

Journal of Integer Sequences, Vol. 14 (2011), Article 11.6.3

A Note on a Problem of Motzkin Regarding Density of Integral Sets with Missing Differences

Ram Krishna Pandey¹ Department of Mathematics Indian Institute of Technology Patliputra Colony, Patna – 800013 India

ram@iitp.ac.in

Amitabha Tripathi² Department of Mathematics Indian Institute of Technology Hauz Khas, New Delhi – 110016 India atripath@maths.iitd.ac.in

Abstract

For a given set M of positive integers, a problem of Motzkin asks to determine the maximal density $\mu(M)$ among sets of nonnegative integers in which no two elements differ by an element of M. The problem is completely settled when $|M| \leq 2$, and some partial results are known for several families of M when $|M| \geq 3$. In 1985 Rabinowitz & Proulx provided a lower bound for $\mu(\{a, b, a + b\})$ and conjectured that their bound was sharp. Liu & Zhu proved this conjecture in 2004. For each $n \geq 1$, we determine $\kappa(\{a, b, n(a + b)\})$, which is a lower bound for $\mu(\{a, b, n(a + b)\})$, and conjecture this to be the exact value of $\mu(\{a, b, n(a + b)\})$.

1 Introduction

For $x \in \mathbb{R}$ and a set S of nonnegative integers, let S(x) denote the number of elements $n \in S$ such that $n \leq x$. The upper and lower densities of S, denoted by $\overline{\delta}(S)$ and $\underline{\delta}(S)$ respectively, are given by

$$\overline{\delta}(S) := \limsup_{x \to \infty} \frac{S(x)}{x}, \quad \underline{\delta}(S) := \liminf_{x \to \infty} \frac{S(x)}{x}$$

If $\overline{\delta}(S) = \underline{\delta}(S)$, we denote the common value by $\delta(S)$, and say that S has density $\delta(S)$. Given a set of positive integers M, S is said to be an M-set if $a \in S, b \in S$ imply $a - b \notin M$. Motzkin [15] asked to determine $\mu(M)$ given by

$$\mu(M) := \sup_{S} \overline{\delta}(S)$$

where S varies over all M-sets. Cantor & Gordon [3] showed the existence of $\mu(M)$ for any M, determined $\mu(M)$ when $|M| \leq 2$, and gave the following lower bound for $\mu(M)$:

$$\mu(M) \ge \kappa(M) := \sup_{\gcd(c,m)=1} \frac{1}{m} \min_{i} |cm_i|_m, \tag{1}$$

where m_i are the elements of M, and $|x|_m$ denotes the absolute value of the absolutely least remainder of x modulo m. We use the following equivalent form for the lower bound for $\mu(M)$, due to Haralambis [11]:

$$\kappa(M) = \max_{\substack{m=m_i+m_j\\1\le k\le \frac{m}{2}}} \frac{1}{m} \min_{m_i\in M} |km_i|_m,\tag{2}$$

where m_i, m_j represent distinct elements of M. The following useful upper bound for $\mu(M)$ is due to Haralambis [11]:

$$\mu(M) \le \alpha \tag{3}$$

provided there exists a positive integer k such that $S(k) \leq (k+1)\alpha$ for every M-set S with $0 \in S$ and for some $\alpha \in [0, 1]$. The problem of Motzkin has a rich and diverse history but little progress towards the general problem has been made so far. Exact results for $\mu(M)$ have been few, and computation of $\mu(M)$ has only been completely possible when $|M| \leq 2$. Cantor & Gordon [3] showed that

$$\mu(\{m\}) = \frac{1}{2}, \quad \mu(\{m_1, m_2\}) = \frac{\lfloor (m_1 + m_2)/2 \rfloor}{m_1 + m_2}.$$

There have, however, been a number of results that give the exact value or bounds for $\mu(M)$ in other cases; see [13] for an exhaustive bibliography.

Connections with coloring problems in graph theory have been found useful in solving the Motzkin problem. One such connection, introduced by Hale [10] and shown to be equivalent to the Motzkin problem by Griggs & Liu [9], is the *T*-coloring problem. Another connection with colorings of graphs involves the fractional chromatic number of distance graphs.

The lower bound for $\mu(M)$, denoted by $\kappa(M)$ in (1), is itself at the heart of a longstanding conjecture. The *Lonely Runner Conjecture* (LRC) stated independently by Wills [17] in the context of diophantine approximations and by Cusick [7] while studying view obstructions problems in *n*-dimensional geometry, was actually given this apt name by Bienia *et al* [1]. Chen [6] characterized 3-sets M for which $1/\kappa(M)$ is an integer and also obtained general bounds.

We consider the problem of determining $\mu(M)$ for the family $M = \{a, b, n(a+b)\}, n \ge 1$. By a result of Cantor & Gordon [3], we know that $\mu(kM) = \mu(M)$. Thus, it is no loss of generality to assume that gcd(a, b) = 1, and that a < b. We determine the value of $\kappa(M)$, which is the lower bound for $\mu(M)$ and conjecturally equal to it. This extends a result of Liu & Zhu [[13], Theorem 5.1], wherein they determined $\mu(M)$ in the case $M = \{a, b, a+b\}$. Rabinowitz & Proulx [16] provided a lower bound for $\mu(M)$ in this case and conjectured that their bound was sharp. An extensive list of work related to the Motzkin problem may be found in [13].

2 Main Result

For the set $M = \{a, b, a + b\}$, Rabinowitz & Proulx [16] conjectured the exact value of $\mu(M)$ in 1985, and Liu & Zhu [13] proved this conjecture in 2004. We determine $\kappa(M)$ for $M = \{a, b, n(a + b)\}$ where n is a fixed positive integer. If the conjecture of Haralambis [11] is true, then $\kappa(M) = \mu(M)$ in this case, thus providing a generalization of the result of Liu & Zhu.

Theorem 1. Let $M = \{a, b, n(a+b)\}$, where a < b, gcd(a, b) = 1 and $n \ge 1$. Then

$$\kappa(M) = \begin{cases} \frac{n(a+b-\lambda)}{2(a+n(a+b))}, & \text{if } \lambda \equiv a+b \pmod{2};\\ \frac{n(a+b+\lambda-1)}{2(b+n(a+b))}, & \text{if } \lambda \not\equiv a+b \pmod{2}, \end{cases}$$

where $\lambda = 1 + \left\lfloor \frac{b-a}{2n+1} \right\rfloor$.

Proof. We use (2) to compute $\kappa(M)$. The choice m = a+b trivially yields min $\{|ax|_m, |bx|_m, |n(a+b)x|_m\} = 0$ for each x. There are two choices remaining for m, and we determine $\kappa(M)$ by comparing the two rational numbers corresponding to these cases. In each of the two cases we need to compute $\kappa(M)$ with m = a + n(a+b) and m = b + n(a+b), and compare the two. Note that the definition of λ implies

$$b - a < (2n + 1)\lambda \le b - a + 2n + 1.$$

CASE I: $(\lambda \equiv a + b \pmod{2})$

Subcase (i): (m = a + n(a + b)) Choose x such that

$$(a+b)x \equiv \frac{a+b-\lambda}{2} \pmod{m}.$$

Then

$$-ax \equiv n(a+b)x \equiv n\frac{a+b-\lambda}{2} \equiv \frac{m-(a+n\lambda)}{2} \pmod{m},$$

and

$$bx = (a+b)x - ax \equiv \frac{m + \{b - (n+1)\lambda\}}{2} \pmod{m}.$$

Therefore

$$\min\left\{|ax|_{m}, |bx|_{m}, |n(a+b)x|_{m}\right\} = \frac{m - (a+n\lambda)}{2}$$
(4)

since $b - (n+1)\lambda < a + n\lambda$ if and only if $(2n+1)\lambda > b - a$.

Write $\ell := a + n\lambda$. We show that

$$\min\left\{|ay|_{m}, |by|_{m}, |n(a+b)y|_{m}\right\} \le \frac{m - (a+n\lambda)}{2} = \frac{m}{2} - \frac{\ell}{2}$$

for each $y, 1 \leq y \leq \frac{m}{2}$. Let $\mathscr{I} := \left(\frac{m}{2} - \frac{\ell}{2}, \frac{m}{2} + \frac{\ell}{2}\right)$. We show that $-ay \mod m \in \mathscr{I}$ and $by \mod m \in \mathscr{I}$ is simultaneously impossible for $1 \leq y \leq \frac{m}{2}$. Suppose

$$(a+b)y \equiv \frac{a+b-\lambda}{2} + i \pmod{m},$$

with $1 \leq i \leq m - 1$. Then

$$-ay \equiv n(a+b)y \equiv \frac{m}{2} - \frac{\ell}{2} + ni \pmod{m},$$

$$by \equiv (a+b)y - ay \equiv \frac{m}{2} - \frac{\ell}{2} + \frac{a+b-\lambda}{2} + (n+1)i \pmod{m}$$
(5)

Thus $-ay \mod m \in \mathscr{I}$ if and only if

$$km + \frac{m}{2} - \frac{\ell}{2} < \frac{m}{2} - \frac{\ell}{2} + ni < km + \frac{m}{2} + \frac{\ell}{2}$$

for some integer k, with $0 \le k \le n-1$. This is equivalent to

$$k\frac{m}{n} < i < k\frac{m}{n} + \frac{\ell}{n},$$

so that

$$k(a+b) + 1 \le i \le k(a+b) + a + \lambda - 1.$$
 (6)

For $k(a+b) + 1 \le i \le k(a+b) + a + \lambda - 1$, we show that

$$km + \frac{m}{2} + \frac{\ell}{2} < \frac{m}{2} - \frac{\ell}{2} + \frac{a+b-\lambda}{2} + (n+1)\{k(a+b) + 1\}$$

and

$$\frac{m}{2} - \frac{\ell}{2} + \frac{a+b-\lambda}{2} + (n+1)\left\{k(a+b) + a + \lambda - 1\right\} < (k+1)m + \frac{m}{2} - \frac{\ell}{2}.$$

This will prove that

$$km + \frac{m}{2} + \frac{\ell}{2} < by < (k+1)m + \frac{m}{2} - \frac{\ell}{2},$$

so that by mod $m \notin \mathscr{I}$, as claimed. Each of the above two inequalities is easy to prove. Using the fact that (n+1)(a+b) = m+b, each inequality can be shown to hold if $(2n+1)\lambda < (b-a) + 2(n+1)$, which is true by the definition of λ . This completes the subcase when m = a + n(a+b).

Subcase (ii): (m = b + n(a + b)) The argument in this subcase is similar to the one in subcase (i). We omit the calculation and state only the significant parts. Choose x such that

$$(a+b)x \equiv \frac{a+b+\lambda}{2} \pmod{m}.$$

Then

$$-bx \equiv n(a+b)x \equiv \frac{m-(b-n\lambda)}{2} \pmod{m},$$

and

$$ax = (a+b)x - bx \equiv -\frac{m - \{a + (n+1)\lambda\}}{2} \pmod{m}.$$

Therefore

$$\min\left\{|ax|_{m}, |bx|_{m}, |n(a+b)x|_{m}\right\} = \frac{m - \{(a+(n+1)\lambda)\}}{2}$$
(7)

since $b - n\lambda < a + (n+1)\lambda$ if and only if $(2n+1)\lambda > b - a$.

As in subcase (i), we may show that

$$\min\left\{|ay|_{m}, |by|_{m}, |n(a+b)y|_{m}\right\} \le \frac{m - \{a + (n+1)\lambda\}}{2}$$

for each $y, 1 \le y \le \frac{m}{2}$. The argument is similar and we omit the proof. This completes subcase (ii).

To compute $\kappa(M)$ in Case I, we need to compare the expressions in (4) and (7). If we let $m_1 = a + n(a+b)$ and $m_2 = b + n(a+b)$, then a lengthy but easy computation shows that

$$\frac{m_2 - \{(a+(n+1)\lambda\}}{2m_2} = \frac{1}{2} - \frac{1}{2}\frac{a+(n+1)\lambda}{b+n(a+b)} < \frac{1}{2} - \frac{1}{2}\frac{a+n\lambda}{a+n(a+b)} = \frac{m_1 - (a+n\lambda)}{2m_1}$$

if and only if $(2n+1)\lambda > b-a$. This completes the proof of Case I.

CASE II: $(\lambda \not\equiv a + b \pmod{2})$

Subcase (i): (m = a + n(a + b)) Choose x such that

$$(a+b)x \equiv \frac{a+b-\lambda+1}{2} \pmod{m}.$$

Then

$$-ax \equiv n(a+b)x \equiv \frac{m - \{a+n(\lambda-1)\}}{2} \pmod{m},$$

and

$$bx = (a+b)x - ax \equiv \frac{m + \{b - (n+1)(\lambda - 1)\}}{2} \pmod{m}.$$

Therefore

$$\min\left\{|ax|_{m}, |bx|_{m}, |n(a+b)x|_{m}\right\} = \frac{m - \{b - (n+1)(\lambda - 1)\}}{2}$$
(8)

since
$$a + n(\lambda - 1) \le b - (n + 1)(\lambda - 1)$$
 if and only if $(2n + 1)(\lambda - 1) \le b - a$.

As in subcase (i) of Case I, we may show that

$$\min\left\{|ay|_{m}, |by|_{m}, |n(a+b)y|_{m}\right\} \le \frac{m - \{b - (n+1)(\lambda - 1)\}}{2}$$

for each $y, 1 \le y \le \frac{m}{2}$. This completes subcase (i). **Subcase** (ii): (m = b + n(a + b)) Choose x such that

$$(a+b)x \equiv \frac{a+b+\lambda-1}{2} \pmod{m}.$$

Then

$$-bx \equiv n(a+b)x \equiv \frac{m - \{b - n(\lambda - 1)\}}{2} \pmod{m},$$

and

$$ax = (a+b)x - bx \equiv \frac{m + \{a + (n+1)(\lambda - 1)\}}{2} \pmod{m}.$$

Therefore

$$\min\left\{|ax|_{m}, |bx|_{m}, |n(a+b)x|_{m}\right\} = \frac{m - \{b - n(\lambda - 1)\}}{2}$$
(9)

since $a + (n+1)(\lambda - 1) \le b - n(\lambda - 1)$ if and only if $(2n+1)(\lambda - 1) \le b - a$.

As in subcase (i) of Case I, we may show that

$$\min\{|ay|_m, |by|_m, |n(a+b)y|_m\} \le \frac{m - \{b - n(\lambda - 1)\}}{2}$$

for each $y, 1 \le y \le \frac{m}{2}$. This completes subcase (ii).

To compute $\kappa(M)$ in Case II, we need to compare the expressions in (8) and (9). If we let $m_1 = a + n(a+b)$ and $m_2 = b + n(a+b)$, then a lengthy but easy computation shows that

$$\frac{m_1 - \{b - (n+1)(\lambda - 1)\}}{2m_1} = \frac{1}{2} - \frac{1}{2} \frac{b - (n+1)(\lambda - 1)}{a + n(a+b)} \le \frac{1}{2} - \frac{1}{2} \frac{b - n(\lambda - 1)}{b + n(a+b)} = \frac{m_2 - \{b - n(\lambda - 1)\}}{2m_2}$$

if and only if $(2n + 1)(\lambda - 1) \leq b - a$. This completes the proof of Case II, and of the theorem.

Corollary 2. (Liu & Zhu [13])

Let $M = \{a, b, a + b\}$, where a < b and gcd(a, b) = 1. Then

$$\kappa(M) = \begin{cases} \frac{1}{3}, & \text{if } b \equiv a \pmod{3}; \\ \frac{2a+b-1}{3(2a+b)}, & \text{if } b \equiv a+1 \pmod{3}; \\ \frac{a+2b-1}{3(a+2b)}, & \text{if } b \equiv a+2 \pmod{3}. \end{cases}$$

Proof. This is a direct consequence of Theorem 1. Set b - a = 3k + r, where $0 \le r \le 2$. Then $\lambda = k + 1$, so that we are in Case I when $b \equiv a + 1 \pmod{3}$ and Case II otherwise. The calculation is routine, and the details are omitted.

Remark 3. Haralambis [11] conjectured that $\mu(M) = \kappa(M)$ when |M| = 3. If this is true, Theorem 1 actually determines $\mu(\{a, b, n(a+b)\})$. Observe that, if a, b are of opposite parity and if $n \ge (b-a)/2$, Theorem 1 reduces to

$$\kappa(\{a, b, n(a+b)\}) = \frac{a+b-1}{2(a+b) + (2a/n)}$$

which is asymptotic to $\mu(\{a, b\})$. This may be an indication that the conjecture of Haralambis may hold, at least for the special case $M = \{a, b, n(a + b)\}$ when n is large enough, and perhaps even for $M = \{a, b, c\}$ when c is sufficiently large even if not of the form n(a + b).

3 Acknowledgement

The authors wish to thank the referee for his comments.

References

- W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebö, and M. Tarsi, Flows, view obstructions and the lonely runner, *J. Combin. Theory Ser. B* 72 (1998), 1–9.
- [2] J. Barajas and O. Serra, The lonely runner with seven runners, *Electron. J. Combin.* 15 (2008), Research paper 48, 18 pages.
- [3] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Theory Ser. A 14 (1973), 281–287.
- [4] G. J. Chang, L. Huang, and X. Zhu, The circular chromatic numbers and the fractional chromatic numbers of distance graphs, *European J. Combin.* 19 (1998), 423–431.
- [5] G. Chang, D. Liu, and X. Zhu, Distance graphs and T-colorings, J. Combin. Theory Ser. B 75 (1999), 159–169.
- Y. G. Chen, On a conjecture about diophantine approximations III, J. Number Theory 37 (1991), 181–198.
- [7] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1–11.
- [8] R. B. Eggleton, P. Erdős, and D. K. Skilton, Coloring the real line, J. Combin. Theory Ser. B 39 (1985), 86–100.
- [9] J. R. Griggs and D.-D. F. Liu, The channel assignment problem for mutually adjacent sites, J. Combin. Theory Ser. A 68 (1994), 169–183.
- [10] W. K. Hale, Frequency assignment: theory and applications, *Proceedings of the IEEE* 68 (1980), 310–320.
- [11] N. M. Haralambis, Sets of integers with missing differences, J. Combin. Theory Ser. A 23 (1977), 22–33.
- [12] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 (1998), 113–123.
- [13] D.-D. F. Liu and X. Zhu, Fractional chromatic number for distance graphs with large clique size, J. Graph Theory 47 (2004), 129–146.
- [14] D. D.-F. Liu and X. Zhu, Fractional chromatic number of distance graphs generated by two-interval sets, *European J. Combin.* 29 (7) (2008), 1733–1742.

- [15] T. S. Motzkin, Unpublished problem collection.
- [16] J. H. Rabinowitz and V. K. Proulx, An asymptotic approach to the channel assignment problem, SIAM J. Alg. Disc. Methods 6 (1985), 507–518.
- [17] J. M. Wills, Zwei Sätze uber inhomogene diophantische Approximation von Irrationalzahlen, Monatsh. Math. 71 (1967), 263–269.

2010 Mathematics Subject Classification: Primary 11B05. Keywords: density, coloring.

Received January 6 2011; revised version received May 18 2011. Published in *Journal of Integer Sequences*, June 1 2011.

Return to Journal of Integer Sequences home page.