Journal of Integer Sequences, Vol. 14 (2011),

A Note on a Problem of Motzkin Regarding Density of Integral Sets with Missing Differences

Ram Krishna Pandey ${ }^{1}$
Department of Mathematics
Indian Institute of Technology
Patliputra Colony, Patna - 800013
India
ram@iitp.ac.in
Amitabha Tripathi ${ }^{2}$
Department of Mathematics
Indian Institute of Technology
Hauz Khas, New Delhi - 110016
India
atripath@maths.iitd.ac.in

Abstract

For a given set M of positive integers, a problem of Motzkin asks to determine the maximal density $\mu(M)$ among sets of nonnegative integers in which no two elements differ by an element of M. The problem is completely settled when $|M| \leq 2$, and some partial results are known for several families of M when $|M| \geq 3$. In 1985 Rabinowitz \& Proulx provided a lower bound for $\mu(\{a, b, a+b\})$ and conjectured that their bound was sharp. Liu \& Zhu proved this conjecture in 2004. For each $n \geq 1$, we determine $\kappa(\{a, b, n(a+b)\})$, which is a lower bound for $\mu(\{a, b, n(a+b)\})$, and conjecture this to be the exact value of $\mu(\{a, b, n(a+b)\})$.

1 Introduction

For $x \in \mathbb{R}$ and a set S of nonnegative integers, let $S(x)$ denote the number of elements $n \in S$ such that $n \leq x$. The upper and lower densities of S, denoted by $\bar{\delta}(S)$ and $\underline{\delta}(S)$ respectively,
are given by

$$
\bar{\delta}(S):=\underset{x \rightarrow \infty}{\limsup } \frac{S(x)}{x}, \quad \underline{\delta}(S):=\liminf _{x \rightarrow \infty} \frac{S(x)}{x}
$$

If $\bar{\delta}(S)=\underline{\delta}(S)$, we denote the common value by $\delta(S)$, and say that S has density $\delta(S)$. Given a set of positive integers M, S is said to be an M-set if $a \in S, b \in S$ imply $a-b \notin M$. Motzkin [15] asked to determine $\mu(M)$ given by

$$
\mu(M):=\sup _{S} \bar{\delta}(S)
$$

where S varies over all M-sets. Cantor \& Gordon [3] showed the existence of $\mu(M)$ for any M, determined $\mu(M)$ when $|M| \leq 2$, and gave the following lower bound for $\mu(M)$:

$$
\begin{equation*}
\mu(M) \geq \kappa(M):=\sup _{\operatorname{gcd}(c, m)=1} \frac{1}{m} \min _{i}\left|c m_{i}\right|_{m} \tag{1}
\end{equation*}
$$

where m_{i} are the elements of M, and $|x|_{m}$ denotes the absolute value of the absolutely least remainder of x modulo m. We use the following equivalent form for the lower bound for $\mu(M)$, due to Haralambis [11]:

$$
\begin{equation*}
\kappa(M)=\max _{\substack{m=m_{i}+m_{j} \\ 1 \leq k \leq \frac{m}{2}}} \frac{1}{m} \min _{m_{i} \in M}\left|k m_{i}\right|_{m} \tag{2}
\end{equation*}
$$

where m_{i}, m_{j} represent distinct elements of M. The following useful upper bound for $\mu(M)$ is due to Haralambis [11]:

$$
\begin{equation*}
\mu(M) \leq \alpha \tag{3}
\end{equation*}
$$

provided there exists a positive integer k such that $S(k) \leq(k+1) \alpha$ for every M-set S with $0 \in S$ and for some $\alpha \in[0,1]$. The problem of Motzkin has a rich and diverse history but little progress towards the general problem has been made so far. Exact results for $\mu(M)$ have been few, and computation of $\mu(M)$ has only been completely possible when $|M| \leq 2$. Cantor \& Gordon [3] showed that

$$
\mu(\{m\})=\frac{1}{2}, \quad \mu\left(\left\{m_{1}, m_{2}\right\}\right)=\frac{\left\lfloor\left(m_{1}+m_{2}\right) / 2\right\rfloor}{m_{1}+m_{2}} .
$$

There have, however, been a number of results that give the exact value or bounds for $\mu(M)$ in other cases; see [13] for an exhaustive bibliography.

Connections with coloring problems in graph theory have been found useful in solving the Motzkin problem. One such connection, introduced by Hale [10] and shown to be equivalent to the Motzkin problem by Griggs \& Liu [9], is the T-coloring problem. Another connection with colorings of graphs involves the fractional chromatic number of distance graphs.

The lower bound for $\mu(M)$, denoted by $\kappa(M)$ in (1), is itself at the heart of a longstanding conjecture. The Lonely Runner Conjecture (LRC) stated independently by Wills [17] in the context of diophantine approximations and by Cusick [7] while studying view obstructions problems in n-dimensional geometry, was actually given this apt name by Bienia et al [1].

Chen [6] characterized 3-sets M for which $1 / \kappa(M)$ is an integer and also obtained general bounds.

We consider the problem of determining $\mu(M)$ for the family $M=\{a, b, n(a+b)\}, n \geq 1$. By a result of Cantor \& Gordon [3], we know that $\mu(k M)=\mu(M)$. Thus, it is no loss of generality to assume that $\operatorname{gcd}(a, b)=1$, and that $a<b$. We determine the value of $\kappa(M)$, which is the lower bound for $\mu(M)$ and conjecturally equal to it. This extends a result of Liu \& Zhu [[13], Theorem 5.1], wherein they determined $\mu(M)$ in the case $M=\{a, b, a+b\}$. Rabinowitz \& Proulx [16] provided a lower bound for $\mu(M)$ in this case and conjectured that their bound was sharp. An extensive list of work related to the Motzkin problem may be found in [13].

2 Main Result

For the set $M=\{a, b, a+b\}$, Rabinowitz \& Proulx [16] conjectured the exact value of $\mu(M)$ in 1985, and Liu \& Zhu [13] proved this conjecture in 2004. We determine $\kappa(M)$ for $M=\{a, b, n(a+b)\}$ where n is a fixed positive integer. If the conjecture of Haralambis [11] is true, then $\kappa(M)=\mu(M)$ in this case, thus providing a generalization of the result of Liu \& Zhu.

Theorem 1. Let $M=\{a, b, n(a+b)\}$, where $a<b, \operatorname{gcd}(a, b)=1$ and $n \geq 1$. Then

$$
\kappa(M)=\left\{\begin{array}{lll}
\frac{n(a+b-\lambda)}{2(a+n(a+b))}, & \text { if } \lambda \equiv a+b & (\bmod 2) ; \\
\frac{n(a+b+\lambda-1)}{2(b+n(a+b))}, & \text { if } \lambda \not \equiv a+b & (\bmod 2),
\end{array}\right.
$$

where $\lambda=1+\left\lfloor\frac{b-a}{2 n+1}\right\rfloor$.
Proof. We use (2) to compute $\kappa(M)$. The choice $m=a+b$ trivially yields min $\left\{|a x|_{m},|b x|_{m}, \mid n(a+\right.$ b) $\left.\left.x\right|_{m}\right\}=0$ for each x. There are two choices remaining for m, and we determine $\kappa(M)$ by comparing the two rational numbers corresponding to these cases. In each of the two cases we need to compute $\kappa(M)$ with $m=a+n(a+b)$ and $m=b+n(a+b)$, and compare the two. Note that the definition of λ implies

$$
b-a<(2 n+1) \lambda \leq b-a+2 n+1 .
$$

CASE I: $(\lambda \equiv a+b(\bmod 2))$
Subcase (i): $(m=a+n(a+b))$ Choose x such that

$$
(a+b) x \equiv \frac{a+b-\lambda}{2} \quad(\bmod m) .
$$

Then

$$
-a x \equiv n(a+b) x \equiv n \frac{a+b-\lambda}{2} \equiv \frac{m-(a+n \lambda)}{2} \quad(\bmod m),
$$

and

$$
b x=(a+b) x-a x \equiv \frac{m+\{b-(n+1) \lambda\}}{2} \quad(\bmod m) .
$$

Therefore

$$
\begin{equation*}
\min \left\{|a x|_{m},|b x|_{m},|n(a+b) x|_{m}\right\}=\frac{m-(a+n \lambda)}{2} \tag{4}
\end{equation*}
$$

since $b-(n+1) \lambda<a+n \lambda$ if and only if $(2 n+1) \lambda>b-a$.
Write $\ell:=a+n \lambda$. We show that

$$
\min \left\{|a y|_{m},|b y|_{m},|n(a+b) y|_{m}\right\} \leq \frac{m-(a+n \lambda)}{2}=\frac{m}{2}-\frac{\ell}{2}
$$

for each $y, 1 \leq y \leq \frac{m}{2}$. Let $\mathscr{I}:=\left(\frac{m}{2}-\frac{\ell}{2}, \frac{m}{2}+\frac{\ell}{2}\right)$. We show that $-a y \bmod m \in \mathscr{I}$ and by $\bmod m \in \mathscr{I}$ is simultaneously impossible for $1 \leq y \leq \frac{m}{2}$. Suppose

$$
(a+b) y \equiv \frac{a+b-\lambda}{2}+i \quad(\bmod m)
$$

with $1 \leq i \leq m-1$. Then

$$
\begin{array}{r}
-a y \equiv n(a+b) y \equiv \frac{m}{2}-\frac{\ell}{2}+n i \quad(\bmod m) \tag{5}\\
b y \equiv(a+b) y-a y \equiv \frac{m}{2}-\frac{\ell}{2}+\frac{a+b-\lambda}{2}+(n+1) i \quad(\bmod m)
\end{array}
$$

Thus $-a y \bmod m \in \mathscr{I}$ if and only if

$$
k m+\frac{m}{2}-\frac{\ell}{2}<\frac{m}{2}-\frac{\ell}{2}+n i<k m+\frac{m}{2}+\frac{\ell}{2}
$$

for some integer k, with $0 \leq k \leq n-1$. This is equivalent to

$$
k \frac{m}{n}<i<k \frac{m}{n}+\frac{\ell}{n},
$$

so that

$$
\begin{equation*}
k(a+b)+1 \leq i \leq k(a+b)+a+\lambda-1 \tag{6}
\end{equation*}
$$

For $k(a+b)+1 \leq i \leq k(a+b)+a+\lambda-1$, we show that

$$
k m+\frac{m}{2}+\frac{\ell}{2}<\frac{m}{2}-\frac{\ell}{2}+\frac{a+b-\lambda}{2}+(n+1)\{k(a+b)+1\}
$$

and

$$
\frac{m}{2}-\frac{\ell}{2}+\frac{a+b-\lambda}{2}+(n+1)\{k(a+b)+a+\lambda-1\}<(k+1) m+\frac{m}{2}-\frac{\ell}{2} .
$$

This will prove that

$$
k m+\frac{m}{2}+\frac{\ell}{2}<b y<(k+1) m+\frac{m}{2}-\frac{\ell}{2}
$$

so that $b y \bmod m \notin \mathscr{I}$, as claimed. Each of the above two inequalities is easy to prove. Using the fact that $(n+1)(a+b)=m+b$, each inequality can be shown to hold if $(2 n+1) \lambda<$ $(b-a)+2(n+1)$, which is true by the definition of λ. This completes the subcase when $m=a+n(a+b)$.

Subcase (ii): $(m=b+n(a+b))$ The argument in this subcase is similar to the one in subcase (i). We omit the calculation and state only the significant parts. Choose x such that

$$
(a+b) x \equiv \frac{a+b+\lambda}{2} \quad(\bmod m) .
$$

Then

$$
-b x \equiv n(a+b) x \equiv \frac{m-(b-n \lambda)}{2} \quad(\bmod m),
$$

and

$$
a x=(a+b) x-b x \equiv-\frac{m-\{a+(n+1) \lambda\}}{2} \quad(\bmod m) .
$$

Therefore

$$
\begin{equation*}
\min \left\{|a x|_{m},|b x|_{m},|n(a+b) x|_{m}\right\}=\frac{m-\{(a+(n+1) \lambda\}}{2} \tag{7}
\end{equation*}
$$

since $b-n \lambda<a+(n+1) \lambda$ if and only if $(2 n+1) \lambda>b-a$.
As in subcase (i), we may show that

$$
\min \left\{|a y|_{m},|b y|_{m},|n(a+b) y|_{m}\right\} \leq \frac{m-\{a+(n+1) \lambda\}}{2}
$$

for each $y, 1 \leq y \leq \frac{m}{2}$. The argument is similar and we omit the proof. This completes subcase (ii).
To compute $\kappa(M)$ in Case I, we need to compare the expressions in (4) and (7). If we let $m_{1}=a+n(a+b)$ and $m_{2}=b+n(a+b)$, then a lengthy but easy computation shows that

$$
\frac{m_{2}-\{(a+(n+1) \lambda\}}{2 m_{2}}=\frac{1}{2}-\frac{1}{2} \frac{a+(n+1) \lambda}{b+n(a+b)}<\frac{1}{2}-\frac{1}{2} \frac{a+n \lambda}{a+n(a+b)}=\frac{m_{1}-(a+n \lambda)}{2 m_{1}}
$$

if and only if $(2 n+1) \lambda>b-a$. This completes the proof of Case I.
Case II: $(\lambda \not \equiv a+b(\bmod 2))$
Subcase (i): $(m=a+n(a+b))$ Choose x such that

$$
(a+b) x \equiv \frac{a+b-\lambda+1}{2} \quad(\bmod m) .
$$

Then

$$
-a x \equiv n(a+b) x \equiv \frac{m-\{a+n(\lambda-1)\}}{2} \quad(\bmod m),
$$

and

$$
b x=(a+b) x-a x \equiv \frac{m+\{b-(n+1)(\lambda-1)\}}{2} \quad(\bmod m) .
$$

Therefore

$$
\begin{equation*}
\min \left\{|a x|_{m},|b x|_{m},|n(a+b) x|_{m}\right\}=\frac{m-\{b-(n+1)(\lambda-1)\}}{2} \tag{8}
\end{equation*}
$$

since $a+n(\lambda-1) \leq b-(n+1)(\lambda-1)$ if and only if $(2 n+1)(\lambda-1) \leq b-a$.
As in subcase (i) of Case I, we may show that

$$
\min \left\{|a y|_{m},|b y|_{m},|n(a+b) y|_{m}\right\} \leq \frac{m-\{b-(n+1)(\lambda-1)\}}{2}
$$

for each $y, 1 \leq y \leq \frac{m}{2}$. This completes subcase (i).
Subcase (ii): $(m=b+n(a+b))$ Choose x such that

$$
(a+b) x \equiv \frac{a+b+\lambda-1}{2} \quad(\bmod m) .
$$

Then

$$
-b x \equiv n(a+b) x \equiv \frac{m-\{b-n(\lambda-1)\}}{2} \quad(\bmod m),
$$

and

$$
a x=(a+b) x-b x \equiv \frac{m+\{a+(n+1)(\lambda-1)\}}{2} \quad(\bmod m) .
$$

Therefore

$$
\begin{equation*}
\min \left\{|a x|_{m},|b x|_{m},|n(a+b) x|_{m}\right\}=\frac{m-\{b-n(\lambda-1)\}}{2} \tag{9}
\end{equation*}
$$

since $a+(n+1)(\lambda-1) \leq b-n(\lambda-1)$ if and only if $(2 n+1)(\lambda-1) \leq b-a$.
As in subcase (i) of Case I, we may show that

$$
\min \left\{|a y|_{m},|b y|_{m},|n(a+b) y|_{m}\right\} \leq \frac{m-\{b-n(\lambda-1)\}}{2}
$$

for each $y, 1 \leq y \leq \frac{m}{2}$. This completes subcase (ii).
To compute $\kappa(M)$ in Case II, we need to compare the expressions in (8) and (9). If we let $m_{1}=a+n(a+b)$ and $m_{2}=b+n(a+b)$, then a lengthy but easy computation shows that

$$
\frac{m_{1}-\{b-(n+1)(\lambda-1)\}}{2 m_{1}}=\frac{1}{2}-\frac{1}{2} \frac{b-(n+1)(\lambda-1)}{a+n(a+b)} \leq \frac{1}{2}-\frac{1}{2} \frac{b-n(\lambda-1)}{b+n(a+b)}=\frac{m_{2}-\{b-n(\lambda-1)\}}{2 m_{2}}
$$

if and only if $(2 n+1)(\lambda-1) \leq b-a$. This completes the proof of Case II, and of the theorem.

Corollary 2. (Liu \& Zhu [13])

Let $M=\{a, b, a+b\}$, where $a<b$ and $\operatorname{gcd}(a, b)=1$. Then

$$
\kappa(M)= \begin{cases}\frac{1}{3}, & \text { if } b \equiv a \quad(\bmod 3) ; \\ \frac{2 a+b-1}{3(a+b)}, & \text { if } b \equiv a+1 \quad(\bmod 3) ; \\ \frac{a+2 b-1}{3(a+2 b)}, & \text { if } b \equiv a+2 \quad(\bmod 3) .\end{cases}
$$

Proof. This is a direct consequence of Theorem 1. Set $b-a=3 k+r$, where $0 \leq r \leq 2$. Then $\lambda=k+1$, so that we are in Case I when $b \equiv a+1(\bmod 3)$ and Case II otherwise. The calculation is routine, and the details are omitted.

Remark 3. Haralambis [11] conjectured that $\mu(M)=\kappa(M)$ when $|M|=3$. If this is true, Theorem 1 actually determines $\mu(\{a, b, n(a+b)\})$. Observe that, if a, b are of opposite parity and if $n \geq(b-a) / 2$, Theorem 1 reduces to

$$
\kappa(\{a, b, n(a+b)\})=\frac{a+b-1}{2(a+b)+(2 a / n)},
$$

which is asymptotic to $\mu(\{a, b\})$. This may be an indication that the conjecture of Haralambis may hold, at least for the special case $M=\{a, b, n(a+b)\}$ when n is large enough, and perhaps even for $M=\{a, b, c\}$ when c is sufficiently large even if not of the form $n(a+b)$.

3 Acknowledgement

The authors wish to thank the referee for his comments.

References

[1] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebö, and M. Tarsi, Flows, view obstructions and the lonely runner, J. Combin. Theory Ser. B 72 (1998), 1-9.
[2] J. Barajas and O. Serra, The lonely runner with seven runners, Electron. J. Combin. 15 (2008), Research paper 48, 18 pages.
[3] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Theory Ser. A 14 (1973), 281-287.
[4] G. J. Chang, L. Huang, and X. Zhu, The circular chromatic numbers and the fractional chromatic numbers of distance graphs, European J. Combin. 19 (1998), 423-431.
[5] G. Chang, D. Liu, and X. Zhu, Distance graphs and T-colorings, J. Combin. Theory Ser. B 75 (1999), 159-169.
[6] Y. G. Chen, On a conjecture about diophantine approximations III, J. Number Theory 37 (1991), 181-198.
[7] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1-11.
[8] R. B. Eggleton, P. Erdős, and D. K. Skilton, Coloring the real line, J. Combin. Theory Ser. B 39 (1985), 86-100.
[9] J. R. Griggs and D.-D. F. Liu, The channel assignment problem for mutually adjacent sites, J. Combin. Theory Ser. A 68 (1994), 169-183.
[10] W. K. Hale, Frequency assignment: theory and applications, Proceedings of the IEEE 68 (1980), 310-320.
[11] N. M. Haralambis, Sets of integers with missing differences, J. Combin. Theory Ser. A 23 (1977), 22-33.
[12] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 (1998), 113-123.
[13] D.-D. F. Liu and X. Zhu, Fractional chromatic number for distance graphs with large clique size, J. Graph Theory 47 (2004), 129-146.
[14] D. D.-F. Liu and X. Zhu, Fractional chromatic number of distance graphs generated by two-interval sets, European J. Combin. 29 (7) (2008), 1733-1742.
[15] T. S. Motzkin, Unpublished problem collection.
[16] J. H. Rabinowitz and V. K. Proulx, An asymptotic approach to the channel assignment problem, SIAM J. Alg. Disc. Methods 6 (1985), 507-518.
[17] J. M. Wills, Zwei Sätze uber inhomogene diophantische Approximation von Irrationalzahlen, Monatsh. Math. 71 (1967), 263-269.

2010 Mathematics Subject Classification: Primary 11B05.
Keywords: density, coloring.

Received January 6 2011; revised version received May 18 2011. Published in Journal of Integer Sequences, June 12011.

Return to Journal of Integer Sequences home page.

