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Abstract

A partition of a non-negative integer n is a way of writing n as a sum of a nonde-

creasing sequence of parts. The present paper provides the number of partitions of an

integer n into parts of a specified number of different sizes. We establish new formulas

for such partitions with particular interest to the number of partitions of n into parts

of two sizes. A geometric application is given at the end of this paper.
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1 Introduction and definitions

Let n and k be integers. A partition of n into k parts is an integral solution of the system

{

n = n1 + · · · + nk;

1 ≤ n1 ≤ · · · ≤ nk.

Euler was the first to undertake the problem of counting an integer’s partitions. Since
then, mathematicians have been more and more interested in integer partitions and their
fascinating properties. In fact, in the theory of integer partitions, various restrictions on the
nature of partitions are often considered. One may require that the ni’s be distinct, odd or
even, or that n must be split into exactly k parts, etc. More on integer partitions can be
found in [1, 2, 3, 4, 5] and [7, 8, 9].

Here, we are interested in partitions of the number n into parts of precisely s different
sizes. Extending prior results, we derive several identities linking this kind of partitions to
the number of divisors τ(n). In addition, we obtain new recurrence formulas to count the
number of such partitions and a new identity to count the number of partitions of an integer
into two sizes of parts.

Let t(n, k, s) be the number of partitions of n into k parts of precisely s different sizes,

k = s, . . . , n − s(s−1)
2

, it is an integral solution of the system



















n = a1 n1 + · · · + as ns;

1 ≤ n1 < · · · < ns;

a1 + · · · + as = k;

a1, . . . , as ≥ 1.

(1)

The total number of partitions of n into s different sizes of parts is denoted t(n, s) (see
A002133 for t(n, 2)).

If s is specified, then t(n, k, s) = 0 if k ≤ s − 1 and either k > n − s(s−1)
2

or n <

max{k,
s(s+1)

2
}. Then we have

t(n, s) =

2n−s(s−1)
2

∑

k=s

t(n, k, s) =
∑

k≥1

t(n, k, s). (2)

For instance, if s = 1, then k ≥ 1, n ≥ k, and

t(n, k, 1) =

{

1, if n is a multiple of k;

0, otherwise.
(3)

Therefore
∑

n≥k

t(n, k, 1) qn =
qk

1 − qk
·
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Also, it is easy to see that

t(n, 2, 2) =

⌊

n − 1

2

⌋

,

where ⌊x⌋ is the greatest integer ≤ x. So, we have

∑

n≥k

t(n, 2, 2) qn = q3 + q4 + 2q5 + 2q6 + 3q7 + 3q8 + · · ·

=
q3

1 − q
+

q5

1 − q
+

q7

1 − q
+ · · ·

=
q3

(1 − q)(1 − q2)
·

P. A. MacMahon [6] was the first mathematician interested in this kind of partitions. Also,
Emeric Deutsch studied the number of partitions of n into exactly two odd sizes of parts
(see A117955) and the number of partitions of n into exactly two sizes of parts, one odd and
one even (see A117956).

2 Preliminary results

Throughout the remainder of the paper, let τ(k) and let τd↓(k) be respectively the number
of positive divisors of k and the number of positive divisors of k less than or equal to d.

In this section we state some recurrence formulas involving the number t(n, k, s). The
main identity of the present work is based on the following results:

Theorem 1. Let n, k and s be integers. For k ≥ s ≥ 2, n ≥ k + s(s−1)
2

and n ≥

max{k,
s(s+1)

2
}, we have

t(n, k, s) =

⌊ 2n−s(s−1)
2k

⌋
∑

i=1

k−s+1
∑

j=1

t(n − ki, k − j, s − 1), (4)

and

t(n, k, 2) =

⌊n−1
k

⌋
∑

i=1

τk−1↓(n − ki). (5)

Proof. Note that every part ni in System (1), for i = 2, . . . , s, can be written as ni = n1 +di,
di ≥ 1. Considering n1 and a1 as parameters, System (1) can be rewritten as follows:



















n − kn1 = a2 d2 + · · · + as ds;

1 ≤ d2 < · · · < ds;

a2 + · · · + as = k − a1;

a1, . . . , as ≥ 1.

(6)
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Hence, we get

t(n, k, s) =
∑

n1∈N

∑

a1∈A

t(n − kn1, k − a1, s − 1),

where N and A are the sets containing the values of n1 and a1 respectively.
The smallest values of n1 and a1 is 1. The largest value of n1 is found by setting ai+1 = 1

and di+1 = i, for i = 1, . . . , s − 1, in the first equation of System (6). Then, we get

1 ≤ n1 ≤

⌊

2n − s(s − 1)

2k

⌋

.

Setting ai = 1, for i = 2, . . . , s in the third equation of System (6), one can see that the
largest value of a1 is k − s + 1.

To prove (5) we apply (4) with s = 2,

t(n, k, 2) =

⌊n−1
k

⌋
∑

i=1

k−1
∑

j=1

t(n − ki, j, 1).

So by (3) we get

k−1
∑

j=1

t(n − ki, j, 1) = τk−1↓(n − ki).

This implies (5).

Theorem 1 allows the easy recovery of known identities such as,

t(n, 2, 2) =

⌊

n − 1

2

⌋

. (7)

Also, it allows to deduce some new values for t(n, k, 2). For instance, for k = 3 . . . 6, we have

Corollary 2. For n ≥ 3, we have

t(n, 3, 2) =



















































n − 3

3
+

⌊

n − 3

6

⌋

, if n ≡ 0 (mod 3);

n − 1

3
+

⌊

n − 1

6

⌋

, if n ≡ 1 (mod 3);

n − 2

3
+

⌊

n + 1

6

⌋

, if n ≡ 2 (mod 3).
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t(n, 4, 2) =











































































n − 4

2
+

⌊

n − 4

12

⌋

, if n ≡ 0 (mod 4);

n − 1

4
+

⌊

n − 1

12

⌋

, if n ≡ 1 (mod 4);

n − 2

2
+

⌊

n + 2

12

⌋

, if n ≡ 2 (mod 4);

n − 3

4
+

⌊

n + 5

12

⌋

, if n ≡ 3 (mod 4).

t(n, 5, 2) =



































































































n − 5

5
+

⌊

n − 5

10

⌋

+

⌊

n − 5

15

⌋

+

⌊

n − 5

20

⌋

, if n ≡ 0 (mod 5);

n − 1

5
+

⌊

n − 1

10

⌋

+

⌊

n + 4

15

⌋

+

⌊

n − 1

20

⌋

, if n ≡ 1 (mod 5);

n − 2

5
+

⌊

n + 3

10

⌋

+

⌊

n − 2

15

⌋

+

⌊

n + 3

20

⌋

, if n ≡ 2 (mod 5);

n − 3

5
+

⌊

n − 3

10

⌋

+

⌊

n + 2

15

⌋

+

⌊

n + 7

20

⌋

, if n ≡ 3 (mod 5);

n − 4

5
+

⌊

n + 1

10

⌋

+

⌊

n + 1

15

⌋

+

⌊

n + 11

20

⌋

, if n ≡ 4 (mod 5).
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t(n, 6, 2) =































































































































n − 6

2
+

⌊

n − 6

12

⌋

+

⌊

n − 6

30

⌋

, if n ≡ 0 (mod 6);

n − 1

6
+

⌊

n − 1

30

⌋

, if n ≡ 1 (mod 6);

n − 2

3
+

⌊

n − 2

12

⌋

+

⌊

n + 4

30

⌋

, if n ≡ 2 (mod 6);

n − 3

3
+

⌊

n + 9

30

⌋

, if n ≡ 3 (mod 6);

n − 4

3
+

⌊

n + 2

12

⌋

+

⌊

n + 14

30

⌋

, if n ≡ 4 (mod 6);

a

n − 5

6
+

⌊

n + 19

30

⌋

, if n ≡ 5 (mod 6).

Proof. The results follow immediately from Theorem 1.

Corollary 3. For n ≥ 3 and ⌈n+1
2
⌉ ≤ k ≤ n − 1, we have

t(n, k, 2) = τ(n − k).

Proof. On the one hand, the sum in (5) is reduced to one element if 1 ≤ n−1
k

< 2, i.e.,

n − 1

2
< k ≤ n − 1.

On the other hand, τk−1↓(n − k) = τ(n − k), if k − 1 ≥ n − k, i.e.,

k ≥
n + 1

2
·

Hence the result follows.

Remark 4. From Corollary 3, for n ≥ 2k + 1 and k ≥ 1, we have

t(n, n − k, 2) = τ(k).

For instance, for n ≥ 27, we get

t(n, n − 13, 2) = τ(13) = 2.
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3 Main identity

The aim of this section is to derive an explicit formula for t(n, k, 2). Before giving the next
Theorem, we introduce some notation. Let

• ϕi(j) =

{

1, if j ≡ 0 (mod i);

0, otherwise.

• χk (i, j) =

{

0, if i 6= 0 and gcd(k, j) 6= 1 and gcd(i, j) = 1;

1, otherwise.

• Wk = [Wk(i, j)], 0 ≤ i ≤ k − 1, 1 ≤ j ≤ k − 1 be a matrix, whose elements are given
by

Wk (i, j) =

{

d, if i ∈ Ik,j(d) and χk (i, j) = 1;

j, otherwise.

where, 0 ≤ d ≤
j

gcd(k, j)
− 1 and

Ik,j(d) =

{

i =

(⌊

dk − 1

j

⌋

+ a

)

j − dk / 1 ≤ a ≤

⌊

(d + 1)k − 1

j

⌋

−

⌊

dk − 1

j

⌋}

.

Remark 5. The construction of matrix Wk is special, it is filled column by column as follows:

1. Case χk (i, j) = 1
Each value of the parameter d generates some values of the parameter a, which in
return produce the values of the lines i, this process allows to define the elements of
the concerned lines.

2. Case χk (i, j) = 0
The empty elements are replaced by the number j of the column.

For example, for k = 6, we get

W6 =

















0 0 0 0 0
0 2 3 4 4
0 0 3 1 3
0 2 0 4 2
0 0 3 0 1
0 2 3 4 0

















.

The formulas of Corollary 2 are special cases that motivate the following generalization.

Theorem 6. For n ≥ 3, n ≡ i (mod k), 2 ≤ k ≤ n − 1, we have
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t(n, k, 2) =























k−1
∑

j=1

⌊

gcd(k, j)

kj
(n − k)

⌋

, if i = 0;

k−1
∑

j=1

χk(i, j)

⌊

1 + gcd(k, j)
n − i − k − kWk(i, j)

kj

⌋

, otherwise.

Proof. Case 1. n = kl, i.e., i = 0. Using Theorem 1, we get

t(n, k, 2) =
l−1
∑

h=1

τk−1↓(kh)

=
k−1
∑

j=1

l−1
∑

h=1

ϕj(kh).

The divisors of kh which are multiples of j are of the form
kjdh

gcd(k, j)
. Then

t(n, k, 2) =
k−1
∑

j=1

⌊

gcd(k, j)

j
(l − 1)

⌋

=
k−1
∑

j=1

⌊

gcd(k, j)

kj
(n − k)

⌋

.

Case 2. n = kl + i, 1 ≤ i ≤ k − 1. Using Theorem 1, we get

t(n, k, 2) =
l−1
∑

h=0

τk−1↓(kh + i)

=
k−1
∑

i=1

l−1
∑

h=0

ϕj(kh + i).

It is straightforward to verify that the divisors of kh + i that are multiples of j are of the
following form

χk(i, j)

(

kjdh

gcd(k, j)
+ i + kWk(i, j)

)

.

Hence,

t(n, k, 2) =
k−1
∑

j=1

χk(i, j)

⌊

j + gcd(k, j)
(

l − 1 − Wk(i, j)
)

j

⌋

=
k−1
∑

j=1

χk(i, j)

⌊

j + gcd(k, j)
(

n−i
k

− 1 − Wk(i, j)
)

j

⌋

=
k−1
∑

j=1

χk(i, j)

⌊

1 +
gcd(k, j)

kj

(

n − i − k − kWk(i, j)
)

⌋

.
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Example 7. k = 6

1. For i = 0, n = 6l, we get

t(6l, 6, 2) =
5

∑

j=1

⌊

n − 6

6j
gcd(6, j)

⌋

=
n − 6

2
+

⌊

n − 6

12

⌋

+

⌊

n − 6

30

⌋

.

2. For i = 1, n = 6l + 1 we get

t(6l + 1, 6, 2) =
5

∑

j=1

χ6(1, j)

⌊

1 +
gcd(6, j)

6j

(

n − 7 − 6W6(1, j)
)

⌋

=

⌊

1 +
n − 7

6

⌋

+

⌊

1 +
n − 7 − 24

30

⌋

=
n − 1

6
+

⌊

n − 1

30

⌋

.

3. For i = 2, n = 6l + 2 we get

t(6l + 2, 6, 2) =
5

∑

j=1

χ6(2, j)

⌊

1 +
gcd(6, j)

6j

(

n − 8 − 6W6(2, j)
)

⌋

=

⌊

1 +
n − 8

6

⌋

+

⌊

1 +
2(n − 8)

12

⌋

+

⌊

1 +
2(n − 8 − 6)

24

⌋

+

⌊

1 +
n − 8 − 18

30

⌋

=
n − 2

3
+

⌊

n − 2

12

⌋

+

⌊

n + 4

30

⌋

.

4. For i = 3, n = 6l + 3 we get

t(6l + 3, 6, 2) =
5

∑

j=1

χ6(3, j)

⌊

1 +
gcd(6, j)

6j

(

n − 9 − 6W6(3, j)
)

⌋

=

⌊

1 +
n − 9

6

⌋

+

⌊

1 +
3(n − 9)

18

⌋

+

⌊

1 +
n − 9 − 12

30

⌋

=
n − 3

3
+

⌊

n + 9

30

⌋

.
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5. For i = 4, n = 6l + 4 we get

t(6l + 4, 6, 2) =
5

∑

j=1

χ6(4, j)

⌊

1 +
gcd(6, j)

6j

(

n − 10 − 6W6(4, j)
)

⌋

=

⌊

1 +
n − 10

6

⌋

+

⌊

1 +
2(n − 10)

12

⌋

+

⌊

1 +
2(n − 10)

24

⌋

+

⌊

1 +
n − 10 − 6

30

⌋

=
n − 4

3
+

⌊

n + 2

12

⌋

+

⌊

n + 14

30

⌋

.

6. For i = 5, n = 6l + 5 we get

t(6l + 5, 6, 2) =
5

∑

j=1

χ6(5, j)

⌊

1 +
gcd(6, j)

6j

(

n − 11 − 6W6(5, j)
)

⌋

=

⌊

1 +
n − 11

6

⌋

+

⌊

1 +
n − 11

30

⌋

=
n − 5

6
+

⌊

n + 19

30

⌋

.

Using Theorem 6, we obtain the following table for n ≤ 20.

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 t(n, 2)
3 1 1
4 1 1 2
5 2 2 1 5
6 2 1 2 1 6
7 3 3 2 2 1 11
8 3 3 2 2 2 1 13
9 4 3 2 3 2 2 1 17
10 4 4 5 1 3 2 2 1 22
11 5 5 3 4 2 3 2 2 1 27
12 5 4 4 3 3 2 3 2 2 1 29
13 6 6 4 5 2 4 2 3 2 2 1 37
14 6 6 7 5 5 1 4 2 3 2 2 1 44
15 7 6 4 3 4 4 2 4 2 3 2 2 1 44
16 7 7 7 5 6 4 3 2 4 2 3 2 2 1 55
17 8 8 5 7 3 5 3 4 2 4 2 3 2 2 1 59
18 8 7 9 6 7 4 5 2 4 2 4 2 3 2 2 1 68
19 9 9 6 7 3 7 3 4 3 4 2 4 2 3 2 2 1 71
20 9 9 9 5 7 5 8 3 3 3 4 2 4 2 3 2 2 1 81

Table 1: t(n, k, 2), 2 ≤ k ≤ 19, 3 ≤ n ≤ 20.
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Also, Theorem 6 allows us to obtain t(n, 2) for large values of n, the following table is
introduced to illustrate a few.

n 100 500 1000 1500 2000 2500 3000 3500 4000
t(n, 2) 1135 11103 28340 54652 70128 91440 136790 144687 169953

Table 2: Some values of t(n, 2).

4 Application

Let Pn be an n-side regular polygon. We say that an inscribed quadrilateral in Pn is proper
if none of its sides belongs to Pn.

Theorem 8. Let n ≥ 9 be an odd integer and let ♦(n) be the number of inscribed, non-

isometric and proper quadrilaterals in Pn, using three equal chords. Then we have

♦(n) =























n − 5

4
+

⌊

n − 5

12

⌋

, if n ≡ 1 (mod 4);

n − 7

4
+

⌊

n + 1

12

⌋

, if n ≡ 3 (mod 4).

Proof. The chords belonging to an inscribed quadrilateral in Pn, separate the number of
vertices of Pn into four parts, which do not include the quadrilateral vertices. In other
words, each such quadrilateral generates a partition of n − 4 into four parts, using only two
types of parts and vice versa. Then

♦(n) = t(n − 4, 4, 2),

and the result yields from Corollary 2.

Figure 1, illustrates this idea in P19. The first quadrilateral is generated by the partition
15 = 1 + 1 + 1 + 12, the second by 15 = 2 + 2 + 2 + 9, the third by 15 = 3 + 3 + 3 + 6 and
the fourth by 15 = 3 + 4 + 4 + 4.
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Figure 1: The non-isometric proper quadrilaterals inscribed in P19,
using three equal chords.
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