Journal of Integer Sequences, Vol. 14 (2011),

A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters

Emrah Kılıç
TOBB University of Economics and Technology
Mathematics Department
06560 Ankara
Turkey
ekilic@etu.edu.tr
Yücel Türker Ulutas and Neşe Ömür
Kocaeli University
Mathematics Department
41380 İzmit Kocaeli
Turkey
turkery@kocaeli.edu.tr
neseomur@kocaeli.edu.tr

Abstract

In this note, we give a generalization of a formula for the generating function of powers of Horadam's sequence by adding two parameters. Thus we obtain a generalization of a formula of Mansour.

1 Introduction

Horadam [1, 2] defined the second-order linear recurrence sequence $\left\{W_{n}(a, b ; p, q)\right\}$, or briefly $\left\{W_{n}\right\}$, as follows:

$$
\begin{equation*}
W_{n+1}=p W_{n}+q W_{n-1}, \quad W_{0}=a, W_{1}=b \tag{1}
\end{equation*}
$$

where a, b and p, q are arbitrary real numbers for $n>0$. The Binet formula for the sequence $\left\{W_{n}\right\}$ is

$$
W_{n}=\frac{A \alpha^{n}-B \beta^{n}}{\alpha-\beta}
$$

where $A=b-a \beta$ and $B=b-a \alpha$. When $a=0, b=1$, and, $a=2, b=1$, denote W_{n} by U_{n} and V_{n}, respectively. If we take $p=1, q=1$, then $U_{n}=F_{n}$ (nth Fibonacci number) and $V_{n}=L_{n}$ (nth Lucas number).

Kıliç and Stanica [8] showed that for $r>0, n>0$, the sequence $\left\{W_{n}\right\}$ satisfies the following recursion

$$
W_{r(n+2)}=V_{r} W_{r(n+1)}-(-q)^{r} W_{r n} .
$$

Riordan [4] found the generating function for powers of Fibonacci numbers. He proved that the generating function $S_{k}(x)=\sum_{n \geq 0} F_{n}^{k} x^{n}$ satisfies the recurrence relation

$$
\left(1-a_{k} x+(-1)^{k} x^{2}\right) S_{k}(x)=1+k x \sum_{j=1}^{[k / 2]}(-1)^{j} \frac{a_{k j}}{j} S_{k-2 j}\left((-1)^{j} x\right)
$$

for $k \geq 1$, where $a_{1}=1, a_{2}=3, a_{s}=a_{s-1}+a_{s-2}$ for $s \geq 3$, and $\left(1-x-x^{2}\right)^{-j}=$ $\sum_{k \geq 0} a_{k j} x^{k-2 j}$. Horadam [2] gave a recurrence relation for $H_{k}(x)$ (see also [5]). Haukkanen [6] studied linear combinations of Horadam's sequences and the generating function of the ordinary product of two of Horadam's sequences.

Mansour [3] studied about the generating function for powers of Horadam's sequence given by $H_{k}(x ; a, b, p, q)=H_{k}(x)=\sum_{n \geq 0} W_{n}^{k} x^{n}$. Then he showed that the generating function $H_{k}(x)$ can be expressed the ratio of two k by k determinants as well as he gave some applications for the generating function $H_{k}(x)$.

In this study, we consider the generating function for powers of Horadam's sequence defined by

$$
\Re_{k, t, r}(x ; a, b, p, q)=\Re_{k, t, r}(x)=\sum_{n \geq t} W_{r n}^{k} x^{n} .
$$

We shall derive a ratio to express the generating function $\Re_{k, t, r}(x)$ by using the method of Mansour. Moreover, we give applications of our results.

2 The Main Result

Firstly, we define two k by k matrices, in order to express the $\Re_{k, t, r}(x)$ as a ratio of two determinants. Let $\Delta_{k, r}=\left(\Delta_{k, r}(i, j)\right)_{1 \leq i, j \leq k}=\Delta_{k, r}(p, q)$ be the $k \times k$ matrix have the form

$$
\begin{aligned}
& \Delta_{k, r}(p, q) \\
& =\left[\begin{array}{cccc}
1-x v_{r}^{k}-x^{2}\left(-(-q)^{r}\right)^{k} & -x v_{r}^{k-1}\left(-(-q)^{r}\right)\binom{k}{1} & \ldots & -x v_{r}\left(-(-q)^{r}\right)^{k-1}\binom{k}{k-1} \\
-v_{r}^{k-1} x & 1-x v_{r}^{k-2}\left(-(-q)^{r}\right)\binom{k-1}{1} & \ldots & -x\left(-(-q)^{r}\right)^{k-1}\binom{k-1}{k-1} \\
-v_{r}^{k-2} x & -x v_{r}^{k-3}\left(-(-q)^{r}\right)\binom{k-2}{1} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
-v_{r}^{2} x & -x v_{r}\left(-(-q)^{r}\right)\binom{2}{1} & \ldots & 0 \\
-v_{r} x & -x\left(-(-q)^{r}\right)\binom{1}{1} & \ldots & 1
\end{array}\right]
\end{aligned}
$$

and let $\delta_{k, t, r}=\delta_{k, t, r}(a, b, p, q)$ be the $k \times k$ matrix have the form

$$
\begin{aligned}
& \delta_{k, t, r}(a, b, p, q) \\
&= {\left[\begin{array}{cccc}
w_{r t}^{k}+x g_{k} & -x v_{r}^{k-1}\left(-(-q)^{r}\right)\binom{k}{1} & \ldots & -x v_{r}\left(-(-q)^{r}\right)^{k-1}\binom{k}{k-1} \\
x g_{k-1} & 1-x v_{r}^{k-2}\left(-(-q)^{r}\right)\binom{k-1}{1} & \ldots & -x\left(-(-q)^{r}\right)^{k-1}\binom{k-1}{k-1} \\
x g_{k-2} & -x v_{r}^{k-3}\left(-(-q)^{r}\right)\binom{k-2}{1} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
x g_{2} & -x v_{r}\left(-(-q)^{r}\right)\binom{2}{1} & \ldots & 0 \\
x g_{1} & -x\left(-(-q)^{r}\right)\binom{1}{1} & \cdots & 1
\end{array}\right], }
\end{aligned}
$$

where $g_{j}=\left(w_{r(t+1)}^{j}-v_{r}^{j} w_{r t}^{j}\right) w_{r t}^{k-j}$ for all $j=1,2, \ldots k$.
Stanica [7] found the generating function of powers of terms of $\left\{W_{n}\right\}$ given by [1], $\sum_{n=0}^{\infty} W_{n}^{k} x^{n}$. Considering Stanica's result, we give the following result for the generating function

$$
\Re_{k, t, r}(x)=\sum_{n=t}^{\infty} W_{r n}^{k} x^{n}
$$

as the following Lemma 1.
Lemma 1. For odd k,

$$
\begin{aligned}
\Re_{k, t, r}(x)= & \frac{1}{(\alpha-\beta)^{k}} \sum_{j=0}^{\frac{k-1}{2}}(-A B)^{j}\binom{k}{j} \\
& \times \frac{A^{k-2 j}-B^{k-2 j}+(-q)^{r j}\left(B^{k-2 j} \alpha^{r(k-2 j)}-A^{k-2 j} \beta^{r(k-2 j)}\right) x}{1-(-q)^{r j} V_{r(k-2 j)} x-q^{r k} x^{2}} \\
& -\sum_{n=0}^{t-1} W_{r n}^{k} x^{n}
\end{aligned}
$$

and for even k,

$$
\begin{aligned}
\Re_{k, t, r}(x)= & \frac{1}{(\alpha-\beta)^{k}} \sum_{j=0}^{\frac{k}{2}-1}(-A B)^{j}\binom{k}{j} \\
& \times \frac{A^{k-2 j}+B^{k-2 j}-(-q)^{r j}\left(B^{k-2 j} \alpha^{r(k-2 j)}+A^{k-2 j} \beta^{r(k-2 j)}\right) x}{1-(-q)^{r j} V_{r(k-2 j)} x+q^{r k} x^{2}} \\
& +\binom{k}{k / 2} \frac{(-A B)^{k / 2}}{1-(-q)^{k / 2} x}-\sum_{n=0}^{t-1} W_{r n}^{k} x^{n} .
\end{aligned}
$$

Proof. The proof easily follows from [7].
For further use, we define a family $\left\{A_{k, d, t, r}\right\}_{d=1}^{k}$ of generating functions by

$$
\begin{equation*}
A_{k, d, t, r}(x)=\sum_{n=t}^{\infty} W_{r n}^{k-d} W_{r(n+1)}^{d} x^{n+1} \tag{2}
\end{equation*}
$$

Now, we give two relations between the generating functions $A_{k, d, t, r}(x)$ and $\Re_{k, t, r}(x)$.
Lemma 2. For $k \geq 1$, positive integer r and non-negative integer t,

$$
\begin{array}{r}
\left(1-V_{r}^{k} x+\left(-(-q)^{r}\right)^{k} x^{2}\right) \Re_{k, t, r}(x)-x \sum_{j=1}^{k-1}\binom{k}{j}\left(-(-q)^{r}\right)^{j} V_{r}^{k-j} A_{k, k-j, t, r}(x) \\
=W_{r t}^{k} x^{t}+\left(W_{r(t+1)}^{k}-V_{r}^{k} W_{r t}^{k}\right) x^{t+1}
\end{array}
$$

Proof. Using the binomial theorem, we get

$$
\begin{aligned}
W_{r(n+2)}^{k} & =\left(V_{r} W_{r(n+1)}-(-q)^{r} W_{r n}\right)^{k} \\
& =V_{r}^{k} W_{r(n+1)}^{k}+\sum_{j=1}^{k-1}\binom{k}{j}\left(-(-q)^{r}\right)^{j} V_{r}^{k-j} W_{r(n+1)}^{k-j} W_{r n}^{j}+\left(-(-q)^{r}\right)^{k} W_{r n}^{k}
\end{aligned}
$$

Multiplying by x^{n+2} and summing over all $n \geq t$, using definition [2], we get

$$
\begin{aligned}
x^{n+2} W_{r(n+2)}^{k}= & x^{n+2} V_{r}^{k} W_{r(n+1)}^{k}+x^{n+2} \sum_{j=1}^{k-1}\binom{k}{j}\left(-(-q)^{r}\right)^{j} V_{r}^{k-j} W_{r(n+1)}^{k-j} W_{r n}^{j} \\
& +x^{n+2}\left(-(-q)^{r}\right)^{k} W_{r n}^{k}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \Re_{k, t, r}(x)-W_{r t}^{k} x^{t}-W_{r(t+1)}^{k} x^{t+1} \\
= & x V_{r}^{k} \Re_{k, t, r}(x)-x^{t+1} V_{r}^{k} W_{r t}^{k} \\
& +x \sum_{j=1}^{k-1}\binom{k}{j}\left(-(-q)^{r}\right)^{j} V_{r}^{k-j} A_{k, k-j, r}(x)+x^{2}\left(-(-q)^{r}\right)^{k} \Re_{k, t, r}(x),
\end{aligned}
$$

which, by a simple arrangement, completes the proof.

Lemma 3. For any $k \geq 1$, positive integer r, non-negative integer t, and $d \geq t+1$,

$$
\begin{aligned}
A_{k, d, t, r}(x)-x^{t+1} W_{r t}^{k-d} W_{r(t+1)}^{d}= & x V_{r}^{d}\left(\Re_{k, t, r}(x)-x^{t} W_{r t}^{k}\right) \\
& +x \sum_{j=1}^{d}\binom{d}{j}\left(-(-q)^{r}\right)^{j} V_{r}^{d-j} A_{k, k-j, t, r}(x) .
\end{aligned}
$$

Proof. Using the binomial theorem, we have

$$
\begin{aligned}
W_{r n}^{k-d} W_{r(n+1)}^{d} & =W_{r n}^{k-d}\left(V_{r} W_{r n}-(-q)^{r} W_{r(n-1)}\right)^{d} \\
& =W_{r n}^{k-d} \sum_{j=0}^{d}\binom{d}{j} V_{r}^{d-j}\left(-(-q)^{r}\right)^{j} W_{r n}^{d-j} W_{r(n-1)}^{j}
\end{aligned}
$$

Multiplying by x^{n+1} and summing over all $n \geq t+1$, we obtain the claimed result:

$$
\begin{aligned}
& A_{k, d, t, r}(x)-x^{t+1} W_{r t}^{k-d} W_{r(t+1)}^{d}=x V_{r}^{d}\left(\Re_{k, t, r}(x)-x^{t} W_{r t}^{k}\right) \\
&+x \sum_{j=1}^{d}\binom{d}{j}\left(-(-q)^{r}\right)^{j} V_{r}^{d-j} A_{k, k-j, t, r}(x) .
\end{aligned}
$$

Now, we shall mention our main result:
Theorem 4. For any $k \geq 1$, positive integer r, non-negative integer t, the generating function $\Re_{k, t, r}(x)$ is

$$
\begin{equation*}
\frac{\operatorname{det}\left(\delta_{k, t, r}\right)}{\operatorname{det}\left(\Delta_{k, r}\right)} \tag{3}
\end{equation*}
$$

Proof. By using Lemma 1 and Lemma 2, we obtain

$$
\Delta_{k, r}\left[\Re_{k, t, r}(x), A_{k, k-1, t, r}(x), A_{k, k-2, t, r}(x), \ldots A_{k, 1, t, r}(x)\right]^{T}=v_{k, t, r},
$$

where $v_{k, t, r}$ is given by

$$
\begin{aligned}
& {\left[W_{r t}^{k} x^{t}+\left(W_{r(t+1)}^{k}-V_{r}^{k} W_{r t}^{k}\right) x^{t+1},\left(W_{r t} W_{r(t+1)}^{k-1}-V_{r}^{k-1} W_{r t}^{k}\right) x^{t+1}\right.} \\
& \left.\left(W_{r t}^{2} W_{r(t+1)}^{k-2}-V_{r}^{k-2} W_{r t}^{k}\right) x^{t+1}, \ldots,\left(W_{r t}^{k-1} W_{r(t+1)}-V_{r} W_{r t}^{k}\right) x^{t+1}\right]
\end{aligned}
$$

Hence the solution of the above equation gives the generating function $\Re_{k, t, r}(x)=\left(\operatorname{det}\left(\delta_{k, t, r}\right)\right) /\left(\operatorname{det}\left(\Delta_{k, r}\right)\right)$.

3 Applications

We state some applications of our main result by the following tables:

Table 1: The generating function for the powers of Fibonacci numbers

k	t	r	The generating function $\Re_{k, t, r}(x ; 0,1,1,1)$
1	1	2	$\frac{1}{1-3 x+x^{2}}$
2	1	2	$\frac{1+x}{(1-x)\left(1-7 x+x^{2}\right)}$
3	1	2	$\frac{1+6 x+x^{2}}{1-21 x+56 x^{2}-21 x^{3}+x^{4}}$
4	1	2	$\frac{16+1712 x+172 x^{2}+17 x^{3}}{(1-x)\left(1-34 x+x^{2}\right)\left(1-1154 x+x^{2}\right)}$

Table 2: The generating function for the powers of Lucas numbers

k	t	r	The generating function $\Re_{k, t, r}(x ; 2,1,1,1)$
1	1	2	$\frac{3-2 x}{1-3 x+x^{2}}$
2	1	2	$\frac{9-23 x+4 x^{2}}{(1-x)\left(1-7 x+x^{2}\right)}$
3	1	2	$\frac{27-224+14 x^{2}-8 x^{3}}{1-21 x+56 x^{2}-21 x^{3}+x^{4}}$
4	1	2	$\frac{81-2054+459322 x^{2}-78298 x^{3}-2864 x^{4}}{(1-x)\left(1-7 x+x^{2}\right)\left(1-47 x+x^{2}\right)}$

Table 3: The generating function for the powers of Pell numbers

k	t	r	The generating function $\Re_{k, t, r}(x ; 0,1,2,1)$
1	1	2	$\frac{2}{x^{2}-6 x+1}$
2	1	2	$\frac{4+4 x}{(1-x)\left(1-34 x+x^{2}\right)}$
3	1	2	$\frac{8\left(1+12 x+x^{2}\right)}{1-204 x+1190 x^{2}-204 x^{3}+x^{4}}$
4	1	2	$\frac{16(x+1)\left(1+106 x+x^{2}\right)}{(1-x)\left(1-34 x+x^{2}\right)\left(1-1154 x+x^{2}\right)}$

Table 4: The generating function for the powers of Chebyshev polynomials of the second kind

k	t	r	The generating function $\Re_{k, t, r}(x ; 1,2 t, 2 t,-1)$
1	1	2	$\frac{-1+4 t^{2}-x}{1+(2-4)^{2} x+x^{2}}$
2	1	2	$\frac{\left(16 t^{4}-8 t^{2}+1\right)+\left(16 t^{2}-16 t^{4}-2\right) x+x^{2}}{(1-x)\left(1+\left(-2+12 t^{2}\right) x+x^{2}\right)}$
3	1	2	$\frac{12 t^{2}-48 t^{4}+64 t^{6}+27-\left(4-24 t^{2}+288 t^{4}-256 t^{6}+576 t^{8}\right) x+\left(40 t^{2}-336 t^{4}+64 t^{6}-3\right) x^{2}-x^{3}}{1+\left(-64 t^{6}+96 t^{4}-40 t^{2}+4\right) x+\left(256 t^{8}-512 t^{6}+336 t^{4}-80 t^{2}+6\right) x^{2}+\left(-64 t^{6}+96 t^{4}-40 t^{2}+4\right) x^{3}+x^{4}}$

Fibonacci numbers. If $a=0$ and $p=q=b=1$, then Theorem 4 for $k=1,2,3,4$ yields Table 1.

Lucas numbers. If $a=2$ and $p=q=b=1$, then Theorem 4 for $k=1,2,3,4$ yields Table 2.

Pell numbers. If $a=0$ and $p=2, q=b=1$, then Theorem 4 for $k=1,2,3,4$ yields Table 3.

Chebyshev polynomials of the second kind. If $a=1, b=p=2 t$ and $q=-1$, then Theorem 4 for $k=1,2,3$ yields Table 4.

Applying Theorem 4 for $k=1,2,3$, then we give the following corollary.
Corollary 5. Let $k=1,2,3$. Then the generating function $\Re_{k, t, r}(x ; a, b, p, q)$ is given by $\hat{A}_{k, t, r}(x) / \hat{E}_{k, t, r}(x)$, where

$$
\begin{aligned}
\hat{A}_{1,1,2}(x)= & a q+b p-a q^{2} x \\
\hat{A}_{2,1,2}(x)= & a^{2} q^{2}+b^{2} p^{2}+2 a b p q+q^{2}\left(-2 a^{2} q^{2}+b^{2} p^{2}-2 a b p^{3}-2 a^{2} p^{2} q-2 a b p q\right) x \\
& +a^{2} q^{6} x^{2} \\
\hat{A}_{3,1,2}(x)= & b^{3} p^{3}+3 a b^{2} p^{2} q+3 a^{2} b p q^{2}+a^{3} q^{3}-\left(3 a^{3} p^{4} q^{4}+7 a^{3} p^{2} q^{5}\right. \\
& +3 a^{3} q^{6}+6 a^{2} b p^{5} q^{3}+15 a^{2} b p^{3} q^{4}+6 a^{2} b p q^{5}+6 a b^{2} p^{4} q^{3} \\
& \left.-2 b^{3} p^{5} q^{2}-4 b^{3} p^{3} q^{3}+3 a b^{2} p^{6} q^{2}\right) x+\left(3 a^{3} p^{4} q^{7}+7 a^{3} p^{2} q^{8}+3 a^{3} q^{9}\right. \\
& +3 a^{2} b p^{5} q^{6}+6 a^{2} b p^{3} q^{7}+3 a^{2} b p q^{8}-3 a b^{2} p^{4} q^{6} \\
& \left.-3 a b^{2} p^{2} q^{7}+b^{3} p^{3} q^{6}\right) x^{2}-a^{3} q^{12} x^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{E}_{1,1,2}(x)= & 1-\left(p^{2}+2 q\right) x+q^{2} x^{2} \\
\hat{E}_{2,1,2}(x)= & \left(q^{2} x-1\right)\left(-1+\left(p^{4}+4 p^{2} q+2 q^{2}\right) x-q^{4} x^{2}\right), \\
\hat{E}_{3,1,2}(x)= & \left(-1+q^{2}\left(12 q+p^{2}\right) x-q^{6} x^{2}\right) \\
& \times\left(-1+\left(2 q+p^{2}\right)\left(4 p^{2} q+p^{4}+q^{2} x-q^{6} x^{2}\right) .\right.
\end{aligned}
$$

References

[1] A. F. Horadam, Basic properties of a certain generalized sequence of numbers,Fibonacci Quart. 3 (1965), 161-176.
[2] A.F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), 437-446.
[3] T. Mansour, A formula for the generating functions of powers of Horadam's sequence, Australasian J. Combinatorics 30 (2004), 207-212.
[4] J. Riordan, Generating function for powers of Fibonacci numbers, Duke Math. J. 29 (1962), 5-12.
[5] P. Haukkanen and J. Rutkowski, On generating functions for powers of recurrence sequences, Fibonacci Quart. 29 (1991), 329-332.
[6] P. Haukkanen, A note on Horadam's sequence, Fibonacci Quart., 40 (2002), 358-361.
[7] P. Stanica, Generating functions, weighted and non-weighted sums for powers of secondorder recurrence sequences, Fibonacci Quart. 41 (2003), 321-333.
[8] E. Kılıç and P. Stanica, Factorizations of binary polynomial recurrences by matrix methods, Rocky Mount. J. Math., to appear.

2010 Mathematics Subject Classification: Primary 11B37; Secondary 11B39, 05A15.
Keywords: second-order linear recurrence, generating function.
(Concerned with sequences A000032, A000045, and A000129.)

Received December 6 2010; revised version received January 27 2011; May 3 2011. Published in Journal of Integer Sequences, May 32011.

Return to Journal of Integer Sequences home page.

