
∑

i=1

[

ik

7

]

=

⌊

1

7

n
∑

i=1

ik

⌋

, k ≡ 1, 3 (mod 6) ,

n
∑

i=1

[

ik

8

]

=

⌊

1

8

n
∑

i=1

ik

⌋

, k ≡ 1 (mod 2) , k > 1 ,

n
∑

i=1

[

ik

9

]

=

⌊

1

9

n
∑

i=1

ik

⌋

, k ≡ 1, 3 (mod 6) , k > 1 ,

n
∑

i=1

[

ik

11

]

=

⌊

1

11

n
∑

i=1

ik

⌋

, k ≡ 5 (mod 10) ,

n
∑

i=1

[

ik

13

]

=

⌊

1

13

n
∑

i=1

ik

⌋

, k ≡ 5 (mod 12) ,

n
∑

i=1

[

ik

17

]

=

⌊

1

17

n
∑

i=1

ik

⌋

, k ≡ 11 (mod 16) ,

n
∑

i=1

[

ik

23

]

=

⌊

1

23

n
∑

i=1

ik

⌋

, k ≡ 11 (mod 22) ,

n
∑

i=1

[

ik

25

]

=

⌊

1

25

n
∑

i=1

ik

⌋

, k ≡ 5, 9 (mod 20) .

By (16) and (20) we deduce that an identity as

n
∑

i=1

[

ik

m

]

=

⌈

1

m

n
∑

i=1

ik

⌉

, m > 1 , (28)

is true if

Mf (m,m, k) = m , Rf (m, k) = 0 and Lf (m, k) > −1 . (29)

Using Maple, we find values for m and k so that condition (29) is fulfilled. This time we do
not find anything. Is identity (28) false for any positive integer k and any integer m, m > 1?

Example 3. Solution to Problem 1. When f is the floor function, k = 2 and m = 12,
using Maple, we get the following:

M =
19

6
, L = −

13

72
and R =

4

9
.

We have

b
(f,12)
2,1 = (−1)2B2 − M =

1

6
−

19

6
= −3 .
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The values of b2,2 and b2,3 are those calculated in Example 1. By (21) we obtain

S1(n) =
n
∑

i=1

⌊

i2

12

⌋

=

[

1

36
n3 +

1

24
n2 −

1

4
n

]

.

When f is the round function, k = 2 and m = 12, we get the following:

M =
43

3
, L = −

1

8
and R =

2

9
.

We have

b
(f,12)
2,1 = (−1)2B2 +

12 − M

2
=

1

6
−

7

6
= −1 ,

By (21) we obtain

S2(n) =
n
∑

i=1

[

i2

12

]

=

[

1

36
n3 +

1

24
n2 −

1

12
n

]

,

and the problem is solved.

3.2 Positive integers powers

For every positive integer m and every integer a relatively prime to m, we denote by ordm(a)
the multiplicative order of a modulo m, i.e., the smallest positive integer n such that an ≡ 1
(mod m), namely

ordm(a) = min {n ∈ N
∗ | an ≡ 1 (mod m)}

Note that ordm(a) divides ϕ(m), ϕ being the Euler’s totient function. If ordm(a) = ϕ(m)
then a is called a primitive root modulo m. If m is a prime, then ϕ(m) = m − 1.

For every positive integer m, m > 1, and every integer k relatively prime to m, k > 1,
the sequence (xn)n>0, xn = kn, has the property xn+ordm(k) ≡ xn (mod m). The relation

n
∑

i=1

ki =
kn+1 − k

k − 1
(30)

and Corollary 12 allow us to obtain the following linear homogeneous recurrence:

an − (k + 1)an−1 + kan−2 − an−ordm(k) + (k + 1)an−ordm(k)−1 − kan−ordm(k)−2 = 0 ,

where an =
∑n

i=1 f
(

ki

m

)

and f is any of these floor, ceiling or round functions. If m is a

prime and k is a primitive root modulo m, then we have

an − (k + 1)an−1 + kan−2 − an−m+1 + (k + 1)an−m − kan−m−1 = 0 .

For every positive integer m, m > 1, and every integer k relatively prime to m, k > 1,

the sequence x(f,k,m) =
(

x
(f,k,m)
n

)

n>0
,

x(f,k,m)
n =

{

kn, if f is the floor function,

2kn + m, if f is the round function,

17



has the property

x
(f,k,m)
n+ordm(k) ≡

{

x
(f,k,m)
n (mod m), if f is the floor function,

x
(f,k,m)
n (mod 2m), if f is the round function.

As m and k are relatively primes, it follows that

⌈

kn

m

⌉

=

⌊

kn

m

⌋

+ 1 ,

which enables us to write
n
∑

i=1

⌈

ki

m

⌉

= n +
n
∑

i=1

⌊

ki

m

⌋

and then to note that it is enough to investigate only those sums which involve the floor or
the round function.

We denote

Mf (m, k) =

{

M
(

m, ordm(k), x(f,k,m)
)

, if f is the floor function,

M
(

2m, ordm(k), x(f,k,m)
)

, if f is the round function,
(31)

Ff (m,n, k) =

{

F
(

m, ordm(k), n, x(f,k,m)
)

, if f is the floor function,

F
(

2m, ordm(k), n, x(f,k,m)
)

, if f is the round function,
(32)

Lf (m, k) =

{

L
(

m, ordm(k), x(f,k,m)
)

, if f is the floor function,

L
(

2m, ordm(k), x(f,k,m)
)

, if f is the round function,

Rf (m, k) =

{

R
(

m, ordm(k), x(f,k,m)
)

, if f is the floor function,

R
(

2m, ordm(k), x(f,k,m)
)

, if f is the round function.

According to (30), (31) and (32) we obtain:

Ff (m,n, k) =
kn+1 − k

m(k − 1)
+

n

m
·







−Mf (m, k), if f is the floor function,
1

2
(m − Mf (m, k)) , if f is the round function.

If a is a positive integer so that a ≡ k (mod m), then ordm(a) = ordm(k). Thus, for
a ≡ k (mod m), we deduce that

Mf (m, a) = Mf (m, k) , Lf (m, a) = Lf (m, k) and Rf (m, a) = Rf (m, k) , (33)

where f is the floor or the round function.

Example 4. If k ≡ 1 (mod m), i.e., ordm(k) = 1, then it is clear that:

Mf (m, k) = 1 and Lf (m, k) = Rf (m, k) = 0 ,

18



where f is the floor function. According to Theorem 1 we get the following identity

n
∑

i=1

⌊

ki

m

⌋

=
kn+1 − (n + 1)k + n

m(k − 1)
, k ≡ 1 (mod m) , k > 1 , (34)

that can be rewritten in this way:

n
∑

i=1

⌊

(km + 1)i

m

⌋

=
(km + 1)n+1 − (n + 1)km − 1

m2k
, k > 0 .

For instance, by (34), for m = 5 and k = 6 we get:

n
∑

i=1

⌊

6i

5

⌋

=
6n+1 − 5n − 6

25
.

Example 5. If m is a prime and k is a primitive root modulo m, then we have

Mf (m, k) =
1

m − 1

m−1
∑

i=1

i =
m

2
,

where f is the floor function. According to Corollary 9, we get the following identity

n
∑

i=1

⌊

ki

m

⌋

=

[

kn+1 − k

m(k − 1)
−

n

2

]

.

Example 6. If k is an odd number, then we get

ord2(k) = 1 , (2k + 2) mod 4 = 0 , Mf (2, k) = 0 and Lf (2, k) = Rf (2, k) = 0 ,

where f is the round function. By Theorem 1, we get the identity

n
∑

i=1

[

ki

2

]

=
k

2
·
kn − 1

k − 1
+

n

2
, k ≡ 1 (mod 2) , k > 1 .

Example 7. If m > 2 and k ≡ 1 (mod m), then we get

Mf (m, k) = (2k + m) mod 2m = m + 2 and Lf (m, k) = Rf (m, k) = 0 ,

where f is the round function. By Theorem 1, we get the identity

n
∑

i=1

[

ki

m

]

=
kn+1 − (n + 1)k + n

m(k − 1)
, k ≡ 1 (mod m) , k > 1 , m > 2. (35)

From (34) and (35), we deduce the identity

n
∑

i=1

[

ki

m

]

=
n
∑

i=1

⌊

ki

m

⌋

, k ≡ 1 (mod m) , k > 1 , m > 2.
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Example 8. If k = m − 1 then k2 ≡ 1 (mod m), i.e., ordm(k) = 2. Moreover, we have

(2(m − 1) + m) mod 2m = m − 2 and
(

2(m − 1)2 + m
)

mod 2m = m + 2 .

Thus we deduce that

Mf (m,m − 1) = m , Lf (m,m − 1) = −
1

m
, Rf (m,m − 1) = 0 ,

where f is the round function. Now, according to (33), the following inequalities are direct
consequences of the Theorem 3

−
1

m
≤

kn+1 − k

m(k − 1)
−

n
∑

i=1

[

ki

m

]

≤ 0 , k ≡ −1 (mod m) ,

∣

∣

∣

∣

∣

kn+1 − k

m(k − 1)
+

1

2m
−

n
∑

i=1

[

ki

m

]

∣

∣

∣

∣

∣

≤
1

2m
, k ≡ −1 (mod m) ,

and by Corollary 8 and Corollary 11, we get the identities

n
∑

i=1

[

ki

m

]

=

[

kn+1 − k

m(k − 1)
+

1

2m

]

=

[

1

m

(

1

2
+

n
∑

i=1

ki

)]

=

⌊

kn+1 − k

m(k − 1)
+

1

m

⌋

=

⌊

1

m

(

1 +
n
∑

i=1

ki

)⌋

=

⌈

kn+1 − k

m(k − 1)

⌉

=

⌈

1

m

n
∑

i=1

ki

⌉

=

[

kn+1 − k

m(k − 1)

]

=

[

1

m

n
∑

i=1

ki

]

, k ≡ −1 (mod m) .

Using Maple to determine the values ordm(k), Lf (m, k) and Rf (m, k) we can generate
many inequalities, but also few identities.

Example 9. The integers m = 7 and k = 2 are relatively primes, but 2 is not a primitive
root modulo 7, i.e., ϕ(7) = 6 and ord7(2) = 3. When f is the floor function we get

M =
7

3
, L = −

1

21
and R =

4

21
.

By Theorem 1 and Corollary 4, we get the inequalities

−
1

21
≤

2n+1

7
−

n

3
−

2

7
−

n
∑

i=1

⌊

2i

7

⌋

≤
4

21
,

∣

∣

∣

∣

∣

2n+1

7
−

n

3
−

5

14
−

n
∑

i=1

⌊

2i

7

⌋

∣

∣

∣

∣

∣

≤
5

42
,
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and by Corrollary 6 and Corollary 9 we get the identities

n
∑

i=1

⌊

2i

7

⌋

=

[

2n+1

7
−

n

3
−

5

14

]

=

⌊

2n+1

7
−

n

3
−

5

21

⌋

=

⌈

2n+1

7
−

n

3
−

10

21

⌉

=

[

2n+1

7
−

n

3
−

2

7

]

.

3.3 Fibonacci numbers

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent number
is the sum of the previous two (sequence A000045 in [10]). In mathematical terms, the
sequence (Fn)n≥0 of Fibonacci numbers is defined by the recurrence relation

Fn = Fn−1 + Fn−2

with seed values
F0 = 0 and F1 = 1 .

One way to discover some fascinating properties of the Fibonacci sequence is to consider
the sequence of least nonnegative residues of the Fibonacci numbers under some modulus.
One of the first modern inquiries into this area of research was made by D. D. Wall [11] in
1960, though J. L. Lagrange [4] made some observations on these types of sequences in the
eighteenth century. So, we know that F (mod m) is periodic, and the period is known as the
Pisano period π(m) (see [4] and sequence A001175 in [10]).

On the other hand, there are known a lot of identities that involve sums with Fibonacci
numbers. Together with Theorem 1, these allow the establishing of numerous inequalities,
but also few identities with sums that imply integer functions and Fibonacci numbers. The
following applications base on the identity

n
∑

i=1

Fi = Fn+2 − 1 , (36)

which, corroborated with Corollary 12, allows us to get the relation

n
∑

i=1

f

(

Fi

m

)

−

n−π(m)
∑

i=1

f

(

Fi

m

)

−

π(m)
∑

i=1

f

(

Fi

m

)

=
1

m

(

Fn+2 − Fn+2−π(m) − Fπ(m)+2 + 1
)

,

where f is any of these floor, ceiling or round functions.

For every positive integer m the sequence x(f,m) =
(

x
(f,m)
n

)

n>0
,

x(f,m)
n =











Fn, if f is the floor function,

Fn + m − 1, if f is the ceiling function,

2Fn + m, if f is the round function
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has the property

x
(f,m)
n+π(m) ≡

{

x
(f,m)
n (mod m), if f is the floor or the ceiling function,

x
(f,m)
n (mod 2m), if f is the round function.

We denote

Mf (m) =

{

M
(

m,π(m), x(f,m)
)

, if f is the floor or the ceiling function,

M
(

2m,π(m), x(f,m)
)

, if f is the round function,
(37)

Ff (m,n) =

{

F
(

m,π(m), n, x(f,m)
)

, if f is the floor or the ceiling function,

F
(

2m,π(m), n, x(f,m)
)

, if f is the round function,
(38)

Lf (m) =

{

L
(

m,π(m), x(f,m)
)

, if f is the floor or the ceiling function,

L
(

2m,π(m), x(f,m)
)

, if f is the round function,

Rf (m) =

{

R
(

m,π(m), x(f,m)
)

, if f is the floor or the ceiling function,

R
(

2m,π(m), x(f,m)
)

, if f is the round function.

According to (36), (37) and (38) we obtain:

Ff (m,n) =
Fn+2 − 1

m
+

n

m
·















−Mf (m), if f is the floor function,

m − 1 − Mf (m), if f is the ceiling function,
1

2
(m − Mf (m)) , if f is the round function.

In order to generate identities, we use Maple to find values for m so that Rf (m)−Lf (m) <
1. We find these values:

m ∈











{2, 3, 4} , if f is the floor function,

{2, 3, 4, 11} , if f is the ceiling function,

{2, 4, 11} , if f is the round function.

Example 10. Taking into account that π(4) = 6, when f is the round function, we get

M = 4 , L = −
1

4
and R =

1

2
.

By Theorem 3, we get the inequality

−
1

4
≤

Fn+2 − 1

4
−

n
∑

i=1

[

Fi

4

]

≤
1

2
,

that can be rewritten in the following way
∣

∣

∣

∣

∣

Fn+2

4
−

3

8
−

n
∑

i=1

[

Fi

4

]

∣

∣

∣

∣

∣

≤
3

8
.

By Corollary 8, we get
n
∑

i=1

[

Fi

4

]

=

[

Fn+2

4
−

3

8

]

=

⌊

Fn+2

4

⌋

=

⌈

Fn+2 − 3

4

⌉

.
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4 Observations and conjectures

Let a and m be relatively prime positive integers. To determine the arithmetic mean defined
by (31) for floor function we have to determine the sum

ordm(a)
∑

i=1

(

ai mod m
)

. (39)

Taking into account the relation

ordm(a)
∑

i=1

ai =
a(aordm(a) − 1)

a − 1
,

and that
ordm(a)
∑

i=1

(

ai mod m
)

≡

ordm(a)
∑

i=1

ai (mod m) ,

we deduce that, when a − 1 and m are relatively primes, the sum (39) is divisible to m.
Using Maple to determine this sum, we notice the following relation.

Conjecture 1. Let a and m be relatively prime positive integers. If a−1 and m are relatively
prime and ordm(a) is even then

ordm(a)
∑

i=1

(

ai mod m
)

=
m · ordm(a)

2
.

Using Maple to determine the value of some sums as

ordm(a)
∑

i=1

((

2ai + m
)

mod 2m
)

,

necessary to determine the arithmetic mean (31) for round function, we notice another
interesting identity.

Conjecture 2. Let a and m be relatively prime positive integers. If m is prime and ordm(a)
is even then

ordm(a)
∑

i=1

((

2ai + m
)

mod 2m
)

= m · ordm(a) .

By (36), we deduce that the sum of π(m) consecutive Fibonacci numbers is a multiple of
m. This allows us to state the sum

π(m)
∑

i=1

(Fi mod m)

is multiple of m. Using Maple to determine the arithmetic mean defined by (37), we notice
the following identity:
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Conjecture 3. Let m be a positive integer, m > 1. Then

π(m)
∑

i=1

(Fi mod m) = m · w(m) ,

where w(m) is Fibonacci winding number (sequence A088551 in [10]).
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