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Abstract

In this paper we consider a class of functions U of arithmetical functions which
include P̃ (n)/n, where P̃ (n) := n

∏

p|n(2 − 1
p). For any given U ∈ U , we obtain the

asymptotic formula for
∑

n≤x U(n), which improves a result of De Koninck and Kátai.

1 Introduction

In 1933, Pillai [10] introduced the function

P (n) =
n
∑

k=1

gcd(k, n),

1This work is supported by National Natural Science Foundation of China(Grant Nos. 10771127,
11001154) and Shandong Province Natural Science Foundation (Nos. BS2009SF018, ZR2010AQ009).

1

mailto:zdy_78@yahoo.com.cn
mailto:zhaiwg@hotmail.com


and proved that

P (n) =
∑

d|n

dϕ(n/d), and
∑

d|n

P (d) = nd(n) =
∑

d|n

σ(d)ϕ(n/d),

where ϕ is Euler’s function, d(n) and σ(n) denote the number of divisors of n and the
sum of the divisors of n respectively. Many authors investigated the properties of P (n),
see [2, 3, 4, 5, 6, 10, 13]; it is Sloane’s sequence A018804. Chidambaraswamy and Sitara-
machandrarao [6] showed that, given an arbitrary ǫ > 0,

∑

n≤x

P (n) = e1x
2 log x + e2x

2 + O(x1+θ+ǫ),

where e1, e2 are computable constants and 0 < θ < 1/2 is some exponent contained in

∑

n≤x

d(n) = x log x + (2γ − 1)x + O(xθ+ǫ). (1)

The asymptotic formula (1) is the well-known Dirichlet divisor problem. The latest value of
θ is θ = 131/416 proved by Huxley [8].

Tóth [12] first defined the gcd-sum function over regular integers modulo n by the relation

P̃ (n) =
∑

k∈Regn

gcd(k, n), (2)

where Regn = {k : 1 ≤ k ≤ n and k is regular (mod n)}, and proved that P̃ (n) is multi-
plicative and for every n ≥ 1,

P̃ (n) = n
∏

p|n

(2 −
1

p
). (3)

It is sequence A176345 in Sloane’s Encyclopedia. He also obtained the following asymptotic
formula

∑

n≤x

P̃ (n) =
x2

2ζ(2)
(K1 log x + K2) + O(x3/2δ(x)), (4)

where K1 and K2 are certain constants and δ(x) is given by

δ(x) = exp(−A(log x)3/5(log log x)−1/5).

Zhang and Zhai [15] showed that the estimate of
∑

n≤x P̃ (n) is closely related to the square-
free divisor problem and improved the error term of (4) under RH.

De Koninck and Kátai [7] introduced two wide classes of arithmetical functions R and
U , the first of which includes the function P (n)/n, and the second of which includes P̃ (n)/n.
More precisely, the class R is made of the following functions R. Firstly let γ(n) denote the
kernel of n ≥ 2, that is γ(n) =

∏

p|n p (with γ(1) = 1). Then, given an arbitrary positive
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constant c, an arbitrary real number α > 0 and a multiplicative function κ(n) satisfying
| κ(n) |≤ c

γ(n)α for all n ≥ 2, let R ∈ R be defined by

R(n) = Rκ,c,α(n) := d(n)
∑

d‖n

κ(d) = d(n)
∏

pa‖n

(1 + κ(pa)). (5)

It is easily seen that if we let κ(pa) = −a/(a+1)
p

, then the corresponding function R(n) is

precisely P (n)/n.
De Koninck and Kátai [7] showed that

T (x) :=
∑

n≤x

R(n) = A0x log x + B0x + O(xβ+ǫ), (6)

with

β =

{

θ, if α ≥ 1 − θ;

1 − α, if α < 1 − θ;

where θ is the exponent in (1), A0, B0 are certain constants.
As for the class of functions U , it is made of the functions

U(n) = Uh,c,α(n) := 2ω(n)
∑

d|n

h(d),

where ω(n) stands for the number of distinct prime factors of n, and h is a multiplicative
function satisfying |h(n)| ≤ c

γ(n)α for all n ≥ 2. It is easily seen that by taking h(p) = − 1
2p

and h(pa) = 0, for a ≥ 2, we obtain the particular case U(n) = P̃ (n)/n. De Koninck and
Kátai [7] proved that

S(x) :=
∑

n≤x

U(n) = t1x log x + t2x + O(
x

log x
), (7)

where t1, t2 are certain constants.
In this paper, we shall prove the following

Theorem 1. Suppose 0 ≤ α < 1. Then we have

S(x) = t1x log x + t2x + O(x1−α+ǫ + x1/2+ǫ). (8)

Remark 2. (i) From our proof we see that the evaluation of S(x) is closely related to the
distribution of the zeros of the Riemann zeta function. The exponent 1/2 can be reduced to
4/11 if RH is true.

(ii) The exponent 1−α in the error term of Theorem 1 is best possible when α is small. For
example, if we take h(n) = n−α with 0 < α < 1/2, then our proof with slight modifications
yields

∑

n≤x

U(n) = t1x log x + t2x + t3x
1−α log x + t4x

1−α + O(x1/2+ǫ).
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We are also interested in the short interval case. In this case, the restrictions on α and
RH can be removed. Actually, we have the following Theorem 3.

Theorem 3. Suppose (1) holds for 1/4 < θ < 1/3. Then for xθ+2ǫ ≤ y ≤ x, we have
∑

x<n≤x+y

U(n) = H(x + y) − H(x) + O(yx− ǫ
2 + xθ+ǫ), (9)

where H(x) = t1x log x + t2x.

2 Preliminary Lemmas

Lemma 4. Let s be a complex number with ℜs > 1. Then

∞
∑

n=1

U(n)

ns
=

ζ2(s)

ζ(2s)
G(s),

where G(s) can be written as a Dirichlet series G(s) =
∞
∑

n=1

g(n)
ns , which is absolutely convergent

for ℜs > 1 − α. Moreover g(n) satisfies |g(n)| ≪ n−α+ǫ.

Proof. For ℜs > 1, by Euler product representation we have

F (s) :=
∞
∑

n=1

U(n)

ns
=
∏

p

(

1 +
∞
∑

β=1

U(pβ)

pβs

)

,

where U(pβ) = 2(1 + h(p) + · · · + h(pβ)), β ≥ 1. Thus

1 +
∞
∑

β=1

U(pβ)

pβs
= 1 +

∞
∑

β=1

2

pβs
+ 2

∞
∑

β=1

p−βs

β
∑

j=1

h(pj)

=
1 − p−2s

(1 − p−s)2
+ 2

∞
∑

β=1

p−βs

β
∑

j=1

h(pj)

=
1 − p−2s

(1 − p−s)2
×

(

1 +
2(1 − p−s)2

1 − p−2s

∞
∑

β=1

p−βs

β
∑

j=1

h(pj)

)

,

hence we get
∞
∑

n=1

U(n)

ns
=

ζ2(s)

ζ(2s)
G(s),

where

G(s) =
∏

p

(

1 +
2(1 − p−s)2

1 − p−2s

∞
∑

β=1

p−βs

β
∑

j=1

h(pj)

)

.

From the above formula, it is easy to see that G(s) can be expanded to a Dirichlet series

G(s) =
∞
∑

n=1

g(n)
ns , which is absolutely convergent for ℜs > 1−α, if we notice that |h(p)| ≤ c

pα .

Therefore |g(n)| ≪ n−α+ǫ.
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Lemma 5. Let
∞
∑

n=1

d(2)(n)

ns
=

ζ2(s)

ζ(2s)
, ℜs > 1,

where d(2)(n) denote the number of square-free divisors of n. Then for any real numbers
x ≥ 1, we have

D(2)(x) :=
∑

n≤x

d(2)(n) = c1x log x + c2x + ∆(2)(x)

with ∆(2)(x) = O(x1/2 log x), where

c1 =
1

ζ(2)
, c2 =

2γ − 1

ζ(2)
−

2ζ ′(2)

ζ2(2)
.

Moreover, if RH is true, then ∆(2)(x) = O(x4/11+ǫ).

Proof. The first result is due to Mertens [9] and the second one is due to Baker [1].

Lemma 6.
∑

n≤x

|g(n)| ≪ x1−α+ǫ.

Proof. It follows from |g(n)| ≪ n−α+ǫ.

Lemma 7. Let k ≥ 2 be a fixed integer , 1 < y ≤ x be large real numbers and

A(x, y; k, ǫ) :=
∑

x<nmk≤x+y

m>xǫ

1.

Then we have
A(x, y; k, ǫ) ≪ yx−ǫ + x1/4.

Proof. This is Lemma 3 of Zhai [14].

3 Proof of Theorem 1

Notice that

ζ2(s)

ζ(2s)
=

∞
∑

ℓ=1

d(2)(ℓ)

ℓs
, G(s) =

∞
∑

m=1

g(m)

ms
. (10)

By the Dirichlet convolution, we have
∑

n≤x

U(n) =
∑

mℓ≤x

g(m)d(2)(ℓ) =
∑

m≤x

g(m)
∑

ℓ≤x/m

d(2)(l),

and Lemma 5 applied to the inner sum gives

∑

n≤x

U(n) =
∑

m≤x

g(m)
{c1x

m
log(

x

m
) +

c2x

m
+ O

(

(
x

m
)1/2+ǫ

)}
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= c1x

{

(

log x +
c2

c1

)

∑

m≤x

g(m)

m
−
∑

m≤x

g(m) log m

m

}

+ O

(

x1/2+ǫ
∑

m≤x

|g(m)|

m1/2+ǫ

)

= c1x

{

(

log x +
c2

c1

) ∞
∑

m=1

g(m)

m
−

∞
∑

m=1

g(m) log m

m
+ O(x−α+ǫ)

}

+ O

(

x1/2+ǫ
∑

m≤x

|g(m)|

m1/2+ǫ

)

,

if we notice by Lemma 6 that both of the infinite series
∑∞

m=1
g(m)

m
,

∑∞
m=1

g(m) log m
m

are
absolutely convergent, and

∑

m>x

g(m)

m
≪ x−α+ǫ,

∑

m>x

g(m) log m

m
≪ x−α+ǫ. (11)

Then we have

∑

n≤x

U(n) = t1x log x + t2x + O(x1−α+ǫ) + O

(

x1/2+ǫ
∑

m≤x

|g(m)|

m1/2+ǫ

)

, (12)

where

t1 =
1

ζ(2)

∞
∑

m=1

g(m)

m
=

G(1)

ζ(2)
,

t2 =
1

ζ(2)

{

(2γ − 1 −
2ζ ′(2)

ζ(2)
)

∞
∑

m=1

g(m)

m
−

∞
∑

m=1

g(m) log m

m

}

=
1

ζ(2)

{

(2γ − 1 −
2ζ ′(2)

ζ(2)
)G(1) − G′(1)

}

.

By Lemma 6, we have

∑

m≤x

|g(m)|

m1/2+ǫ
≤
∑

m≤x

1

m1/2+α+ǫ
≤

{

xǫ, α ≥ 1/2;

x1/2−α+ǫ, α < 1/2,

Theorem 1 follows from the above estimates and Eq. (12).

4 Proof of Theorem 3

By Lemma 4, we have

U(n) =
∑

n=n1n2n2
3

d(n1)g(n2)µ(n3),

where d(n) is the divisor function. Then

∑

x<n≤x+y

U(n) =
∑

x<n1n2n2
3
≤x+y

d(n1)g(n2)µ(n3) = Σ1 + O (Σ2 + Σ3) , (13)
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where
Σ1 =

∑

n2≤xǫ

n3≤xǫ

g(n2)µ(n3)
∑

x

n2n2
3

<n1≤
x+y

n2n2
3

d(n1),

Σ2 =
∑

x<n1n2n2
3
≤x+y

n2>xǫ

d(n1)|g(n2)|,

Σ3 =
∑

x<n1n2n2
3
≤x+y

n3>xǫ

d(n1)|g(n2)|.

Recalling (1), the inner sum in Σ1 is

(x + y)

n2n2
3

log
(x + y)

n2n2
3

−
x

n2n2
3

log
x

n2n2
3

+ (2γ − 1)
y

n2n2
3

+ O

(

xθ

nθ
2n

2θ
3

)

=
(x + y) log(x + y) − x log x

n2n2
3

− y
log(n2n

2
3)

n2n2
3

+ (2γ − 1)
y

n2n2
3

+ O

(

xθ

nθ
2n

2θ
3

)

.

Inserting the above expression into Σ1 and after some easy calculations, we get

Σ1 = H(x + y) − H(x) + O
(

yx−ǫ + y−αǫ+ǫ2 + xθ+ǫ
)

. (14)

For Σ2, we have
|g(n2)| ≪ n−α+ǫ

2 ≪ x−αǫ+ǫ2 ,

if we notice that n2 > xǫ, and hence

Σ2 ≪ x−αǫ+ǫ2
∑

x<n1n2n2
3
≤x+y

d(n1) = x−αǫ+ǫ2
∑

x<n≤x+y

d∗(n),

where
d∗(n) =

∑

n=n1n2n2
3

d(n1) ≪ nǫ2 .

Therefore we have

Σ2 ≪ x−αǫ+ǫ2
∑

x<n≤x+y

nǫ2 ≪ yx−αǫ+ǫ2 . (15)

Since d(n) ≪ nǫ2 , g(n2) ≪ 1, by Lemma 7 we have

Σ3 ≪ xǫ2
∑

x<n1n2n2
3
≤x+y

n3>xǫ

1 ≪ xǫ2
∑

x<nn2
3
≤x+y

n3>xǫ

d(n)

≪ x2ǫ2
∑

x<nn2
3
≤x+y

n3>xǫ

1 = x2ǫ2A(x, y; 2, ǫ)

≪ yx−ǫ+2ǫ2 + x1/4+ǫ2 . (16)

Then Theorem 3 follows from Eqs. (13)–(16).

7



5 Acknowledgments

The authors express their gratitude to the referee for a careful reading of the manuscript
and many valuable suggestions, which highly improve the quality of this paper.

References

[1] R. C. Baker, The square-free divisor problem II, Quart. J. Math. Oxford Ser. (2) 47

(1996), 133–146.

[2] O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Sequences
10 (2007), Article 07.3.3.

[3] O. Bordellès, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer
Sequences 10 (2007), Article 07.9.2.

[4] K. Broughan, The gcd-sum function, J. Integer Sequences 4 (2001), Article 01.2.2.

[5] K. Broughan, The average order of the Dirichlet series of the gcd-sum function, J.
Integer Sequences 10 (2007), Article 07.4.2.

[6] J. Chidambaraswamy and R. Sitaramachandrarao, Asymptotic results for a class of
arithmetical functions, Monatsh. Math. 99 (1985), 19–27.
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[11] H. E. Richert, Über die Anzahl Abelscher Gruppen gegebener Ordnung I, Math. Z. 56

(1952), 21–32; II. ibid. 58 (1953), 71–84.
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