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Abstract

In this paper, without using generating functions, we give new combinatorial proofs

of several theorems by Nathanson on the representation functions, and we also obtain

generalizations of these theorems.

1 Introduction

Let A be a set of nonnegative integers. Let rAh (n) denote the number of representations
of n as a sum of h elements of A and rA(n) denote the number of representations of n
as a sum of an arbitrary number of elements of A, where representations differing only
in the arrangement of their summands are counted separately. We notice that if 0 /∈ A,
then rA(n) =

∑∞
h=1 rAh (n) is finite for all n. Representation functions have been extensively

studied by many authors [1, 2, 3, 5, 6] and are still a fruitful area of research in additive
number theory. Using generating functions, Nathanson [4] proved the following results.

Theorem 1. Let A and B be sets of nonnegative integers, and let rAh (n) and rBh (n) denote
the number of representations of n as a sum of h elements of A and B, respectively. If
rAh (n) = rBh (n) for all n > 0, then A = B.

Theorem 2. Let A and B be sets of positive integers, and let rA(n) and rB(n) denote the
number of representations of n as a sum of an arbitrary number of elements of A and B,
respectively. If rA(n) = rB(n) for all n > 1, then A = B.

Theorem 3. Let A and B be sets of positive integers, and let pA(n) and pB(n) denote the
number of representations of n as a sum of an arbitrary number of elements of A and B,
respectively, where representations differing only in the arrangement of their summands are
not counted separately. If pA(n) = pB(n) for all n > 1, then A = B.
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In this paper, we give new proofs of theorems above. Indeed, we shall prove slightly
more. We first introduce some notation. If A is a strictly increasing sequence of integers,
then an denotes the nth element of A. Let A be a set of nonnegative integers and H be a
set of positive integers. If |H| is finite, then rAH(n) denotes the number of representations of
n as a sum of h1 or h2 or . . . elements of A; if |H| is infinite, then rAH(n) denotes the number
of representations of n as a sum of h1 or h2 or . . . elements of A\{0}.

Theorem 4. Let A and B be nonempty sets of nonnegative integers. Let H be a nonempty
set of positive integers, and let S = {min{ai, bi} : i = 1, 2, . . .}. Write t = (min(H) −
1) min{a1, b1}. If rAH(n) = rBH(n) for all n ∈ t + S, then A = B.

Let H = {h}. Since t + S ⊆ {0, 1, 2, . . .}, Theorem 4 is a generalization of Theorem 1.
Let H = {1, 2, 3, . . .}. If A and B are sets of positive integers, then t+S ⊆ {1, 2, . . .}. Hence,
Theorem 4 is also a generalization of Theorem 2.

Theorem 5. Let A, B and H be nonempty sets of positive integers. Let S = {min{ai, bi} :
i = 1, 2, . . .}, and let pAH(n) denote the number of representations of n as a sum of h1 or h2 or
. . . elements of A, where representations differing only in the arrangement of their summands
are not counted separately. Write t = (min(H) − 1) min{a1, b1}. If pAH(n) = pBH(n) for all
n ∈ t + S, then A = B.

Let H = {1, 2, 3, . . .}. Since t+S ⊆ {1, 2, . . .}, Theorem 5 is a generalization of Theorem
3.

Let A,B, and T be finite sets of integers. If each residue class modulo m contains exactly
the same number of elements of A as elements of B, then we write A ≡ B (mod m). If the
number of solutions of the congruence a + t ≡ n (mod m) with a ∈ A, t ∈ T , equals the
number of solutions of the congruence b+ t ≡ n (mod m) with b ∈ B, t ∈ T , for each residue
class n modulo m, then we write A + T ≡ B + T (mod m). Nathanson [4] also proved the
following theorem.

Theorem 6. Let A and B be distinct nonempty sets of nonnegative integers such that
rA2 (n) = rB2 (n) for all sufficiently large n. Then there exist finite sets A,B, and T with
A ∪ B ⊂ {0, 1, . . . , N} and T ⊂ {0, 1, . . . ,m − 1} such that A + T ≡ B + T (mod m), and
A = A ∪ C and B = B ∪ C, where C = {c > N | c ≡ t (mod m) for some t ∈ T}.

In this paper, we prove theorems above without using generating functions. We notice
that for a prime number p, if A and B are sets of nonnegative integers such that rAp (n) = rBp (n)
for all sufficiently large n, then A and B eventually coincide. Now, I pose the following
problem.

Problem 7. Let p > 3 be a prime number and A be a set of nonnegative integers. Does there
exist a set of nonnegative integers B with B 6= A such that rAp (n) = rBp (n) for all sufficiently
large n?
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2 Proof of Theorems 4 and 5

Suppose that A 6= B. Let h = min(H) and j0 be the smallest index such that aj0 6= bj0 .
Without loss of generality, we can assume that aj0 < bj0 . Let C = {aj : j < j0}. Since
aj = bj for all j < j0 and t = (h − 1)a1, we have (h − 1)a1 + aj0 ∈ t + S and

rAH((h − 1)a1 + aj0) = rC
H((h − 1)a1 + aj0) + 1

= rBH((h − 1)a1 + aj0) + 1,

which is a contradiction. Hence, we have A = B. This completes the proof of Theorem 4.
The proof of Theorem 5 is very similar to the proof of Theorem 4, and we omit it here.

3 Proof of Theorem 6

Clearly, rA2 (2n) is odd if and only if n ∈ A. Similarly, n ∈ B if and only if rB2 (2n) is odd. If
rA2 (n) = rB2 (n) for all n > N0, then for all n > N0 we have n ∈ A if and only if n ∈ B. Let

D = A ∩ [N0 + 1,∞) = B ∩ [N0 + 1,∞)

and write

η(n) =

{

1, if n ∈ D;

0, otherwise.

Then for n > 2N0, we have

rA2 (n) = 2♯{(a, d) : a ∈ A\D, d ∈ D, a + d = n}

+ ♯{(d′, d′′) : d′, d′′ ∈ D, d′ + d′′ = n}

= 2
∑

a∈A\D

η(n − a) + ♯{(d′, d′′) : d′, d′′ ∈ D, d′ + d′′ = n}.

(1)

Similarly, we have

rB2 (n) = 2
∑

b∈B\D

η(n − b) + ♯{(d′, d′′) : d′, d′′ ∈ D, d′ + d′′ = n}. (2)

Since rA2 (n) = rB2 (n) for all n > N0, by (1) and (2), we have

∑

a∈A\D

η(n − a) =
∑

b∈B\D

η(n − b) (3)

for all n > 2N0. Let i0 be the smallest index such that ai0 6= bi0 . Without loss of generality,
we may assume that ai0 < bi0 .

Let
t = n − ai0
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and
D′ = {a : a < ai0 , a ∈ A}.

Then by (3), we have

η(t) =
∑

b∈B\(D∪D′)

η(t + ai0 − b) −
∑

a∈A\(D∪D′∪ai0
)

η(t + ai0 − a).

Since η(t) defined by a linear recurrence on a finite set {0, 1}, we have that it must be
eventually periodic. Hence, for some N > N0, D ∩ [N + 1,∞) is periodic. We denote such
a period by m. Let T = {t : t ≡ d (mod m) for some d ∈ D ∩ [N + 1,∞) and 0 6 t < m}.
Then we have n ∈ A ∩ B ∩ [N + 1,∞) if and only if n ≡ t (mod m) for some t ∈ T .

The remainder of the proof is the same as that of the proof by Nathanson. To make this
paper self-contained, we formulate it here. Let

A = {a 6 N : a ∈ A}, B = {b 6 N : b ∈ B},

and
C = {c > N : c ∈ A ∩ B} = {c > N : c ≡ t (mod m) for some t ∈ T}.

Then A = A ∪ C and B = B ∪ C. Next we prove that A + T ≡ B + T (mod m).
For n > 2N , we have

rA2 (n) = rC2 (n) + 2♯{(a, c) : a ∈ A, c ∈ C, a + c = n}

= rC2 (n) + 2♯{(a, t) : a ∈ A, t ∈ T, a + t ≡ n (mod m)}.
(4)

Similarly,
rB2 (n) = rC2 (n) + 2♯{(b, t) : b ∈ B, t ∈ T, b + t ≡ n (mod m)}. (5)

Since rA2 (n) = rB2 (n) for n > 2N , by (4) and (5), we have that A + T ≡ B + T (mod m).
This completes the proof of Theorem 6.
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