
23 11

Article 12.7.3
Journal of Integer Sequences, Vol. 15 (2012),2

3

6

1

47

A Note About Invariant Polynomial
Transformations of Integer Sequences

Leonid Bedratyuk
Department of Applied Mathematics
Khmelnitskiy National University

Instituts’ka 11
Khmelnitskiy, 29016

Ukraine
leonid.uk@gmail.com

Abstract

We present an algorithm to find invariant poynomial transformations of integer

sequences, using an approach based on classical invariant theory.

1 Introduction

Let A = (an)n≥0 be an integer sequence. A sequence F(A) =
(

bn = fn(a0, a1, . . . , am)
)

n≥0
,

where fn ∈ Z[x0, x1, . . . , xm] and m ≥ n, is called a polynomial transformation of the se-
quence A. In the sequel, only the polynomial transformations are considered. The composi-
tion F◦G := F(G(A)) of the two transformations F and G can be defined in a natural way.
A transformation G is called the inverse transformation of F, and it is denoted by F−1, if
for every sequence A we have F(G(A)) = A. A transformation F is called G-invariant if
for every sequence A we have F(G(A)) = F(A).

For instance, it is well known (see Layman [1] or Spivey and Steil [2]) that the Hankel
transformation H is Bµ-invariant. Here, for µ ∈ Q,

Bµ(A) =

(

bn =
n
∑

i=0

(

n

i

)

aiµ
n−i

)

n≥0

,

denotes the µ-binomial transformation and H(A) = (hn)n≥0, where hn is the determinant of
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the Hankel matrix for the elements a0, a1, . . . , a2n:

hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · an
a1 a2 a3 · · · an+1
...

...
...

. . .
...

an−1 an an−1 · · · a2n−1

an an+1 an+2 · · · a2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This determinant arises in classical invariant theory as the catalecticant of a binary form, see
Grace and Young [4, p.232]. It was first introduced by Sylvester [5]. Also, the transformation
Bµ appears in Hilbert’s book [7, p. 25]. We can prove that the Hankel transformation is Bµ-
invariant via classical invariant theory, as follows. Write ∂i for the partial derivative ∂/∂ai
and let D be the differential operator:

D = a0∂1 + 2a1∂2 + 3a2∂3 + · · ·+ 2na2n−1∂2n.

Define

h′n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b0 b1 b2 · · · bn
b1 b2 b3 · · · bn+1
...

...
...

. . .
...

bn−1 bn bn−1 · · · b2n−1

bn bn+1 bn+2 · · · b2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then, as in Lie [6], we have

h′n = hn +D(hn)µ+D2(hn)
µ2

2!
+ · · ·+Di(hn)

µi

i!
+ · · · .

By applying the determinant derivative rule we get, after some calculation, that D(hn) = 0
for all n. Therefore h′n = hn. This condition is exactly equivalent to the Bµ-invariance of the
Hankel transformation.

This example motivates us to consider the following two general problems:

Problem 1. For a fixed transformation F, find all F-invariant transformations.

Problem 2. For a fixed transformation F, find a transformation G such that F is a G-
invariant transformation.

The aim of this paper is to develop an effective method to solve these two problems
for some special kinds of transformations. The method is inspired by results in classical
invariant theory and the theory of locally nilpotent derivations.

In the next section we introduce exponential transformations and then prove that for
such transformations Problem 1 is always solvable.

In Section 2 we also give a short introduction to the theory of locally nilpotent derivations
and offer algorithms to solve Problems 1 and 2 for special classes of transformations.

In Section 3 we give another proof that the Hankel transformation is Bµ-invariant and
introduce several new Bµ-invariant transformations. All of these transformations come from
classical invariant theory. Further, we describe all Bµ-invariant polynomial transformations
in terms of derivations.

In Section 4 we give some examples to illustrate the theory.
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2 Derivations and automorphisms

Let R = Z[x0, x1, . . .] be the polynomial ring in countably many variables and let ϕ : R →
R be a ring homomorphism. Such a map ϕ is uniquely determined by the sequence of
polynomials (ϕ(xn) | n = 0, 1, . . .). To any polynomial map ϕ and an integer sequence (an)n≥0

we assign the transformation (ϕ(an))n≥0. A polynomial map ϕ is said to be a polynomial

automorphism if there is a polynomial map ψ such that ϕ(ψ(xn)) = xn for all n.
Denote by Z[x0, x1, . . . , xm]

ϕ the algebra of ϕ-invariants :

Z[x0, x1, . . . , xm]
ϕ := {f ∈ Z[x0, x1, . . . , xm] | f(ϕ(x0), ϕ(x1), . . . , ϕ(xm)) = f(x0, x1, . . . , xm)} .

The following theorem will be our main computing tool in finding invariant polynomial
transformations.

Theorem 1. Let ϕ be a polynomial map and let F(A) = (ϕ(an))n≥0 be the corresponding

integer transformation. Then the transformation

G(A) = (gn(a0, a1, . . . , am))n≥0 ,

is F-invariant if and only if gn(x0, a1, . . . , xm) ∈ Z[x0, x1, . . . , xm]
ϕ.

The proof follows immediately from the definitions above.
In general, the problem of finding the algebras of ϕ-invariants is difficult. But we will

show that when ϕ is an exponential automorphism this problem can be reduced to the
calculation of the kernel of a derivation.

A derivation of the algebra Z[x0, x1, . . . , xn] is a linear map D satisfying the Leibniz rule:

D(f1 f2) = D(f1)f2 + f1D(f2), for all f1, f2 ∈ Z[x0, x1, . . . , xn].

A derivation D is called locally nilpotent if for every f ∈ Z[x0, x1, . . . , xn] there is an r ∈ N

such that Dr(f) = 0. The subalgebra

kerD := {f ∈ Z[x0, x1, . . . , xn]|D(f) = 0} ,

is called the kernel of the derivation D.
Any derivation D is completely determined by the elements D(xi). A derivation D is

called linear if D(xi) is a linear form. A linear locally nilpotent derivation is called a
Weitzenböck derivation. The Weitzenböck derivation defined by D(x0) = 0,D(xi) = ixi−1

is called the basic Weitzenböck derivation. There exists an isomorphism between the kernel
kerD and the algebra of covariants of a binary form, a major object of research in classical
invariant theory during the 19th century. Here are a few examples of covariants: the dis-
criminant, the resultant, the Jacobian, the Hessian, the catalectiant and the transvectant.
The following theorem gives a description of the algebra kerD.

Theorem 2. The kernel of the basic Weitzenböck derivation D of Q[x0, x1, . . . , xn] is a

finitely generated algebra and

kerD = Q[z2, z3, . . . , zn][x0, x
−1
0 ] ∩Q[x0, x1, . . . , xn],
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where

zk =
k−2
∑

i=0

(−1)i
(

k

i

)

xk−ix
i
1x

k−i−1
0 + (k − 1)(−1)k+1xk1.

Theorem 2 is a classical result due to Cayley, see Glenn [3, p. 164]. One can also find
more modern proofs in Nowicki [8] and van den Essen [9].

How are we to find the kernel of an arbitrary linear locally nilpotent derivation D? Let
us consider the vector space (over Q) Xn = 〈x0, x1, . . . , xn〉. Suppose that there exists an
isomorphism Ψ : Xn → Xn such that ΨD = DΨ. This implies that kerD = Ψ(kerD) , i.e.,

kerD = Q[Ψ(z2),Ψ(z3), . . . ,Ψ(zn)][Ψ(x0),Ψ(x0)
−1] ∩Q[x0, x1, . . . , xn].

Such an isomorphism Ψ is called a (D, D)-intertwining isomorphism. Therefore, to describe
the kernel of an arbitrary Weitzenbök derivation D it is enough to know the explicit form of
any (D, D)-intertwining isomorphism.

An automorphism ϕ is called exponential if there exists a locally nilpotent derivation D
such that

ϕ = exp(D) = D0 +D +
1

2!
D2 + · · · .

For instance, any automorphism of the form

ϕ(xn) = xn + f(x0, x1, . . . , xn−1), f ∈ Z[x0, x1, . . . , xn−1],

is exponential, see Drensky and Yu [10]. Nowicki [8, Proposition 6.1.4] shows that for any
exponential automorphism ϕ = exp(D),

Q[x0, x1, . . . , xn]
ϕ = kerD. (1)

We introduce an analogue of these notions for the integer polynomial transformations.

Definition 3. The transformation D(F(A)) := (D(fn(x0, x1, . . . , xm))|(a0,a1,...,am))n≥0, is
called the D-derivative of the polynomial transformation F = (fn(a0, a1, . . . , am))n≥0, f ∈
Z[x0, . . . , xm].

Definition 4. A transformation F is called exponential if there exists a locally nilpotent
derivation D such that

F(A) = expD(A).

We can now rewrite Theorem 1 for an exponential transformation.

Theorem 5. Suppose a transformation F is exponential and F(A) = expD(A) for some

locally nilpotent derivation D. Then a polynomial transformation G is F-invariant if and

only if D(G(A)) = 0, where 0 stands for the zero sequence (0, 0, 0, . . .).

4



Proof. Suppose that the transformation G is F-invariant. Then by Theorem 1 we have

G(A) = (gn(a0, a1, . . . , am))n≥0 ,

where gn(x0, x1, . . . , xm) ∈ Z[x0, x1, . . . , xm]
ϕ, for ϕ = expD. Since the automorphism ϕ is

exponential, we have that D(gn(x0, x1, . . . , xm)) = 0 by (1). Thus D(G(A)) = 0.
Suppose now that the transformation G has the form

G(A) = (gn(a0, a1, . . . , am))n≥0 ,

and D(G(A)) = 0. This implies that D(gn(a0, a1, . . . , am)) = 0 for all n. Then we have
that the polynomial gn(x0, x1, . . . , xm) belongs to Q[x0, x1, . . . , xn]

ϕ where ϕ = expD. By
Theorem 1 the transformation G is F-invariant.

The Weitzenbök derivations are related to some special transformations by the following
theorem:

Theorem 6. Given an integer sequence (αn)n≥0, the transformation F (A)=

(

an +
n−1
∑

i=0

αiai

)

n≥0

is exponential and F (A) = expD(A), where the derivation D is a Weitzenbök derivation de-

fined by

D(f) =
∞
∑

i=1

(−1)i+1

i
Ei(f),

and E(xk) =
k−1
∑

i=0

αkxk.

The proof follows from van den Essen [9, Proposition 2.1.3].
Theorem 6 yields an algorithm to solve Problem 1 in the case when the transformation

F(A) = (bn)n≥0 has the special form

bn = an +
n−1
∑

i=0

αiai, αi ∈ Z.

In this case, for the corresponding polynomial automorphism ϕ(xn) = xn +
n−1
∑

i=0

αixi, we find

the explicit form of the Weitzenbök derivation D such that ϕ = exp(D) (as predicted in
Theorem 5). After that we find any (D, D)-intertwining automorphism Ψ and obtain that
kerD = Ψ(kerD) . Then an arbitrary sequence of kernel elements defines an F-invariant
transformation (by Theorem 1).

To solve Problem 2 for a transformation F(A) = (bn = fn(a0, a1, . . . , am))n≥0 we find
a locally nilpotent derivation D of Z[x0, x1, . . . , xm] such that fn(x0, x1, . . . , xm) ∈ kerD.
This can be done by the method of undetermined coefficients. We define the automorphism
ϕ = expD and the transformation G(A) = (bn = ϕ(an))n≥0. Then the transformation F is
G-invariant by Theorem 1.
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3 The µ-binomial transformations

We use the techniques developed in Section 2 to get another proof of the following well
known result.

Theorem 7 ([1, 2]). The Hankel transformation H is Bµ-invariant.

Proof. We follow the algorithm from Section 2. The automorphism ϕµ corresponding to Bµ

has the form:

ϕµ(xn) =
n
∑

i=0

(

n

i

)

xiµ
n−i.

For the basic Weitzenbök derivation D we have

exp(µD)(xn) =
∑

i≥0

1

i!
(µD)i (xn) =

n
∑

i=0

n(n−1) · · · (n−(i−1))

i!
µixn−i =

=
n
∑

i=0

(

n

i

)

µixn−i =
n
∑

i=0

(

n

i

)

xiµ
n−i.

Thus ϕµ = exp(µD). It follows that the transformation Bµ is exponential, i.e., Bµ =
exp(µD)A. Since the catalectiant belongs to the kernel of the derivation D we have that
D(H(A)) = 0. Then by Theorem 5 we obtain that the transformation H is Bµ-invariant.

The map exp(µD) : Q[x0, x1, . . . , xn] → Q[x0, x1, . . . , xn] is a ring homomorphism, see
van den Essen [9, Proposition 1.2.24]. It follows that ϕµ1+µ2

= ϕµ1
◦ϕµ2

. Therefore ϕµ ◦ϕ−µ

is the identity map and B−1
µ = B−µ. It follows immediately that the inverse transformation

B−1
µ is also an H-invariant transformation.

See French [11] for a proof that all Bµ-invariant transformations form a group. The
identity ϕµ1+µ2

= ϕµ1
◦ ϕµ2

implies that the group (Z,+) is a subgroup of those groups.
The following theorem gives a solution to Problem 1 for the µ-binomial transformation.

Theorem 8. A transformation F is Bµ-invariant if and only if D (F(A)) = 0.

The proof follows from Theorem 5.
The next result follows from Bedratyuk [12, Theorem 3.2].

Theorem 9. Let F be an arbitrary Bµ-invariant transformation. Then F(1) = 0, where

1 = (1, 1, 1, . . . , 1, . . .).

Below we describe some Hankel-type transformations which arise in classical invariant
theory. Note that all of these transformations are Bµ-invariant and B−1

µ -invariant.

3.1 Cayley transformation

Put CAYLEY(A) = (bn+2)n≥0, where

bn =
n−2
∑

i=0

(−1)i
(

n

i

)

an−ia
i
1a

n−k−1
0 + (n− 1)(−1)n+1an1 .

The definition of this transformation is inspired by Theorem 2.
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3.2 Transvectant transformation

LetA = (an)n≥0 and C = (cn)n≥0 be two sequences. The transformationTR(A, C) = (bn)n≥0,
where

bn =
n
∑

i=0

(−1)i
(

n

i

)

aicn−i,

is called the transvectant transformation. We have

Tr(Bµ(A),Bµ(C)) = Tr(A, C).

In the case C = A we get

bn =
n
∑

i=0

(−1)i
(

n

i

)

aian−i.

3.3 Resultant transformation

Let A = (an)n≥0 and C = (cn)n≥0 be two sequences. The transformation RES(A, C) =
(bn)n≥0, where bn is the leading coefficient of the resultant of the polynomials

Pn(A) =
n
∑

i=0

(

n

i

)

aiX
n−i, Pn(C) =

n
∑

i=0

(

n

i

)

ciX
n−i,

is called the resultant transformation.

3.4 Discriminant transformation

The transformation DISCR(A) = (bn)n≥0, where bn is the discriminant of the polynomial

Pn+2(A) =
1

(n+ 2)n+2

n+2
∑

i=0

ai

(

n+ 2

i

)

Xn+2−i,

is called the discriminant transformation.

Problem 3. What is the explicit form of the (D, D)-intertwining isomorphism Ψ(F) for

F ∈ {CAYLEY, H, RES, DISCRIM, TR}?

4 Examples

4.1 Transformation PSUM(A) = (bn = a0 + a1 + · · ·+ an)n≥0

The corresponding locally nilpotent derivation (see Theorem 5) has the form

D(xn) =
∞
∑

i=1

(−1)i+1

i
Ei(xn).
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We have

E(x0) = 0, E(xn) = x0 + x1 + x2 + · · ·+ xn−1,

E2(xn) =
n−1
∑

i=0

E(xi) =
n−1
∑

i=0

i−1
∑

j=0

xj =
n−2
∑

i=0

(n− 1− i)xi.

By induction we obtain Ei(xn) =
n−i
∑

k=0

(

n− i− 1

i− 1

)

xk. Then

D(xn) =
n
∑

i=1

(−1)i+1

i

n−i
∑

k=0

(

n− i− 1

i− 1

)

xk =
n−1
∑

k=0

(

n−1−k
∑

i=0

(−1)i

i+ 1

(

n−1−k

i

)

)

xk =
n−1
∑

k=0

xk
n− k

.

Let us find a (D, D)-intertwining transformation Ψ. We show that

Ψ(A) =

{

Ψ(xn) =
n
∑

k=0

(−1)n+kk!

{

n
k

}

xk,Ψ(x0) = x0

}

,

where

{

n
k

}

is the Stirling number of the second kind, is such a transformation. In fact,

D (Ψ(xn)) = D

(

n
∑

k=0

(−1)n+kk!

{

n
k

}

xk

)

=
n
∑

k=0

(−1)n+kk!

{

n
k

} k−1
∑

i=0

xi
k − i

=
n−1
∑

i=0

n
∑

j=i+1

(−1)n+j

{

n
j

}

j!

j − i
xi = n

n−1
∑

i=0

(−1)n−1+i

{

n− 1
i

}

i! xi = Ψ(D(xn)).

Therefore, we may now construct a PSUM-invariant transformation using our known Bµ-
invariant transformations and this (D, D)-intertwining transformation Ψ. For instance, the
transformation

Ψ(H(A)) = {a0,−a1
2 − a1a0 + 2 a2a0,−4 a1a2a0 + 24 a1a2a3 + 24 a0a1a3 + 48 a0a2a4 − 8 a2

3−

−8 a0a2
2 − 12 a1a2

2 − 36 a0a3
2 − 4 a1

2a2 − 24 a1
2a4 + 24 a1

2a3 − 24 a0a1a4, . . .},

is PSUM-invariant.

4.2 The Transformation SUM(A) = (bn = an + an−1)n≥0

We have ϕ(xn) = xn + xn−1, E(xn) = ϕ(xn)− xn = xn−1, and

D(xn) =
∑

i≥1

(−1)i+1

i
Ei(xn) =

n
∑

i=1

(−1)i+1

i
xn−i.

Let
Ψ(x0) = x0,Ψ(xn) = cn,1x1 + cn,2x2 + · · ·+ cn,nxn.
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The (D, D)-intertwining map satisfies the conditionsD(Ψ(xn)) = Ψ (D(xn)), n = 0, 1, 2, . . . n.

After a routine calculation we get that cn,i = i!

{

n
i

}

and a (D, D)-intertwining map is given

by

Ψ(xn) =
n
∑

i=1

i!

{

n
i

}

xi.

Thus, the transformation

Ψ(H(A)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ψ(a0) Ψ(a1) Ψ(a2) · · · Ψ(an)
Ψ(a1) Ψ(a2) Ψ(a3) · · · Ψ(an+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ψ(an−1) Ψ(an) Ψ(an−1) · · · Ψ(a2n−1)
Ψ(an) Ψ(an+1) Ψ(an+2) · · · Ψ(a2n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

is SUM-invariant.

4.3 Transformation DIFF(A) = (bn = an − an−1)n≥0

The corresponding automorphism has the form ϕ(xn) = xn−xn−1. This implies that E(xn) =
−xn−1 and Ei(xn) = (−1)ixn−i. Then the derivation D is defined by

D(xn) =
∑

i≥1

(−1)i+1

i
Ei(xn) =

n
∑

i=1

(−1)i+1

i
(−1)ixn−i = −

n
∑

i=1

xn−i

i
.

A (D, D)-intertwining map has the form

Ψ(xn) =
n
∑

i=1

(−1)ii!

{

n
i

}

xi.

4.4 The transformation F = (bn =
2n
∑

i=0

(−1)iaia2n−i)n≥0.

Let us try to solve Problem 2 for this transformation. To do so, we need to find a suitable
locally nilpotent derivation that satisfies the conditions

D

(

2n
∑

i=0

(−1)ixix2n−i

)

= 0, n = 0, 1, . . . .

Let us consider the locally nilpotent derivation D with D(xi) = xi−1. Now

D

(

2n
∑

i=0

(−1)ixix2n−i

)

= 0,

as is shown in Bedratyuk [13]. Let us calculate the exponential automorphism ϕ = expD.
We have

ϕ(xn) = D0(xn) +D(xn) +
1

2!
D2(xn) + · · · = xn + xn−1 +

1

2!
xn−2 +

1

n!
x0.

Define a rational transformation by G(A) := (ϕ(xn))n≥0. Then F(G(A)) = F(A).
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