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Abstract

In this paper we study the reciprocals of the gcd-sum function and some related
functions and improve some results of Tóth. The harmonic mean of the gcd function
is also studied.

1 Introduction

Recently, L. Tóth published a paper [3] about the gcd-sum function P (n), called also Pillai’s
function [2] defined by

P (n) =
n
∑

k=1

gcd(k, n).

In this well-written paper, Tóth not only listed many classical results about this function,
its analogues and generalizations, but also proved several new results. The aim of this short
note is to improve some results in Tóth’s paper.

1This work is supported by the Natural Science Foundation of Beijing (Grant No. 1112010).
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Let H(n) denote the harmonic mean of gcd(1, n), gcd(2, n), . . . , gcd(n, n), namely,

H(n) := n

(

n
∑

j=1

1

gcd(j, n)

)−1

=
n2

∑

d|n dϕ(d)
, (1)

where ϕ(n) denotes Euler’s function. Theorem 4 of Tóth [3] states that

∑

n≤x

H(n)

n
= C1 log x+ C2 +O(x−1+ε), (2)

where C1 and C2 are computable constants, ε > 0 is a small positive constant. As a corollary,
he deduced that

∑

n≤x

H(n) = C1x+O(xε). (3)

In this note we shall prove first the following

Theorem 1. We have the asymptotic formula

∑

n≤x

H(n) = C1x+ C3 log x+O((log x)2/3), (4)

where C1 and C3 are constants.

As a corollary of Theorem 1, we have

Corollary 2.
∑

n≤x

H(n)

n
= C1 log x+ C2 +O(x−1(log x)2/3). (5)

Remark 3. Tóth [3] studied the average order of
∑

n≤xH(n)/n first and then deduced an
asymptotic formula of

∑

n≤xH(n) through it. However in this note we study
∑

n≤xH(n)
first, then deduce an asymptotic formula for

∑

n≤xH(n)/n.

Now we study the reciprocals of P (n) and some other related functions. We first recall
the definitions of some functions.

An integer d is called a unitary divisor of n if d|n and (d, n/d) = 1, notation d‖n. The
unitary analogue of the function P is defined by

P ∗(n) :=
n
∑

j=1

(j, n)∗,

where (j, n)∗ = max{d ∈ N : d|j, d‖n}, which was first introduced in Tóth [4]. This function
P ∗ (A145388) is multiplicative and for every prime power pα(α ≥ 1) we have P ∗(pα) =
2pα − 1.

Let n > 1 be an integer of canonical form n =
∏r

j=1 p
aj

j . An integer d is called an

exponential divisor of n if d =
∏r

j=1 p
bj

j such that bj|aj(1 ≤ j ≤ r), notation d|en. By
convention 1|e1. The kernel of n is denoted by κ(n) =

∏r
j=1 pj.
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Two positive integers m > 1, n > 1 have common exponential divisors iff they have the
canonical forms n =

∏r
j=1 p

aj

j and m =
∏r

j=1 p
bj

j with aj ≥ 1, bj ≥ 1(1 ≤ j ≤ r). The

greatest common exponential divisor of n and m is (n,m)e =
∏r

j=1 p
(aj ,bj)
j . By convention

define (1, 1)e = 1 and note that (1,m)e does not exist for m > 1. Now define the function
P (e)(n) by the relation

P (e)(n) =
∑

1≤j≤n

κ(j)=κ(n)

(j, n)e.

The function P (e)(see Tóth [5]) is multiplicative and for any prime power pα (α ≥ 1) we have

P (e)(pα) =
∑

1≤j≤α

p(j,α) =
∑

d|α
pdϕ(α/d). (6)

Now we recall another analogue of P. Let n > 1 be an integer and we say an integer j is
regular (mod n) if there exists an integer x such that j2x ≡ j (mod n). Tóth [6] introduced
the function (A176345)

P̃ (n) :=
∑

j∈Regn

gcd(j, n),

where Regn = {1 ≤ j ≤ n : j is regular(mod n)}. Tóth[6] showed that P̃ is multiplicative
and

P̃ (n) = n
∏

p|n
(2 − 1/p). (7)

The above mentioned functions have been extensively studied and many papers about
them have been published. See Tóth [3] and references therein.

Theorem 6 of Tóth [3] states that

∑

n≤x

1

P (n)
= K(log x)1/2 +O((log x)−1/2), (8)

∑

n≤x

1

P ∗(n)
= K∗(log x)1/2 +O((log x)−1/2), (9)

∑

n≤x

1

P̃ (n)
= K̃(log x)1/2 +O((log x)−1/2), (10)

∑

n≤x

1

P (e)(n)
= K(e) log x+O(1), (11)

where K,K∗, K̃,K(e) are computable constants.
In this note we shall prove the following result.
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Theorem 4. Suppose N ≥ 1 is a fixed integer, then

∑

n≤x

1

P (n)
=

N
∑

j=0

Kj(log x)1/2−j +O((log x)−1/2−N), (12)

∑

n≤x

1

P ∗(n)
=

N
∑

j=0

K∗
j (log x)1/2−j +O((log x)−1/2−N), (13)

∑

n≤x

1

P̃ (n)
=

N
∑

j=0

K̃j(log x)1/2−j +O((log x)−1/2−N), (14)

∑

n≤x

1

P (e)(n)
= K

(e)
0 log x+K

(e)
1 +O(x−1 log2 x), (15)

where Kj, K
∗
j , K̃j, K

(e)
j (j ≥ 0) are computable constants.

Notation. Throughout this paper, ε denotes a sufficiently small positive constant. ζ(s)
denotes the Riemann zeta-function. For any real number t, [t] denotes the greatest integer not
exceeding t, {t} = t− [t], and ψ(t) = {t}− 1/2. For any complex number z, σz(n) =

∑

d|n d
z

and dz(n) denotes the generalized divisor function, µ(n) denotes the Möbius function.

2 Proof of Theorem 1

Define for ℜs > 1 that

DH(s) :=
∞
∑

n=1

H(n)n−s. (16)

Since H(n) is multiplicative, by Euler’s product we get

DH(s) =
∏

p

(

1 +
∞
∑

α=1

H(pα)p−αs

)

. (17)

We evaluate H(pα) first for any prime p and α ≥ 1. By (1) we have

H(pα) = p2α × (1 +
α
∑

j=1

p2j−1(p− 1))−1 (18)

= p2α × (1 +
p− 1

p

α
∑

j=1

p2j)−1

= p2α × (1 +
p2α+2 − p2

p(p+ 1)
)−1

= p2α ×
(

p2α+1 + 1

p+ 1

)−1

=
p2α(p+ 1)

p2α+1 + 1
=

1 + p−1

1 + p−2α−1
.
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Hence we have

1 +
∞
∑

α=1

H(pα)p−αs (19)

= 1 +
∞
∑

α=1

1 + p−1

1 + p−2α−1
p−αs

= 1 + (1 + p−1)
∞
∑

α=1

p−αs

∞
∑

m=0

(

−p−2α−1
)m

= 1 + (1 + p−1)
∞
∑

m=0

(−1)mp−m

∞
∑

α=1

p−αs−2αm

= 1 + (1 + p−1)
∞
∑

m=0

(−1)mp−m p−s−2m

1 − p−s−2m

= 1 + (1 + p−1)
p−s

1 − p−s
+ (1 + p−1)

∞
∑

m=1

(−1)mp−m p−s−2m

1 − p−s−2m

=
1 + p−1−s

1 − p−s
+ (1 + p−1)

∞
∑

m=1

(−1)mp−m p−s−2m

1 − p−s−2m
,

which implies that

(1 − p−s)(1 − p−s−1)(1 +
∞
∑

α=1

H(pα)p−αs) (20)

= 1 − p−2s−2 + (1 − p−s)(1 − p−s−1)(1 + p−1)
∞
∑

m=1

(−1)mp−m p−s−2m

1 − p−s−2m

= 1 +O(p−2σ−2 + (1 + p−σ)(1 + p−σ−1)p−σ−3)

= 1 +O(p−2σ−2 + p−σ−3 + p−2σ−3 + p−3σ−4),

where σ = ℜs.
From (17), (20) and noting

ζ(s) =
∏

p

(

1 − p−s
)−1

(ℜs > 1) (21)

we get
DH(s) = ζ(s)ζ(s+ 1)G(s) (ℜs > 1), (22)

where

G(s) =
∏

p

(1 − p−s)(1 − p−s−1)

(

1 +
∞
∑

α=1

H(pα)p−αs

)

(23)

such that if we expand G(s) into a Dirichlet series

G(s) =
∞
∑

n=1

g(n)n−s, (24)
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then this Dirichlet series is absolutely convergent for ℜs > −1/2.
From (22) and (24) we have

H(n) =
∑

d|n
σ−1(d)g(n/d). (25)

For σ−1(n) we have
∑

n≤x

σ−1(n) =
∑

nm≤x

1

n
=
∑

n≤x

1

n

∑

m≤x/n

1 (26)

=
∑

n≤x

1

n

[x

n

]

=
∑

n≤x

1

n

(

x

n
− 1

2
− ψ(

x

n
)

)

= x
∑

n≤x

n−2 − 1

2

∑

n≤x

n−1 −
∑

n≤x

1

n
ψ(
x

n
)

=
π2x

6
− log x

2
+O((log x)2/3),

where in the last step we used the well-known bound(see Walfisz [7])
∑

n≤x

1

n
ψ(
x

n
) ≪ (log x)2/3. (27)

From (25)-(27) we have
∑

n≤x

H(n) =
∑

m≤x

g(m)
∑

n≤x/m

σ−1(n) (28)

=
π2x

6

∑

m≤x

g(m)

m
− log x

2

∑

m≤x

g(m) +
1

2

∑

m≤x

g(m) logm

+O

(

log2/3 x
∑

m≤x

|g(m)|
)

.

Recall that the Dirichlet series
∑∞

n=1 g(n)n−s is absolutely convergent for ℜs > −1/2. Hence
for any U > 1 we have

∑

U<n≤2U

|g(n)| ≪ U−1/2+ε.

It follows that the infinite series
∑

m≥1 g(m)m−1,
∑

m≥1 |g(m)|,∑m≥1 g(m) logm are all con-
vergent and that

∑

m≤x

g(m)

m
=

∞
∑

m=1

g(m)

m
+O(x−3/2+ε), (29)

∑

m≤x

g(m) =
∞
∑

m=1

g(m) +O(x−1/2+ε)

∑

m≤x

g(m) logm≪ 1,
∑

m≤x

|g(m)| ≪ 1.

Now Theorem 1 follows from (28) and (29).
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3 Proof of Theorem 4

In this section we shall prove Theorem 4. We only prove (12) and (15) since the proofs of
(12), (13) and (14) are the same.

3.1 The generalized divisor problem

Suppose k ≥ 2 (k ∈ N) is a fixed integer. The divisor function dk(n) denotes the number of
ways n can be written as a product of k natural-number factors. It is an important problem
in the analytic number theory to study the mean value of the divisor function dk(n). It is
well-known that dk(n) are the coefficients of the Dirichlet series

ζk(s) =
∞
∑

n=1

dk(n)n−s (ℜs > 1).

Now suppose z is a fixed complex number and let dz(n) denote the coefficients of the
Dirichlet series

ζz(s) :=
∞
∑

n=1

dz(n)n−s (ℜs > 1), (30)

where ζz(s) = ez log ζ(s) such that for log s we take the main value log 1 = 0. The function
dz(n) is called the generalized divisor function.

Suppose A > 0 is an arbitrary but fixed real number and N ≥ 1 is an arbitrary but fixed
integer. Then uniformly for |z| ≤ A we have

∑

n≤x

dz(n) = x
N
∑

j=1

cj(z)(log x)z−j +O(x(log x)ℜz−N−1), (31)

where the functions c1(z), · · · , cN(z) are regular in the region |z| ≤ A.
The above result is Theorem 14.9 of Ivić [1].

3.2 Proof of (12)

Define P1(n) = n/P (n). Then by Euler’s product we have for ℜs > 1 that

∞
∑

n=1

P1(n)n−s =
∏

p

(

1 +
∞
∑

α=1

P1(p
α)p−αs

)

. (32)

We evaluate P1(p
α)(α ≥ 1) first. The formula (14) of [3] reads

P (pα) = (α+ 1)pα − αpα−1,

which implies that

P1(p
α) =

pα

(α+ 1)pα − αpα−1
=

1

α+ 1
+O(p−1). (33)
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Inserting (33) into (32) and recalling (21) we get that

∞
∑

n=1

P1(n)n−s = ζ1/2(s)G1(s), ℜs > 1, (34)

where

G1(s) =
∏

p

(1 − p−s)1/2

(

1 +
∞
∑

α=1

P1(p
α)p−αs

)

(35)

such that if we expand G1(s) into a Dirichlet series

G1(s) =
∞
∑

n=1

g1(n)n−s, (36)

then this Dirichlet series is absolutely convergent for ℜs > 1/2. For the function g1 we have
the trivial estimate

∑

m≤y

|g1(m)| ≤ y1/2+ε. (37)

From (37) we get by partial summation that

∑

m≤y

|g1(m)|m−1 ≪ 1,
∑

m>y

|g1(m)|m−1 ≪ y−1/2+ε (38)

and for any fixed constant C that

∑

m≤y

g1(m) logC m

m
=

∞
∑

m=1

g1(m) logC m

m
+O(y−1/2+ε). (39)

Let eC denote the value of the infinite series in (39).
Suppose β is a real number which is not a non-negative integer. By Taylor’s expansion

we have

(1 − u)β =
N
∑

ℓ=0

d
(β)
ℓ uℓ +O(|u|N+1), |u| ≤ 1/2, (40)

where d
(β)
ℓ = (−1)lβ(β − 1) · · · (β − ℓ+ 1)/ℓ!.

By the hyperbolic approach, (31) with A = z = 1/2, (38) and (39) with y =
√
x and (40)
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we get for any fixed N ≥ 1 that

∑

n≤x

P1(n) =
∑

nm≤x

d1/2(n)g1(m) (41)

=
∑

m≤√
x

g1(m)
∑

n≤x/m

d1/2(n) +
∑

n≤√
x

d1/2(n)
∑

√
x<m≤x/n

g1(m)

=
∑

m≤√
x

g1(m)
∑

n≤x/m

d1/2(n) +O(x3/4+ε)

=
∑

m≤√
x

g1(m)

(

x

m

N
∑

j=1

cj(1/2)(log
x

m
)1/2−j +O(

x

m
(log x)−1/2−N)

)

+O(x3/4+ε)

= x

N
∑

j=1

cj(1/2)(log x)1/2−j
∑

m≤√
x

g1(m)

m

(

1 − logm

log x

)1/2−j

+O(x(log x)−1/2−N)

= x

N
∑

j=1

cj(1/2)(log x)1/2−j

N
∑

ℓ=0

d
(1/2−j)
ℓ

∑

m≤√
x

g1(m)

m

logℓm

logℓ x

+O



x

N
∑

j=1

(log x)1/2−j
∑

m≤√
x

|g1(m)|
m

logN+1m

logN+1 x





+O(x(log x)−1/2−N)

= x
N
∑

j=1

cj(1/2)(log x)1/2−j

N
∑

ℓ=0

d
(1/2−j)
ℓ eℓ log−ℓ x

+O(x(log x)−1/2−N)

= x

N
∑

j=1

Kj(log x)1/2−j +O(x(log x)−1/2−N),

where

Kj =
∑

j=j1+ℓ

j1≥1,ℓ≥0

cj1(1/2)d
(1/2−j1)
ℓ eℓ =

j−1
∑

ℓ=0

cj−ℓ(1/2)d
(1/2−j+ℓ)
ℓ eℓ (1 ≤ j ≤ N).

From (41) we get (12) immediately by partial summation and some easy calculations.

3.3 Proof of (15)
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Now we prove (15). Define P
(e)
1 (n) = n/P (e)(n). By Euler’s product we have for ℜs > 1

that
∞
∑

n=1

P
(e)
1 (n)n−s =

∏

p

(

1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs

)

. (42)

Suppose p is a prime. From (6) it is easy to see that

P (e)(p) = p, P (e)(p2) = p2 + p, P (e)(p3) = p3 + 2p, P (e)(pα) = pα +O(pα/2) (α ≥ 4).

Hence

P
(e)
1 (p) = 1, P

(e)
1 (p2) =

1

1 + p−1
, P

(e)
1 (p3) =

1

1 + 2p−2
, (43)

P
(e)
1 (pα) =

pα

pα +O(pα/2)
=

1

1 +O(p−α/2)
= 1 +O(p−α/2) (α ≥ 4).

From (43) we get

1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs (44)

= 1 +
∞
∑

α=1

p−αs +
∞
∑

α=1

(P
(e)
1 (pα) − 1)p−αs

= 1 +
∞
∑

α=1

p−αs +
∞
∑

α=2

(P
(e)
1 (pα) − 1)p−αs

=
1

1 − p−s
+ (

1

1 + p−1
− 1)p−2s + (

1

1 + 2p−2
− 1)p−3s +

∞
∑

α=4

(P
(e)
1 (pα) − 1)p−αs

=
1

1 − p−s
+ (

1

1 + p−1
− 1)p−2s +O

(

p−3σ−2 +
∞
∑

α=4

p−α/2−ασ

)

=
1

1 − p−s
+ (

1

1 + p−1
− 1)p−2s +O

(

p−3σ−2 + p−4σ−2
)

=
1

1 − p−s
− p−1−2s +O

(

p−2σ−2 + p−3σ−2 + p−4σ−2
)

=
1

1 − p−s
− p−1−2s +O

(

p−2σ−2 + p−4σ−2
)

.

Hence we get

(1 − p−s)(1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs) (45)

= 1 − p−1−2s(1 − p−s) +O
(

p−2σ−2(1 + p−2σ)(1 + p−σ)
)

= 1 − p−1−2s + p−1−3s +O
(

p−2σ−2(1 + p−3σ)
)
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and

(1 − p−s)(1 + p−1−2s)(1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs) (46)

= 1 − p−2−4s + p−1−3s + p−2−5s +O
(

p−2σ−2(1 + p−3σ)(1 + p−1−2σ)
)

= 1 + p−1−3s +O
(

p−2σ−2(1 + p−3σ)(1 + p−1−2σ)
)

and

(1 − p−s)(1 + p−1−2s)(1 − p−1−3s)(1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs) (47)

= 1 − p−2−6s +O
(

p−2σ−2(1 + p−3σ)(1 + p−1−2σ)(1 + p−1−3σ)
)

= 1 +O
(

p−2−6σ + p−2σ−2(1 + p−3σ)(1 + p−1−2σ)(1 + p−1−3σ)
)

.

We write for σ > 1

1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs (48)

=
1

1 − p−s
× 1

1 + p−1−2s
× 1

1 − p−1−3s

×
(

(1 − p−s) × (1 + p−1−2s) × (1 − p−1−3s) × (1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs)

)

=
1

1 − p−s
× 1 − p−1−2s

1 − p−2−4s
× 1

1 − p−1−3s

×
(

(1 − p−s) × (1 + p−1−2s) × (1 − p−1−3s) × (1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs)

)

.

From (48) we may write for σ > 1 that

∞
∑

n=1

P
(e)
1 (n)n−s =

ζ(s)ζ(3s+ 1)

ζ(2s+ 1)
G

P
(e)
1

(s), (49)

where

G
P

(e)
1

(s) = ζ(4s+ 2)
∏

p

(

(1 − p−s)(1 + p−1−2s)(1 − p−1−3s)(1 +
∞
∑

α=1

P
(e)
1 (pα)p−αs)

)

. (50)

From (47) we see that if we write the function G
P

(e)
1

(s) into a Dirichlet series

G
P

(e)
1

(s) =
∞
∑

n=1

g
P

(e)
1

(n)n−s, (51)
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then this Derichlet series is absolutely for σ > −1/6. This fact implies that

∑

n≤x

|g
P

(e)
1

(n)| ≪ 1,
∑

n≤x

g
P

(e)
1

(n)

n
=

∞
∑

n=1

g
P

(e)
1

(n)

n
+O(x−7/6+ε). (52)

From (49), (51) and (52) we get

∑

n≤x

P
(e)
1 (n) =

∑

n1n2
2n3

3n4≤x

µ(n2)

n2n3

g
P

(e)
1

(n4) (53)

=
∑

n4≤x

g
P

(e)
1

(n4)
∑

n2
2n3

3≤ x
n4

µ(n2)

n2n3

∑

n1≤ x

n2
2n3

3n4

1

=
∑

n4≤x

g
P

(e)
1

(n4)
∑

n2
2n3

3≤ x
n4

µ(n2)

n2n3

(

x

n2
2n

3
3n4

+O(1)

)

= x
∑

n4≤x

g
P

(e)
1

(n4)

n4

∑

n2
2n3

3≤ x
n4

µ(n2)

n3
2n

4
3

+O(
∑

n4≤x

|g
P

(e)
1

(n4)| × log2 x)

= x
∑

n4≤x

g
P

(e)
1

(n4)

n4

∑

n2≤
√

x
n4

µ(n2)

n3
2

∑

n3≤( x

n4n2
2
)1/3

1

n4
3

+O(log2 x)

= x
∑

n4≤x

g
P

(e)
1

(n4)

n4

∑

n2≤
√

x
n4

µ(n2)

n3
2

(

ζ(4) +O(
n4n

2
2

x
)

)

+O(log2 x)

= xζ(4)
∑

n4≤x

g
P

(e)
1

(n4)

n4

∑

n2≤
√

x
n4

µ(n2)

n3
2

+O(log2 x)

= xζ(4)
∑

n4≤x

g
P

(e)
1

(n4)

n4

(

1

ζ(3)
+O(

n4

x
)

)

+O(log2 x)

= x
ζ(4)

ζ(3)

∑

n4≤x

g
P

(e)
1

(n4)

n4

+O(log2 x)

= x
ζ(4)

ζ(3)

∞
∑

n4=1

g
P

(e)
1

(n4)

n4

+O(log2 x),

where we used the following easy estimates(y ≥ 2)
∑

n≤y

n−4 = ζ(4) +O(y−3), (54)

∑

n≤y

µ(n)n−3 =
1

ζ(3)
+O(y−2), (55)

∑

n≤y

n−1 ≪ log y. (56)
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Now (15) follows from (53) by partial summation.
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