Journal of Integer Sequences, Vol. 14 (2011),

Mean Values of a Class of Arithmetical Functions

Deyu Zhang ${ }^{1}$
School of Mathematical Sciences
Shandong Normal University
Jinan 250014
Shandong
P. R. China
zdy_78@yahoo.com.cn
Wenguang Zhai ${ }^{1}$
Department of Mathematics
China University of Mining and Technology
Beijing, 100083
P. R. China
zhaiwg@hotmail.com

Abstract

In this paper we consider a class of functions \mathcal{U} of arithmetical functions which include $\tilde{P}(n) / n$, where $\tilde{P}(n):=n \prod_{p \mid n}\left(2-\frac{1}{p}\right)$. For any given $U \in \mathcal{U}$, we obtain the asymptotic formula for $\sum_{n \leq x} U(n)$, which improves a result of De Koninck and Kátai.

1 Introduction

In 1933, Pillai [10] introduced the function

$$
P(n)=\sum_{k=1}^{n} \operatorname{gcd}(k, n),
$$

[^0]and proved that
$$
P(n)=\sum_{d \mid n} d \varphi(n / d), \quad \text { and } \quad \sum_{d \mid n} P(d)=n d(n)=\sum_{d \mid n} \sigma(d) \varphi(n / d),
$$
where φ is Euler's function, $d(n)$ and $\sigma(n)$ denote the number of divisors of n and the sum of the divisors of n respectively. Many authors investigated the properties of $P(n)$, see $[2,3,4,5,6,10,13]$; it is Sloane's sequence A018804. Chidambaraswamy and Sitaramachandrarao [6] showed that, given an arbitrary $\epsilon>0$,
$$
\sum_{n \leq x} P(n)=e_{1} x^{2} \log x+e_{2} x^{2}+O\left(x^{1+\theta+\epsilon}\right)
$$
where e_{1}, e_{2} are computable constants and $0<\theta<1 / 2$ is some exponent contained in
\[

$$
\begin{equation*}
\sum_{n \leq x} d(n)=x \log x+(2 \gamma-1) x+O\left(x^{\theta+\epsilon}\right) \tag{1}
\end{equation*}
$$

\]

The asymptotic formula (1) is the well-known Dirichlet divisor problem. The latest value of θ is $\theta=131 / 416$ proved by Huxley [8].

Tóth [12] first defined the gcd-sum function over regular integers modulo n by the relation

$$
\begin{equation*}
\tilde{P}(n)=\sum_{k \in \operatorname{Reg}_{n}} \operatorname{gcd}(k, n) \tag{2}
\end{equation*}
$$

where $\operatorname{Reg}_{n}=\{k: 1 \leq k \leq n$ and k is regular $(\bmod n)\}$, and proved that $\tilde{P}(n)$ is multiplicative and for every $n \geq 1$,

$$
\begin{equation*}
\tilde{P}(n)=n \prod_{p \mid n}\left(2-\frac{1}{p}\right) \tag{3}
\end{equation*}
$$

It is sequence A176345 in Sloane's Encyclopedia. He also obtained the following asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x} \tilde{P}(n)=\frac{x^{2}}{2 \zeta(2)}\left(K_{1} \log x+K_{2}\right)+O\left(x^{3 / 2} \delta(x)\right) \tag{4}
\end{equation*}
$$

where K_{1} and K_{2} are certain constants and $\delta(x)$ is given by

$$
\delta(x)=\exp \left(-A(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)
$$

Zhang and Zhai [15] showed that the estimate of $\sum_{n \leq x} \tilde{P}(n)$ is closely related to the squarefree divisor problem and improved the error term of (4) under RH.

De Koninck and Kátai [7] introduced two wide classes of arithmetical functions \mathcal{R} and \mathcal{U}, the first of which includes the function $P(n) / n$, and the second of which includes $\tilde{P}(n) / n$. More precisely, the class \mathcal{R} is made of the following functions R. Firstly let $\gamma(n)$ denote the kernel of $n \geq 2$, that is $\gamma(n)=\prod_{p \mid n} p$ (with $\gamma(1)=1$). Then, given an arbitrary positive
constant c, an arbitrary real number $\alpha>0$ and a multiplicative function $\kappa(n)$ satisfying $|\kappa(n)| \leq \frac{c}{\gamma(n)^{\alpha}}$ for all $n \geq 2$, let $R \in \mathcal{R}$ be defined by

$$
\begin{equation*}
R(n)=R_{\kappa, c, \alpha}(n):=d(n) \sum_{d \| n} \kappa(d)=d(n) \prod_{p^{a} \| n}\left(1+\kappa\left(p^{a}\right)\right) . \tag{5}
\end{equation*}
$$

It is easily seen that if we let $\kappa\left(p^{a}\right)=-\frac{a /(a+1)}{p}$, then the corresponding function $R(n)$ is precisely $P(n) / n$.

De Koninck and Kátai [7] showed that

$$
\begin{equation*}
T(x):=\sum_{n \leq x} R(n)=A_{0} x \log x+B_{0} x+O\left(x^{\beta+\epsilon}\right) \tag{6}
\end{equation*}
$$

with

$$
\beta= \begin{cases}\theta, & \text { if } \alpha \geq 1-\theta \\ 1-\alpha, & \text { if } \alpha<1-\theta\end{cases}
$$

where θ is the exponent in (1), A_{0}, B_{0} are certain constants.
As for the class of functions \mathcal{U}, it is made of the functions

$$
U(n)=U_{h, c, \alpha}(n):=2^{\omega(n)} \sum_{d \mid n} h(d),
$$

where $\omega(n)$ stands for the number of distinct prime factors of n, and h is a multiplicative function satisfying $|h(n)| \leq \frac{c}{\gamma(n)^{\alpha}}$ for all $n \geq 2$. It is easily seen that by taking $h(p)=-\frac{1}{2 p}$ and $h\left(p^{a}\right)=0$, for $a \geq 2$, we obtain the particular case $U(n)=\tilde{P}(n) / n$. De Koninck and Kátai [7] proved that

$$
\begin{equation*}
S(x):=\sum_{n \leq x} U(n)=t_{1} x \log x+t_{2} x+O\left(\frac{x}{\log x}\right) \tag{7}
\end{equation*}
$$

where t_{1}, t_{2} are certain constants.
In this paper, we shall prove the following
Theorem 1. Suppose $0 \leq \alpha<1$. Then we have

$$
\begin{equation*}
S(x)=t_{1} x \log x+t_{2} x+O\left(x^{1-\alpha+\epsilon}+x^{1 / 2+\epsilon}\right) . \tag{8}
\end{equation*}
$$

Remark 2. (i) From our proof we see that the evaluation of $S(x)$ is closely related to the distribution of the zeros of the Riemann zeta function. The exponent $1 / 2$ can be reduced to 4/11 if RH is true.
(ii) The exponent $1-\alpha$ in the error term of Theorem 1 is best possible when α is small. For example, if we take $h(n)=n^{-\alpha}$ with $0<\alpha<1 / 2$, then our proof with slight modifications yields

$$
\sum_{n \leq x} U(n)=t_{1} x \log x+t_{2} x+t_{3} x^{1-\alpha} \log x+t_{4} x^{1-\alpha}+O\left(x^{1 / 2+\epsilon}\right)
$$

We are also interested in the short interval case. In this case, the restrictions on α and RH can be removed. Actually, we have the following Theorem 3.
Theorem 3. Suppose (1) holds for $1 / 4<\theta<1 / 3$. Then for $x^{\theta+2 \epsilon} \leq y \leq x$, we have

$$
\begin{equation*}
\sum_{x<n \leq x+y} U(n)=H(x+y)-H(x)+O\left(y x^{-\frac{\epsilon}{2}}+x^{\theta+\epsilon}\right) \tag{9}
\end{equation*}
$$

where $H(x)=t_{1} x \log x+t_{2} x$.

2 Preliminary Lemmas

Lemma 4. Let s be a complex number with $\Re s>1$. Then

$$
\sum_{n=1}^{\infty} \frac{U(n)}{n^{s}}=\frac{\zeta^{2}(s)}{\zeta(2 s)} G(s)
$$

where $G(s)$ can be written as a Dirichlet series $G(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$, which is absolutely convergent for $\Re s>1-\alpha$. Moreover $g(n)$ satisfies $|g(n)| \ll n^{-\alpha+\epsilon}$.
Proof. For $\Re s>1$, by Euler product representation we have

$$
F(s):=\sum_{n=1}^{\infty} \frac{U(n)}{n^{s}}=\prod_{p}\left(1+\sum_{\beta=1}^{\infty} \frac{U\left(p^{\beta}\right)}{p^{\beta s}}\right)
$$

where $U\left(p^{\beta}\right)=2\left(1+h(p)+\cdots+h\left(p^{\beta}\right)\right), \beta \geq 1$. Thus

$$
\begin{aligned}
1+\sum_{\beta=1}^{\infty} \frac{U\left(p^{\beta}\right)}{p^{\beta s}} & =1+\sum_{\beta=1}^{\infty} \frac{2}{p^{\beta s}}+2 \sum_{\beta=1}^{\infty} p^{-\beta s} \sum_{j=1}^{\beta} h\left(p^{j}\right) \\
& =\frac{1-p^{-2 s}}{\left(1-p^{-s}\right)^{2}}+2 \sum_{\beta=1}^{\infty} p^{-\beta s} \sum_{j=1}^{\beta} h\left(p^{j}\right) \\
& =\frac{1-p^{-2 s}}{\left(1-p^{-s}\right)^{2}} \times\left(1+\frac{2\left(1-p^{-s}\right)^{2}}{1-p^{-2 s}} \sum_{\beta=1}^{\infty} p^{-\beta s} \sum_{j=1}^{\beta} h\left(p^{j}\right)\right)
\end{aligned}
$$

hence we get

$$
\sum_{n=1}^{\infty} \frac{U(n)}{n^{s}}=\frac{\zeta^{2}(s)}{\zeta(2 s)} G(s)
$$

where

$$
G(s)=\prod_{p}\left(1+\frac{2\left(1-p^{-s}\right)^{2}}{1-p^{-2 s}} \sum_{\beta=1}^{\infty} p^{-\beta s} \sum_{j=1}^{\beta} h\left(p^{j}\right)\right) .
$$

From the above formula, it is easy to see that $G(s)$ can be expanded to a Dirichlet series $G(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$, which is absolutely convergent for $\Re s>1-\alpha$, if we notice that $|h(p)| \leq \frac{c}{p^{\alpha}}$. Therefore $|g(n)| \ll n^{-\alpha+\epsilon}$.

Lemma 5. Let

$$
\sum_{n=1}^{\infty} \frac{d^{(2)}(n)}{n^{s}}=\frac{\zeta^{2}(s)}{\zeta(2 s)}, \quad \Re s>1
$$

where $d^{(2)}(n)$ denote the number of square-free divisors of n. Then for any real numbers $x \geq 1$, we have

$$
D^{(2)}(x):=\sum_{n \leq x} d^{(2)}(n)=c_{1} x \log x+c_{2} x+\Delta^{(2)}(x)
$$

with $\Delta^{(2)}(x)=O\left(x^{1 / 2} \log x\right)$, where

$$
c_{1}=\frac{1}{\zeta(2)}, \quad c_{2}=\frac{2 \gamma-1}{\zeta(2)}-\frac{2 \zeta^{\prime}(2)}{\zeta^{2}(2)} .
$$

Moreover, if RH is true, then $\Delta^{(2)}(x)=O\left(x^{4 / 11+\epsilon}\right)$.
Proof. The first result is due to Mertens [9] and the second one is due to Baker [1].
Lemma 6.

$$
\sum_{n \leq x}|g(n)| \ll x^{1-\alpha+\epsilon}
$$

Proof. It follows from $|g(n)| \ll n^{-\alpha+\epsilon}$.
Lemma 7. Let $k \geq 2$ be a fixed integer, $1<y \leq x$ be large real numbers and

$$
\mathcal{A}(x, y ; k, \epsilon):=\sum_{\substack{x<n m^{k} \leq x+y \\ m>x^{\epsilon}}} 1 .
$$

Then we have

$$
\mathcal{A}(x, y ; k, \epsilon) \ll y x^{-\epsilon}+x^{1 / 4} .
$$

Proof. This is Lemma 3 of Zhai [14].

3 Proof of Theorem 1

Notice that

$$
\begin{equation*}
\frac{\zeta^{2}(s)}{\zeta(2 s)}=\sum_{\ell=1}^{\infty} \frac{d^{(2)}(\ell)}{\ell^{s}}, \quad G(s)=\sum_{m=1}^{\infty} \frac{g(m)}{m^{s}} . \tag{10}
\end{equation*}
$$

By the Dirichlet convolution, we have

$$
\sum_{n \leq x} U(n)=\sum_{m \ell \leq x} g(m) d^{(2)}(\ell)=\sum_{m \leq x} g(m) \sum_{\ell \leq x / m} d^{(2)}(l)
$$

and Lemma 5 applied to the inner sum gives

$$
\sum_{n \leq x} U(n)=\sum_{m \leq x} g(m)\left\{\frac{c_{1} x}{m} \log \left(\frac{x}{m}\right)+\frac{c_{2} x}{m}+O\left(\left(\frac{x}{m}\right)^{1 / 2+\epsilon}\right)\right\}
$$

$$
\begin{gathered}
=c_{1} x\left\{\left(\log x+\frac{c_{2}}{c_{1}}\right) \sum_{m \leq x} \frac{g(m)}{m}-\sum_{m \leq x} \frac{g(m) \log m}{m}\right\}+O\left(x^{1 / 2+\epsilon} \sum_{m \leq x} \frac{|g(m)|}{m^{1 / 2+\epsilon}}\right) \\
=c_{1} x\left\{\left(\log x+\frac{c_{2}}{c_{1}}\right) \sum_{m=1}^{\infty} \frac{g(m)}{m}-\sum_{m=1}^{\infty} \frac{g(m) \log m}{m}+O\left(x^{-\alpha+\epsilon}\right)\right\}+O\left(x^{1 / 2+\epsilon} \sum_{m \leq x} \frac{|g(m)|}{m^{1 / 2+\epsilon}}\right),
\end{gathered}
$$

if we notice by Lemma 6 that both of the infinite series $\sum_{m=1}^{\infty} \frac{g(m)}{m}, \quad \sum_{m=1}^{\infty} \frac{g(m) \log m}{m}$ are absolutely convergent, and

$$
\begin{equation*}
\sum_{m>x} \frac{g(m)}{m} \ll x^{-\alpha+\epsilon}, \quad \sum_{m>x} \frac{g(m) \log m}{m} \ll x^{-\alpha+\epsilon} . \tag{11}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\sum_{n \leq x} U(n)=t_{1} x \log x+t_{2} x+O\left(x^{1-\alpha+\epsilon}\right)+O\left(x^{1 / 2+\epsilon} \sum_{m \leq x} \frac{|g(m)|}{m^{1 / 2+\epsilon}}\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
t_{1} & =\frac{1}{\zeta(2)} \sum_{m=1}^{\infty} \frac{g(m)}{m}=\frac{G(1)}{\zeta(2)} \\
t_{2} & =\frac{1}{\zeta(2)}\left\{\left(2 \gamma-1-\frac{2 \zeta^{\prime}(2)}{\zeta(2)}\right) \sum_{m=1}^{\infty} \frac{g(m)}{m}-\sum_{m=1}^{\infty} \frac{g(m) \log m}{m}\right\} \\
& =\frac{1}{\zeta(2)}\left\{\left(2 \gamma-1-\frac{2 \zeta^{\prime}(2)}{\zeta(2)}\right) G(1)-G^{\prime}(1)\right\}
\end{aligned}
$$

By Lemma 6, we have

$$
\sum_{m \leq x} \frac{|g(m)|}{m^{1 / 2+\epsilon}} \leq \sum_{m \leq x} \frac{1}{m^{1 / 2+\alpha+\epsilon}} \leq \begin{cases}x^{\epsilon}, & \alpha \geq 1 / 2 ; \\ x^{1 / 2-\alpha+\epsilon}, & \alpha<1 / 2,\end{cases}
$$

Theorem 1 follows from the above estimates and Eq. (12).

4 Proof of Theorem 3

By Lemma 4, we have

$$
U(n)=\sum_{n=n_{1} n_{2} n_{3}^{2}} d\left(n_{1}\right) g\left(n_{2}\right) \mu\left(n_{3}\right),
$$

where $d(n)$ is the divisor function. Then

$$
\begin{equation*}
\sum_{x<n \leq x+y} U(n)=\sum_{x<n_{1} n_{2} n_{3} \leq x+y} d\left(n_{1}\right) g\left(n_{2}\right) \mu\left(n_{3}\right)=\Sigma_{1}+O\left(\Sigma_{2}+\Sigma_{3}\right), \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
\Sigma_{1} & =\sum_{\substack{n_{2} \leq x^{\epsilon} \\
n_{3} \leq x^{\epsilon}}} g\left(n_{2}\right) \mu\left(n_{3}\right) \sum_{\frac{x}{n_{2} n_{3}^{2}}<n_{1} \leq \frac{x+y}{n_{2} n_{3}^{2}}} d\left(n_{1}\right), \\
\Sigma_{2} & =\sum_{\substack{x<n_{1} n_{2} n_{3}^{2} \leq x+y \\
n_{2}>x^{\epsilon}}} d\left(n_{1}\right)\left|g\left(n_{2}\right)\right|, \\
\Sigma_{3} & =\sum_{\substack{x<n_{1} n_{2} n_{3}^{2} \leq x+y \\
n_{3}>x^{\epsilon}}} d\left(n_{1}\right)\left|g\left(n_{2}\right)\right| .
\end{aligned}
$$

Recalling (1), the inner sum in Σ_{1} is

$$
\begin{aligned}
& \frac{(x+y)}{n_{2} n_{3}^{2}} \log \frac{(x+y)}{n_{2} n_{3}^{2}}-\frac{x}{n_{2} n_{3}^{2}} \log \frac{x}{n_{2} n_{3}^{2}}+(2 \gamma-1) \frac{y}{n_{2} n_{3}^{2}}+O\left(\frac{x^{\theta}}{n_{2}^{\theta} n_{3}^{2 \theta}}\right) \\
& =\frac{(x+y) \log (x+y)-x \log x}{n_{2} n_{3}^{2}}-y \frac{\log \left(n_{2} n_{3}^{2}\right)}{n_{2} n_{3}^{2}}+(2 \gamma-1) \frac{y}{n_{2} n_{3}^{2}}+O\left(\frac{x^{\theta}}{n_{2}^{\theta} n_{3}^{2 \theta}}\right) .
\end{aligned}
$$

Inserting the above expression into Σ_{1} and after some easy calculations, we get

$$
\begin{equation*}
\Sigma_{1}=H(x+y)-H(x)+O\left(y x^{-\epsilon}+y^{-\alpha \epsilon+\epsilon^{2}}+x^{\theta+\epsilon}\right) . \tag{14}
\end{equation*}
$$

For Σ_{2}, we have

$$
\left|g\left(n_{2}\right)\right| \ll n_{2}^{-\alpha+\epsilon} \ll x^{-\alpha \epsilon+\epsilon^{2}},
$$

if we notice that $n_{2}>x^{\epsilon}$, and hence

$$
\Sigma_{2} \ll x^{-\alpha \epsilon+\epsilon^{2}} \sum_{x<n_{1} n_{2} n_{3}^{2} \leq x+y} d\left(n_{1}\right)=x^{-\alpha \epsilon+\epsilon^{2}} \sum_{x<n \leq x+y} d_{*}(n),
$$

where

$$
d_{*}(n)=\sum_{n=n_{1} n_{2} n_{3}^{2}} d\left(n_{1}\right) \ll n^{\epsilon^{2}}
$$

Therefore we have

$$
\begin{equation*}
\Sigma_{2} \ll x^{-\alpha \epsilon+\epsilon^{2}} \sum_{x<n \leq x+y} n^{\epsilon^{2}} \ll y x^{-\alpha \epsilon+\epsilon^{2}} . \tag{15}
\end{equation*}
$$

Since $d(n) \ll n^{\epsilon^{2}}, \quad g\left(n_{2}\right) \ll 1$, by Lemma 7 we have

$$
\begin{align*}
\Sigma_{3} & \ll x^{\epsilon^{2}} \sum_{\substack{x<n_{1} n_{2} n_{3}^{2} \leq x+y \\
n_{3}>x^{\epsilon}}} 1 \ll x^{\epsilon^{2}} \sum_{\substack{x<n n_{3}^{2} \leq x+y \\
n_{3}>x^{\epsilon}}} d(n) \\
& \ll x^{2 \epsilon^{2}} \sum_{\substack{x<n n_{3}^{2} \leq x+y \\
n_{3}>x^{\epsilon}}} 1=x^{2 \epsilon^{2}} \mathcal{A}(x, y ; 2, \epsilon) \\
& \ll y x^{-\epsilon+2 \epsilon^{2}}+x^{1 / 4+\epsilon^{2}} . \tag{16}
\end{align*}
$$

Then Theorem 3 follows from Eqs. (13)-(16).

5 Acknowledgments

The authors express their gratitude to the referee for a careful reading of the manuscript and many valuable suggestions, which highly improve the quality of this paper.

References

[1] R. C. Baker, The square-free divisor problem II, Quart. J. Math. Oxford Ser. (2) 47 (1996), 133-146.
[2] O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Sequences 10 (2007), Article 07.3.3.
[3] O. Bordellès, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer Sequences 10 (2007), Article 07.9.2.
[4] K. Broughan, The gcd-sum function, J. Integer Sequences 4 (2001), Article 01.2.2.
[5] K. Broughan, The average order of the Dirichlet series of the gcd-sum function, J. Integer Sequences 10 (2007), Article 07.4.2.
[6] J. Chidambaraswamy and R. Sitaramachandrarao, Asymptotic results for a class of arithmetical functions, Monatsh. Math. 99 (1985), 19-27.
[7] J. M. de Koninck and I. Kátai, Some remarks on a paper of L.Toth, J. Integer Sequences 13 (2010), Article 10.1.2.
[8] M. N. Huxley, Exponential sums and Lattice points III, Proc. London Math. Soc., 87 (3) (2003), 591-609.
[9] F. Mertens, Über einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math. 77 (1874), 289-338.
[10] S. S. Pillai, On an arithmetic function, J. Annamalai Univ. 2 (1933), 243-248.
[11] H. E. Richert, Über die Anzahl Abelscher Gruppen gegebener Ordnung I, Math. Z. 56 (1952), 21-32; II. ibid. 58 (1953), 71-84.
[12] L. Tóth, A gcd-sum function over regular integers modulo n, J. Integer Sequences 12 (2009), Article 09.2.5.
[13] Y. Tanigawa and W. Zhai, On the gcd-sum function, J. Integer Sequences 11 (2008), Article 08.2.3.
[14] W. G. Zhai, Square-free numbers as sums of two squares, in Number Theory, Developments in Mathematics, Springer, 15 (2006), 219-227.
[15] D. Zhang and W. Zhai, Mean values of a gcd-sum function over regular integers modulo n, J. Integer Sequences 13 (2010), Article 10.4.7.

2010 Mathematics Subject Classification: Primary 11N37.
Keywords: gcd-sum function, regular integers modulo n, Riemann hypothesis, short interval result.
(Concerned with sequences A018804 and A176345.)

Received January 25 2011; revised version received May 24 2011. Published in Journal of Integer Sequences, June 102011.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ This work is supported by National Natural Science Foundation of China(Grant Nos. 10771127, 11001154) and Shandong Province Natural Science Foundation (Nos. BS2009SF018, ZR2010AQ009).

