Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.3

Full Subsets of \mathbb{N}

Lila Naranjani
Islamic Azad University
Dolatabad Branch
Isfahan
Iran
Inaranjani@yahoo.com
Madjid Mirzavaziri
Department of Pure Mathematics
Ferdowsi University of Mashhad
P. O. Box 1159-91775
Iran
mirzavaziri@gmail.com

Abstract

Let A be a subset of \mathbb{N}. We say that A is m-full if $\sum A=[m]$ for a positive integer m, where $\sum A$ is the set of all positive integers which are a sum of distinct elements of A and $[m]=\{1, \ldots, m\}$. In this paper, we show that a set $A=\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<\cdots<a_{k}$ is full if and only if $a_{1}=1$ and $a_{i} \leq a_{1}+\cdots+a_{i-1}+1$ for each $i, 2 \leq i \leq k$. We also prove that for each positive integer $m \notin\{2,4,5,8,9\}$ there is an m-full set. We determine the numbers $\alpha(m)=\min \left\{|A|: \sum A=[m]\right\}, \beta(m)=\max \left\{|A|: \sum A=\right.$ $[m]\}, L(m)=\min \left\{\max A: \sum A=[m]\right\}$ and $U(m)=\max \left\{\max A: \sum A=[m]\right\}$ in terms of m. We also give a formula for $F(m)$, the number of m-full sets.

1 Introduction

Let n be a positive integer and denote by $D(n)$ and $\sigma(n)$ the set of its positive divisors and the sum of its positive divisors, respectively. A positive integer n is called perfect if $\sigma(n)=2 n$. Euclid proved that the formula $2^{p-1}\left(2^{p}-1\right)$ gives an even perfect number whenever $2^{p}-1$ is prime. It has been proved for the first time by Euler that if an even positive integer n is
perfect then $n=2^{p-1} q$, where p and $q=2^{p}-1$ are primes. In this case

$$
D(n)=\left\{1,2,2^{2}, \ldots, 2^{p-1}, q, 2 q, 2^{2} q, \ldots, 2^{p-1} q\right\}
$$

A simple argument shows that each $1 \leq \ell \leq 2 n=2^{p} q$ can be written as a sum of distinct elements of $D(n)$. To see this, note that each $\ell, 1 \leq \ell \leq 2^{p}-1$, can be written as a sum $2^{\ell_{1}}+\cdots+2^{\ell_{r}}$, where $r \geq 1$ and $0 \leq \ell_{1}<\cdots<\ell_{r} \leq p-1$. Now if $2^{p} \leq \ell \leq 2^{p} q$, then we can write $\ell=\alpha q+\beta$, where $0 \leq \beta \leq 2^{p}-1$ and $1 \leq \alpha \leq 2^{p}-1$. Thus we can write $\alpha=2^{\alpha_{1}}+\cdots+2^{\alpha_{i}}$ and $\beta=2^{\beta_{1}}+\cdots+2^{\beta_{j}}$, where $i \geq 1, j \geq 0,0 \leq \alpha_{1}<\cdots<\alpha_{i} \leq p-1$ and $0 \leq \beta_{1}<\cdots<\beta_{j} \leq p-1$. Hence

$$
\ell=2^{\alpha_{1}} q+\cdots+2^{\alpha_{i}} q+2^{\beta_{1}}+\cdots+2^{\beta_{j}}
$$

is a sum of distinct elements of $D(n)$.
These considerations motivate us to find all positive integers n having the property that each $1 \leq \ell \leq \sigma(n)$ can be written as a sum of distinct elements of $D(n)$. This leads us to the following problem:

Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ be a subset of \mathbb{N}. Define the sum set of A, denoted by $\sum A$, by

$$
\sum A=\left\{a_{i_{1}}+\cdots+a_{i_{r}}: a_{i_{1}}<\cdots<a_{i_{r}}, 1 \leq r \leq k\right\} .
$$

For what positive integer m does there exist a set A with $\sum A=[m]$, where $[m]=$ $\{1, \ldots, m\}$?

We show that each positive integer $m \notin\{2,4,5,8,9\}$ has this property and determine the numbers

$$
\begin{aligned}
\alpha(m) & =\min \left\{|A|: \sum A=[m]\right\} \\
\beta(m) & =\max \left\{|A|: \sum A=[m]\right\} \\
L(m) & =\min \left\{\max A: \sum A=[m]\right\} \\
U(m) & =\max \left\{\max A: \sum A=[m]\right\}
\end{aligned}
$$

2 The Results

Definition 1. Let m be a positive integer. A subset A of \mathbb{N} is called m-full if $\sum A=[m]$. A is called full if it is m-full for some positive integer m.

Theorem 2. A subset $A=\left\{a_{1}, \ldots, a_{k}\right\}$ of \mathbb{N} with $a_{1}<\cdots<a_{k}$ is full if and only if $a_{1}=1$ and $a_{i} \leq a_{1}+\cdots+a_{i-1}+1$ for each $i, 2 \leq i \leq k$.

Proof. Let A be full and $\sum A=[m]$ for a positive integer m. Clearly $a_{1}=1$. If $a_{j}>$ $a_{1}+\cdots+a_{j-1}+1$ for some $j, 2 \leq j \leq k$, then $a_{1}+\cdots+a_{j-1}+1$ is not a sum of distinct elements of A. But $1 \leq a_{1}+\cdots+a_{j-1}+1 \leq a_{1}+\cdots+a_{k}=m$. This contradicts to the fact that $\sum A=[m]$.

Conversely, suppose that $a_{1}=1$ and $a_{i} \leq a_{1}+\cdots+a_{i-1}+1$ for each $i, 2 \leq i \leq k$. We claim that $\sum A=\left[a_{1}+\cdots+a_{k}\right]$. We prove this by induction on k. For $k=1$ the result is obvious. Suppose that the result is true for $k-1$. Then $\sum A \backslash\left\{a_{k}\right\}=\left[a_{1}+\cdots+a_{k-1}\right]$. Now suppose that $a_{1}+\cdots+a_{k-1}+1 \leq \ell \leq a_{1}+\cdots+a_{k}$ and write $\ell=a_{k}+a$. Then a belongs to $\left\{0,1, \ldots, a_{1}+\cdots+a_{k-1}\right\}$ since $a_{k} \leq a_{1}+\cdots+a_{k-1}+1$. If $a=0$ then $\ell=a_{k} \in \sum A$ and if $a \neq 0$ then $a \in\left[a_{1}+\cdots+a_{k-1}\right]=\sum A \backslash\left\{a_{k}\right\}$ can be written as $a_{i_{1}}+\cdots+a_{i_{r}}$. Thus $\ell=a_{i_{1}}+\cdots+a_{i_{r}}+a_{k} \in \sum A$.
Proposition 3. Let $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, with $p_{1}<\cdots<p_{r}$ primes, be a positive integer. Then $D(n)=\{d: d \mid n\}$ is full if and only if $p_{1}=2$ and $p_{i} \leq \sigma\left(p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}}\right)+1$ for each $i, 2 \leq i \leq r$.
Proof. If $D(n)$ is m-full then $m=\sigma(n)$. Since $p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}} \mid n$ and $p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}} \neq n$, we have $\sigma\left(p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}}\right)<\sigma(n)$. Hence $\sigma\left(p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}}\right)+1$ is a member of $[\sigma(n)]$. Thus if $p_{i}>\sigma\left(p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}}\right)+1$ for some i, then the number $\sigma\left(p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}}\right)+1$ is a member of [$\sigma(n)]$ which is not a sum of distinct elements of $D(n)$. On the other hand, if the condition $p_{i} \leq \sigma\left(p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}}\right)+1$ for each $i, 2 \leq i \leq r$, is satisfied, then using an argument similar to the one used in Theorem 2, we can inductively prove that each element of $[\sigma(n)]$ can be written as a sum of distinct elements of $D(n)$.

In the next theorem, we characterize all m for which there is an A with $\sum A=[m]$.
Theorem 4. Let m be a positive integer. There is a set A such that $\sum A=[m]$ if and only if $m \notin\{2,4,5,8,9\}$.
Proof. By simple inspection, there is no A with $\sum A=[m]$ for $m=2,4,5,8,9$. Conversely, for $m=1,3,6,7,10$ note that $A=\{1\},\{1,2\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}$ are m-full. The recursive construction below shows us that for each $m \geq 10$ there is an A with $\sum A=[m]$.

Suppose there is an $A=\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<\cdots<a_{k}$ such that $\sum A=[m]$, for some $m \geq 10$. If $a_{k}<a_{1}+\cdots+a_{k-1}+1$ then $\sum\left(A \backslash\left\{a_{k}\right\}\right) \cup\left\{a_{k}+1\right\}=[m+1]$, and there remains nothing to prove. If $a_{i}<a_{1}+\cdots+a_{i-1}+1$ for some $i, 3 \leq i<k$, then choose j as the greatest i with this property. In this case we have

$$
a_{j}<a_{1}+\cdots+a_{j-1}+1, \quad a_{j+1}=a_{1}+\cdots+a_{j-1}+a_{j}+1 .
$$

Notice that $j \geq 3$ since $a_{1}=1, a_{2}=a_{1}+1=2$ and $a_{3} \in\{3,4\}$. Hence $a_{j}+1 \neq a_{j+1}$ and if we omit a_{j} from A and add $a_{j}+1$ to it, then the resulting set is still full and its sum set is $[m+1]$. Otherwise, there is no i with the property $a_{i}<a_{1}+\cdots+a_{i-1}+1$ and so $a_{i}=a_{1}+\cdots+a_{i-1}+1$ for each $i, 2 \leq i \leq k$. We can therefore deduce that $A=\left\{1,2,4, \ldots, 2^{k-1}\right\}$. Whence $m=2^{k}-1$ and we must give a class of sets B with $\sum B=\left[2^{k}\right], k \geq 4$, to complete the proof.

The class of sets B is defined by a recursive construction. For $k=4$ choose the set $B=$ $\{1,2,3,4,6\}$. If $\sum B=\left[2^{k}\right]$ for $B=\left\{b_{1}, \ldots, b_{s}\right\}$ then the set $B^{\prime}=\left\{1,2 b_{1}, \ldots, 2 b_{s-1}, 2 b_{s}-1\right\}$ is clearly full and since $1+2 b_{1}+\cdots+2 b_{s-1}+2 b_{s}-1=2\left(b_{1}+\cdots+b_{s}\right)=2 \cdot 2^{k}=2^{k+1}$, we have $\sum B^{\prime}=\left[2^{k+1}\right]$ and the proof is complete.

A natural question is to determine the number of m-full sets for a given positive integer m. We denote this number by $F(m)$. As an example, a straightforward argument shows that $F(12)=2$ and the two 12 -full sets are $\{1,2,3,6\}$ and $\{1,2,4,5\}$. We give a formula for $F(m)$, but prior to that we discuss some related problems.

Proposition 5. Let $m \notin\{2,4,5,8,9\}$ be a positive integer and

$$
\begin{aligned}
& \alpha(m)=\min \left\{|A|: \sum A=[m]\right\}, \\
& \beta(m)=\max \left\{|A|: \sum A=[m]\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \alpha(m)=\min \left\{\ell: m \leq 2^{\ell}-1\right\}=\left\lceil\log _{2}(m+1)\right\rceil \\
& \beta(m)=\max \left\{\ell: \frac{\ell(\ell+1)}{2} \leq m\right\} .
\end{aligned}
$$

Proof. Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ be an arbitrary m-full set. Then, by Theorem 2,

$$
m=a_{1}+\cdots+a_{k} \leq 1+2+4+\cdots+2^{k-1}=2^{k}-1 .
$$

We claim that if $n=\min \left\{\ell: m \leq 2^{\ell}-1\right\}$ then $k \geq n$. In contrary, suppose that $k<n$. Then $2^{k}-1<m$. Thus $m=a_{1}+\cdots+a_{k} \leq 2^{k}-1<m$ which is a contradiction. Hence $k \geq n$ and, since A was arbitrary, we therefore have $\alpha(m) \geq n$.

On the other hand, we show that the minimum is attained. At first we show this when m is a power of 2 . For $m=16$ we can choose $A=\{1,2,3,4,6\}$. Suppose that for $m=2^{n-1}$ there is an m-full set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then $A^{\prime}=\left\{1,2 a_{1}, 2 a_{2}, \ldots, 2 a_{n-1}, 2 a_{n}-1\right\}$ is a 2^{n}-full set with $n+1$ elements.

We now suppose that $m=2^{n-1}+r$, where r belongs to $\left\{0,1,2, \ldots, 2^{n-1}-1\right\}$ and we prove the existence of an m-full set with n elements by induction on r. This is proved for $r=0$. Suppose that this is true for $r-1$; namely there is a $\left(2^{n-1}+r-1\right)$-full set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. If $m=2^{n-1}+r$ is a power of 2 then there is nothing to prove. We may thus assume that there is an i for which $a_{i}<a_{1}+\cdots+a_{i-1}+1$. Now if there is the least j with $a_{i+j} \neq a_{i}+j$ then the set $\left\{a_{1}, \ldots, a_{i+j-2}, a_{i+j-1}+1, a_{i+j}, \ldots, a_{n}\right\}$ is an m-full set with n elements. Otherwise, the set $\left\{a_{1}, \ldots, a_{n-1}, a_{n}+1\right\}$ is an m-full set with n elements.

To prove the other assertion, let $n^{\prime}=\max \left\{\ell: \frac{\ell(\ell+1)}{2} \leq m\right\}$. We claim that if $A=$ $\left\{a_{1}, \ldots, a_{k}\right\}$ is an arbitrary m-full set, then $k \leq n^{\prime}$. On the contrary, suppose that $k>n^{\prime}$. Then $\frac{k(k+1)}{2}>m$. Hence $m=a_{1}+a_{2}+\cdots+a_{k} \geq 1+2+\cdots+k=\frac{k(k+1)}{2}>m$ which is a contradiction. Thus $k \leq n^{\prime}$ and, since A was arbitrary, we therefore have $\beta(m) \leq n^{\prime}$.

On the other hand, we show that the maximum is attained. Let $m=\frac{n^{\prime}\left(n^{\prime}+1\right)}{2}+r$, where r belongs to $\left\{0,1, \ldots, n^{\prime}\right\}$. Then $A=\left\{1,2,3, \ldots, n^{\prime}-1, n^{\prime}+r\right\}$ is an m-full set with n^{\prime} elements.

Remark 6. The direct problem for subset sums is to find lower bounds for $\left|\sum A\right|$ in terms of $|A|$. The inverse problem for subset sums is to determine the structure of the extremal sets A of integers for which $\left|\sum A\right|$ is minimal. M. B. Nathanson gives a complete solution for the direct and the inverse problem for subset sums in [1] and proves that if A is a set of positive integers with $|A| \geq 2$ then $\left|\sum A\right| \geq\binom{|A|+1}{2}$. This immediately implies the last part of Proposition 5.

Theorem 7. Let $m \notin\{2,4,5,8,9,14\}$ be a positive integer and denote $\min \left\{\max A: \sum A=\right.$ $[m]\}$ by $L(m)$. If $m=\frac{n(n+1)}{2}+r$, where $r=0,1, \ldots, n$ then

$$
L(m)= \begin{cases}n, & \text { if } r=0 \\ n+1, & \text { if } 1 \leq r \leq n-2 \\ n+2, & \text { if } 1 \leq r=n-1 \text { or } n\end{cases}
$$

Proof. Let $m=\frac{n(n+1)}{2}+r$, where $r=0,1, \ldots, n$. Then there are 3 cases:
Case 1: $r=0$. Let $A=\{1, \ldots, n\}$. Since $\sum A=\left[\frac{n(n+1)}{2}\right]$ and $\max A$ has the minimum possible value, $L(m)=n$.

Case 2: $r=1, \ldots, n-2$. We can consider the set

$$
A=\{1, \ldots, n, n+1\} \backslash\{n+1-r\}
$$

which is m-full, since $n+1-r \geq 3$ and $1+\cdots+n+(n+1)-(n+1-r)=\frac{n(n+1)}{2}+r=m$. Hence $L(m)=n+1$.

Case 3: $r=n-1$ or n. In this case we cannot omit $n+1-r$ from the set $\{1, \ldots, n, n+1\}$, because $n+1-r$ is 1 or 2 and the resulting set is not full. Thus we have to add $n+2$ and omit some other element. In fact for $r=n-1$ the suitable set with minimum possible value for its maximum is $\{1, \ldots, n, n+2\} \backslash\{3\}$, and for $r=n$ the desired set is $\{1, \ldots, n-1, n+$ $1, n+2\} \backslash\{3\}$ (note that in this case we have $n \neq 4$ since $m \neq 14$ and we can therefore deduce that the latter set is full). We can therefore deduce that $L(m)=n+2$.

For the remaining case $m=14$, it can be easily verified that $L(14)=7$. The first few values of $L(m)$, Sloane's OEIS [2, A188429], are

m	1	3	6	7	10	11	12	13	14	15	16	17	18	19	20
$L(m)$	1	2	3	4	4	5	5	6	7	5	6	6	6	7	7

Theorem 8. Let $m \geq 20$ be a positive integer and denote $\max \left\{\max A: \sum A=[m]\right\}$ by $U(m)$. Then

$$
U(m)=\left\lceil\frac{m}{2}\right\rceil .
$$

Proof. Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<\cdots<a_{k}$ be m-full. By Theorem 2, $a_{k} \leq a_{1}+\cdots+a_{k-1}$, which is equivalent to $a_{k} \leq m-a_{k}$ since A is m-full. Therefore $a_{k} \leq\left\lceil\frac{m}{2}\right\rceil$ holds.

Now put $b=\left\lceil\frac{m}{2}\right\rceil$. Since $m-\left\lceil\frac{m}{2}\right\rceil \geq 10$, by Theorem 4 we can find a B^{\prime} with $\sum B^{\prime}=$ $\left[m-\left\lceil\frac{m}{2}\right\rceil\right]$. Whence $B=B^{\prime} \cup\{b\}$ satisfies the properties $\sum B=[m]$ and $\max B=\left\lceil\frac{m}{2}\right\rceil$.

For the remaining cases, it can be easily verified that the values of $U(m)$, Sloane's OEIS [2, A188430], are

m	1	3	6	7	10	11	12	13	14	15	16	17	18	19
$U(m)$	1	2	3	4	4	5	6	7	7	8	6	7	8	9

We can now determine the value of $F(m)$ for each positive integer m. We assume that $L(m)=U(m)=0$ whenever $m \in\{2,4,5,8,9\}$.
Lemma 9. Let m be a positive integer and $F(m, i)$ denote the number of m-full sets A with $\max A=i$, where $L(m) \leq i \leq U(m)$. Then

$$
F(m, i)=\sum_{j=L(m-i)}^{\min \{U(m-i), i-1\}} F(m-i, j) .
$$

Proof. Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<\cdots<a_{k}=i$ be an m-full set. Then $A^{\prime}=A \backslash\left\{a_{k}\right\}$ is an $(m-i)$-full set such that $j=\max A^{\prime}<i$. Thus $L(m-i) \leq j \leq \min \{U(m-i), i-1\}$ and the result follows.

Theorem 10. Let m be a positive integer and denote the number of m-full sets by $F(m)$. Then $F(m)=\sum_{i=L(m)}^{U(m)} F(m, i)$.
Proof. Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<\cdots<a_{k}$ be an m-full set. Then $L(m) \leq a_{k} \leq U(m)$ and the result is now obvious.

The first few values of $F(m)$, Sloane's OEIS [2, A188431], are

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$F(m)$	1	0	1	0	0	1	1	0	0	1	1	2	2	1	2	1	2	3	4	5

Example 11. We evaluate $F(21)$. Using Theorem 7 and Theorem $8, L(21)=6$ and $U(21)=$ 12. Thus

$$
F(21)=F(21,6)+F(21,7)+F(21,8)+F(21,9)+F(21,10)+F(21,11)+F(21,12) .
$$

We need to compute $L(m)$ and $U(m)$ for $m=15,14,13,12,11,10,9$. We have

m	9	10	11	12	13	14	15
$L(m)$	0	4	5	5	6	7	5
$U(m)$	0	4	5	6	7	7	8

Noting the facts that $L(6)=U(6)=3$ and $L(7)=U(7)=4$ we therefore have

$$
\begin{aligned}
F(21) & =F(15,5)+F(13,6)+F(13,7)+F(12,5)+F(12,6)+F(11,5)+F(10,4) \\
& =F(10,4)+F(7,4)+F(6,3)+F(7,4)+F(6,3)+F(6,3)+F(6,3) \\
& =F(6,3)+F(7,4)+F(6,3)+F(7,4)+F(6,3)+F(6,3)+F(6,3) \\
& =7
\end{aligned}
$$

The seven 21-full sets are

$$
\begin{aligned}
& \{1,2,3,4,5,6\},\{1,2,4,6,8\},\{1,2,3,7,8\},\{1,2,4,5,9\}, \\
& \{1,2,3,6,9\},\{1,2,3,5,10\},\{1,2,3,4,11\}
\end{aligned}
$$

3 Acknowledgement

The second author of this research was supported by a grant from Ferdowsi University of Mashhad; No. MP89177MIZ. The authors wish to acknowledge the referees for their valuable comments and suggestions.

References

[1] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), 1409-1418.
[2] N. J. A. Sloane, The On-Line Encylopedia of Integer Sequences, 2011.

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11P81.
Keywords: perfect number, m-full set, partition of a positive integer.
(Concerned with sequences A188429, A188430, and A188431.)

Received June 3 2010; revised versions received December 3 2010; April 20 2011. Published in Journal of Integer Sequences, April 222011.

Return to Journal of Integer Sequences home page.

