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Abstract

We study shift spaces associated with a family of transformations generating ex-

pansions in base −β, with β > 1. We give a complete characterization when these shift

spaces are sofic or even shifts of finite type.

1 Introduction

In 1957, Rényi studied the expansions of numbers in base β > 1. He only considered the
numbers in [0, 1), and only considered one specific rule, the β-transformation, with which we
could find these expansions [12]. Many other mathematicians have studied these expansions
since then, of which the most famous result is a paper by Parry [10], in which he gave quite
an extensive description of both ergodic and symbolic properties of the β-transformation
posed by Rényi. Later on several others looked at other types of β-expansions. Erdős [6], for
example, studied lazy β-expansions (the opposite, the greedy β-expansions were studied by
Rényi). Dajani and Kraaikamp studied a whole class of β-expansions [2] and also random
β-expansions [3, 4].

In 2009, Ito and Sadahiro [8] studied (−β)-expansions in base −β, β > 1. They intro-
duced a transformation, the (−β)-transformation, which allowed them to find an expansion
of the form

x =
∞

∑

n=1

xn

(−β)n
, xn ∈ {0, 1, . . . , ⌊β⌋} (1)
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of any number x ∈ I :=
[

− β
β+1

, 1
β+1

)

. After having introduced this dynamical system, they

continued their study of these expansions by introducing an order on the set of expansions and
studying the resulting (−β)-shift. This approach was later continued by Frougny and Lai [7],
who gave a detailed description of the symbolic properties of the (−β)-shift. Recently, others
have considered different transformations generating (−β)-expansions. Dombek, Masáková
and Pelantová [5] considered a generalization of the aforementioned approach. Dajani and
Kalle [1], took an even more general approach by studying a whole class of transformations
generating (−β)-expansions for 1 < β < 2.

The aim of this paper is to study shift spaces associated with various transformations
generating (−β)-expansions and to give a complete characterization when these shift spaces
are sofic or shifts of finite type.

2 The dynamical system

Let β > 1 be given. The set of numbers x ∈ R that satisfy (1) for certain coefficients
xn ∈ {0, 1, . . . , ⌊β⌋} is contained in the interval

I−β :=

[

−β · ⌊β⌋
β2 − 1

,
⌊β⌋

β2 − 1

]

.

We call the set A := {0, 1, . . . , ⌊β⌋} the canonical alphabet. If x has an expansion of the form
(1), then we may refer to the right-hand side of (1) as a (−β)-expansion of x. Moreover, we
can refer to the digits of the expansion explicitly as follows:

d−β(x) := (x1, x2, . . .) and d−β(x, n) := xn.

We may also write x = (.x1x2 · · · )−β. Moreover, if a part is periodic we can show this
by overlining it. For example, (1, 0, 2) = (1, 0, 2, 0, 2, 0, 2, . . .). If a sequence consists of
only a periodic part, we will call it purely periodic. If it consists of a pre-periodic and a
periodic part, we will call it eventually periodic. Now, suppose that x ∈ I−β with expansion
d−β(x) = (x1, x2, . . .). It follows that

−βx − x1 =
∞

∑

n=1

xn+1

(−β)n
.

In particular, we see that −βx− x1 ∈ I−β as the right-hand side is another (−β)-expansion.
Therefore, one should look at the family of maps −βx−a, a ∈ A, on the interval I−β. Figure
1 shows what happens for a specific choice for β. Notice that there is a small subinterval for
which there is more than one possibility for a such that −βx−a remains in I−β for all points
in this subinterval. Such a subinterval will be called a choice region. Other subintervals,
where there is only one choice for a ∈ A, are called uniqueness regions. Note that this
behaviour is not restricted to this specific base −β; in fact, it happens for all non-integer
base −β. This is a consequence of our alphabet A.

In any case, we need to specify a function d : I−β → A, the digit function, such that
for any x ∈ I−β it follows that also −βx − d(x) ∈ I−β. Henceforth, we will work with the
following assumptions:
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β

Figure 1: The maps −βx − a with a ∈ A on I−β for β = 1+
√

5
2

.

Assumption 1. The digit function d : I−β → A satisfies the following properties:

i. d(x) is such that x ∈ I−β ⇒ −βx − d(x) ∈ I−β,

ii. d is either left- or right-continuous everywhere,

iii. d is nonincreasing on I−β.

The idea behind the assumptions on the digit function is that it divides the interval I−β

into at most ⌊β⌋ + 1 smaller intervals, where the intervals are all either left- or right-closed
and each of the intervals has a digit from the alphabet A assigned to them. These digits are
assigned in such a way that, from left to right, these digits are decreasing. This implies that
all digits of A are actually used.

Property i of Assumption 2.1 is worth considering more carefully. As a consequence
of our choice of alphabet A, we have that for any β > 1 and any x ∈ I−β there is at
least one a ∈ A such that −βx − a ∈ I−β. To see why, fix x ∈ I−β and consider the set

S(x) = {−βx − a : a ∈ A}. The smallest element of S(x) cannot be greater than ⌊β⌋
β2−1

and

the largest element of S(x) cannot be smaller than −β·⌊β⌋
β2−1

. Moreover, I−β has length strictly
greater than 1, whereas the difference between two consecutive digits in A is 1. These
observations imply that S(x) ∩ I−β 6= ∅.

The points where d is discontinuous are called cut points. The cut points always lie in
choice regions, and the cut points divide these regions into smaller regions on which the digit
function dictates which map −βx − a to choose.

Using this digit function, we can finally pose our dynamical system. We define, for a
given digit function d, the map

T−β(x) := −βx − d(x)

on I−β. If we want to emphasize whether the underlying digit function is left- or right-
continuous, we may write TL,−β(x) and TR,−β(x) respectively.

Proposition 2. Let x ∈ I−β be arbitrary and let xn := d
(

T n−1
−β (x)

)

. Then we have x =
(.x1x2 . . .)−β.
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Proof. We show, by induction on n, that for all n ≥ 1 we have

x =
T n
−β(x)

(−β)n
+

n
∑

k=1

xk

(−β)k
.

By definition, we have T−β(x) = −βx − x1, which in turn is equivalent to x =
T
−β(x)

−β
+ x1

−β
.

Hence, the statement holds for n = 1.
Now assume that the statement is true for some positive integer m − 1. Since we know

that Tm
−β(x) = −βTm−1

−β (x) − xm, we also have

Tm−1
−β (x) =

xm

−β
+

Tm(x)

−β

and hence

x =
Tm−1
−β (x)

(−β)m−1
+

m−1
∑

k=1

xk

(−β)k

=

xm

−β
+ T m(x)

−β

(−β)m−1
+

m−1
∑

k=1

xk

(−β)k

=
Tm
−β(x)

(−β)m
+

m
∑

k=1

xk

(−β)k
.

We see that the statement is true for m as well. The proof is finished by noting that
T m
−β

(x)

(−β)m → 0 as m → ∞.

The following example shows that the original (−β)-transformation posed by Ito and
Sadahiro [8] can be viewed as restrictions of our maps.

Example 3. Let the base be given by β = 1+
√

5
2

and consider the map TL,−β with cut

point 2 −
√

5. This map is shown in Figure 2. The smaller box in Figure 2 is the (−β)-

−1 0 β − 1

Figure 2: The map TL,−β from Example 3.

4



transformation as defined by Ito and Sadahiro. Hence, for this particular β and choice of
cut point, our map TL,−β is an extension of their (−β)-transformation.

Finding (−β)-expansions using this map TL,−β can be done using Proposition 2. For
example, we find −1

2
=

(

.100
)

−β
, which agrees with the result of Ito and Sadahiro. However,

we can also find −3
4

=
(

.1011110
)

−β
; a result that cannot be found using the original (−β)-

transformation.

3 Admissibility and shift spaces

Henceforth, whenever we refer to the map T−β, we assume that it has been fixed beforehand.
A sequence (x1, x2, . . .) ∈ AN is called T−β-admissible if we have d−β(x) = (x1, x2, . . .) for
some x ∈ I−β and, moreover, the (−β)-expansion of x generated by the map T−β (see
Proposition 2) has coefficients x1, x2, . . . A finite block is called T−β-admissible if it appears
in a T−β-admissible sequence.

In order to nicely characterize the T−β-admissible sequences, we introduce an order on the
set of T−β-admissible sequences: the alternate (lexicographical) order. We write (x1, x2, . . .) ≺
(y1, y2, . . .) if and only if there exists some integer k ≥ 1 such that xi = yi for all i < k
and (−1)k(xk − yk) < 0. Also, (x1, x2, . . .) � (y1, y2, . . .) means that either (x1, x2, . . .) ≺
(y1, y2, . . .) or (x1, x2, . . .) = (y1, y2, . . .) holds.

Proposition 4. Let T−β be given. Let x, y ∈ I−β with x 6= y be arbitrary and let d−β(x) and
d−β(y) be the (−β)-expansions of respectively x and y generated by T−β. Then x < y if and
only if d−β(x) ≺ d−β(y).

Proof. This has been shown in [1, Lemma 3.1] for 1 < β < 2. We give the proof here for
completeness. Write d−β(x) = (x1, x2, . . .) and d−β(y) = (y1, y2, . . .). Let k ≥ 1 be the
smallest integer for which xk 6= yk. Then we have

x =
T k−1
−β (x)

(−β)k−1
+

k−1
∑

i=1

xi

(−β)i
<

T k−1
−β (y)

(−β)k−1
+

k−1
∑

i=1

yi

(−β)i
= y

if and only if

T k−1
−β (x)

(−β)k−1
<

T k−1
−β (y)

(−β)k−1
.

This latter inequality is, regardless of the parity of k, equivalent to the inequality

(−1)k (xk − yk) < 0,

since xk = d
(

T k−1
−β (x)

)

(similar for yk). The statement now follows.

We see that the alternate order respects the natural order on R (as long as we compare
(−β)-expansions generated by the same map T−β). The behaviour of the map T−β, and
hence the generated (−β)-expansions, are determined by our choice for the cut points; two
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maps with the same base β but different cut points will produce different (−β)-expansions
for at least one point x ∈ I−β. Therefore, we should pay extra attention to our cut points.
Let c be any cut point of a given map T−β, then we define dL,−β(c) to be (−β)-expansion
generated by the left-continuous version of T−β, regardless of the continuity of T−β itself (we
define dR,−β(c) similarly).

Example 5. We continue Example 3. Our cut point is 2 −
√

5, and the (−β)-expansion of
this point generated by the map is 2 −

√
5 =

(

.110
)

−β
. Since the map in Example 3 is left-

continuous, we know that dL,−β(2 −
√

5) = (1, 1, 0). To determine dR,−β(2 −
√

5) we modify
the map in Example 3 such that it is right-continuous at 2 −

√
5 (all other points remain

unchanged). The (−β)-expansion of 2 −
√

5 generated by this new map is dR,−β(2 −
√

5).
The reader is invited to verify that dR,−β(2 −

√
5) = (0, 0, 1, 0).

In order to state the following characterization of T−β-admissible sequences neatly, we
introduce a little more notation. Recall that the digit function divides I−β into smaller
subintervals. A subinterval on which the digit function is constant with value a will be
denoted by Ia. Its left and right endpoint will be denoted by respectively ℓa and ra. We can
now characterize T−β-admissible sequences as follows:

Proposition 6. The following hold:

(a) If (x1, x2, . . .) is TL,−β-admissible, then for all n ≥ 1:

– if xn = ⌊β⌋, then d−β(ℓ⌊β⌋) � (xn, xn+1, . . .) � dL,−β(r⌊β⌋);

– if xn = a 6= ⌊β⌋, then dR,−β(ℓa) ≺ (xn, xn+1, . . .) � dL,−β(ra).

(b) If (x1, x2, . . .) is TR,−β-admissible, then for all n ≥ 1:

– if xn = 0, then dR,−β(ℓ0) � (xn, xn+1, . . .) � d−β(r0);

– if xn = a 6= 0, then dR,−β(ℓa) � (xn, xn+1, . . .) ≺ dL,−β(ra).

Proof. We will only prove (a), since the proof of (b) is similar. If xn = ⌊β⌋, the result follows
from Proposition 4.

Now, suppose that xn = a 6= ⌊β⌋. Then, by Proposition 4 we only need to show that
dR,−β(ℓa) ≺ (xn, xn+1, . . .). Since the map is left-continuous, we know that dL,−β(ℓa, 1) 6= a
and hence ℓa < T n−1

L,−β(x). Hence, there is a smallest integer k ≥ 1 such that dR,−β(ℓa, k) 6=
dR,−β(T n−1

L,−β(x), k). Regardless of the parity of k, it follows that

(−1)k
(

dR,−β(ℓa, k) − dR,−β(T n−1
L,−β(x)), k

)

< 0,

which proves dR,−β(ℓa) ≺ (xn, xn+1, . . .).

The converse of Proposition 6 is not generally true. It is true in the case of Example 3
(we will see this later). We present the following Example in which the converse is not true.
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Example 7. Consider the map TL,−β with β = 1+
√

5
2

and cut point 0, that is, the map TL,−β

on I−β = [−1, β − 1] given by:

TL,−β(x) =

{

−βx − 1, if −1 ≤ x ≤ 0;

−βx, if 0 < x < β − 1.

Then, according to Proposition 6, a sequence (x1, x2, . . .) is TL,−β-admissible if

(1, 0) � (xn, xn+1 . . .) � (1, 1, 0) or (0) ≺ (xn, xn+1, . . .) � (0, 1)

holds for all n ≥ 1. The sequence (0, 1, 1, 0) also satisfies this condition, but it is not TL,−β-
admissible. To see this, note that (.0110)−β = 0, whereas the (−β)-expansion of 0 generated
by the map TL,−β is d−β(0) = (1, 1, 0).

Hence, the set of sequences that satisfy the series of inequalities in Proposition 6 might
be a bit larger than the set of T−β-admissible sequences. The problem arises whenever a cut
point gets mapped onto some (not necessarily different) cut point after an odd amount of
applications of the map T−β.

Let T−β be given and let c be any cut point of T−β. We define

d∗
L,−β(c) := lim

x↑c
d−β(x) and d∗

R,−β(c) := lim
x↓c

d−β(x).

Notice that the definition of d∗
L,−β(c) does not require that the underlying map is left-

continuous (similar for d∗
R,−β(c)). Instead, these sequences should be thought of as “improve-

ments” of respectively dL,−β(c) and dR,−β(c). The improvement follows from the following
lemma:

Lemma 8. Let T−β be given and let c be any cut point of T−β. The following hold:

(a) There exists no TL,−β-admissible sequence (x1, x2, . . .) such that we have dR,−β(c) ≺
(x1, x2, . . .) ≺ d∗

R,−β(c).

(b) There exists no TR,−β-admissible sequence (x1, x2, . . .) such that we have d∗
L,−β(c) ≺

(x1, x2, . . .) ≺ dL,−β(c).

Proof. We only prove (a), since the proof of (b) is similar. Suppose that the statement is
false and let (x1, x2, . . .) be a TL,−β-admissible sequence satisfying dR,−β(c) ≺ (x1, x2, . . .) ≺
d∗

R,−β(c) and x = (.x1x2 · · · )−β. By assumption, we have x1 = dR,−β(c, 1), and hence x > c.
Let (xn)∞n=1 be a decreasing sequence for which d−β(xn, 1) = d∗

R,−β(c, 1) for all n ≥ 1,
where d−β(xn) is the (−β)-expansion of xn generated by T−β. For all m,n ≥ 1 with m < n
we have d−β(xn) ≺ d−β(xm) by Proposition 4. It follows that d∗

R,−β(c) � d−β(xn) for all

n ≥ 1. Moreover, the sequence converges to c and hence for some k ≥ 1 we have xk < x
and d∗

R,−β(c) � d−β(xk) ≺ d−β(x). This latter is, however, a contradiction and hence the
sequence (x1, x2, . . .) cannot exist.

For any given map T−β, computing the sequences d∗
L,−β(c) and d∗

R,−β(c), where c is a cut
point, is not hard. Fix c and suppose we want to find d∗

L,−β(c). We present the following
algorithm:
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1. Start with k := 1, T̂1 := TL,−β and c0 := c.

2. Compute ck := T̂k(ck−1) and set

d∗
L,−β(c, k) :=

{

dL(ck−1), if T̂k = TL,−β;

dR(ck−1), if T̂k = TR,−β;

where dL and dR are the digit functions of TL,−β and TR,−β respectively.

3. Let m := max{0 ≤ i < k : ci is a cut point}. If ck is a cut point and if k − m is odd,
then:

• if T̂k = TL,−β, then T̂k+1 := TR,−β;

• if T̂k = TR,−β, then T̂k+1 := TL,−β;

and else T̂k+1 := T̂k.

4. Increase k by one and go back to step 2.

If we wish to find d∗
R,−β(c) instead, all that changes is that we should start with T̂1 := TR,−β.

Proposition 9. The method described above for finding d∗
L,−β(c) and d∗

R,−β(c) is correct.

Proof. We only prove correctness for d∗
L,−β(c). Call the sequence obtained by the algorithm

above sL,−β(c), then we need to show that sL,−β(c) = limx↑c d−β(x). For any integer n ≥ 1,
define (recall that ℓsL,−β(c,k) denotes the left endpoint of the subinterval on which the digit
function equals the kth digit of sL,−β(c)):

ǫn :=
1

βn−1
min

({∣

∣ck − ℓsL,−β(c,k+1)

∣

∣ : 0 ≤ k ≤ n, k even
}

∪
{
∣

∣ck − rsL,−β(c,k+1)

∣

∣ : 0 ≤ k ≤ n, k odd
})

.

It follows that any x ∈ (c − ǫn, c) satisfies dL,−β(x, i) = sL,−β(c, i) for all i ≤ n. It suffices to
show that ǫn 6= 0 for all n ≥ 1. Suppose that k ≥ 1 is the smallest integer such that ǫk = 0
and assume that k is odd (the proof is similar for k even). It follows that ck = rsL,−β(c,k+1),

and, since T̂k+1 = TR,−β, we must hit r−β after an odd number of iterations (it cannot be
any other cut point since that would imply ck = ℓsL,−β(c,k+1)

6= rsL,−β(c,k+1)). It follows that

ck−1 is either a cut point or −β·⌊β⌋
β2−1

. By iterating this argument it follows that c must be an
endpoint of I−β. We have reached a contradiction since the endpoints are no cut points. It
follows that ǫn > 0 for all n ≥ 1.

Example 10. We continue Example 7. Since the orbit of 0 never hits 0 again under TL,−β,
we conclude that d∗

L,−β(0) = dL,−β(0) = (1, 1, 0). Under TR,−β, however, 0 hits itself after
one iteration. Hence, we have d∗

R,−β(0, 1) = 0 and continue iterating TL,−β. At this point, we
know the orbit of 0 under TL,−β and therefore d∗

R,−β(0) is the concatenation of the single-digit

block (0) with (1, 1, 0): d∗
R,−β(0) = (0, 1, 1, 0).
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Example 11. We continue Example 5. Since the orbit of 2−
√

5 never hits itself under both
TL,−β and TR,−β, we have d∗

L,−β(2 −
√

5) = dL,−β(2 −
√

5) = (1, 1, 0) and d∗
R,−β(2 −

√
5) =

dR,−β(2 −
√

5) = (0, 0, 1, 0).

Remark 12. The sequences d∗
L,−β(c) and d∗

R,−β(c) are concatenations of blocks of sequences
of the form dL,−β(ℓa), dR,−β(ℓa), dL,−β(ra) and dR,−β(ra) where a ∈ A.

The following lemma is very important:

Lemma 13. Let (x1, x2, . . .) ∈ AN. The following hold:

(a) If for all n ≥ 1 we have

d∗
R,−β(ℓxn

) � (xn, xn+1, . . .) � dL,−β(rxn
),

then every finite subblock of (x1, x2, . . .) is TL,−β-admissible.

(b) If for all n ≥ 1 we have

dR,−β(ℓxn
) � (xn, xn+1, . . .) � d∗

L,−β(rxn
),

then every finite subblock of (x1, x2, . . .) is TR,−β-admissible.

Proof. We only prove (a), as the proof of (b) is similar. Suppose that (x1, x2, . . .) satisfies
the given condition and define x(k) :=

∑∞
n=k

xn

(−β)n−k+1 . Assume that there exist integers

s(k), t(k) > k such that:

xk · · ·xs(k)−1 = d∗
R,−β(ℓxk

, 1) · · · d∗
R,−β(ℓxk

, s(k) − k),

(−1)s(k)−k+1
(

d∗
R,−β(ℓxk

, s(k) − k + 1) − xs(k)

)

< 0,

and

xk · · ·xt(k)−1 = dL,−β(rxk
, 1) · · · dL,−β(rxk

, t(k) − k),

(−1)t(k)−k+1
(

xt(k) − dL,−β(rxk
, t(k) − k + 1)

)

< 0.

If either s(k) or t(k) does not exist, then there is nothing to prove. Let y be a point such
that dL,−β(y, i) = d∗

R,−β(ℓxk
, i) for 1 ≤ i ≤ s(k) − k + 1, then

x(k) − ℓxk
> x(k) − y

=
∞

∑

n=s(k)

xn

(−β)n−k+1
−

T
s(k)−k
L,−β (y)

(−β)s(k)−k

>
1

(−β)s(k)−k

(

xs(k) − T
s(k)−k
L,−β (y)

)

,

from which it follows that

x(k) − ℓxk
>







xs(k)−ℓxs(k)

(−β)s(k)−k+1 , if s(k) − k + 1 is odd;
xs(k)−rxs(k)

(−β)s(k)−k+1 , if s(k) − k + 1 is even.
(2)
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Similarly, one can show that

rxk
− x(k) >







rxt(k)
−xt(k)

(−β)t(k)−k+1 , if t(k) − k + 1 is odd;
ℓxt(k)

−xt(k)

(−β)t(k)−k+1 , if t(k) − k + 1 is even.
(3)

By iteratively applying the bounds in (2) and (3) we get a sequence of bounds that approach
zero (as the numerator is bounded and the denominator goes to infinity). It follows that
lxk

< x(k) < rxk
for all k ≥ 1, which implies dL,−β

(

x(1)
)

= (x1, x2, . . .).

Using these new objects, we can make the inequalities in Proposition 6 more strict and
obtain an equivalence.

Theorem 14. The following hold:

(a) The sequence (x1, x2, . . .) is TL,−β-admissible if and only if for all n ≥ 1:

– if xn = ⌊β⌋, then d−β(ℓ⌊β⌋) � (xn, xn+1, . . .) � dL,−β(r⌊β⌋);

– if xn = a 6= ⌊β⌋, then d∗
R,−β(ℓa) ≺ (xn, xn+1, . . .) � dL,−β(ra).

(b) The sequence (x1, x2, . . .) is TR,−β-admissible if and only if for all n ≥ 1:

– if xn = 0, then dR,−β(ℓ0) � (xn, xn+1, . . .) � d−β(r0);

– if xn = a 6= 0, then dR,−β(ℓa) � (xn, xn+1, . . .) ≺ d∗
L,−β(ra).

Proof. This has been proven for 1 < β < 2 in [1, Theorem 3.1]. We give the proof for
completeness. We only prove (a), since the proof of (b) is similar. The ”only if” part follows
from Proposition 6 and Lemma 8.

To prove the ”if” part, suppose that (x1, x2, . . .) satisfies the given inequalities. From
Lemma 13 it follows that every finite subblock (xn, . . . , xn+k) is TL,−β-admissible. It is
sufficient to check that (xn, xn+1, . . .) 6= d∗

R,−β(ℓxn
) for all n ≥ 1 such that xn 6= ⌊β⌋. However,

this follows directly from the given inequalities.

Let T−β be a (−β)-transformation such that T−β restricted to the interval
[

− β
β+1

, 1
β+1

)

is the Ito-Sadahiro transformation. While our condition in Theorem 14 is different from the
condition found by Ito and Sadahiro [8, Theorem 10], the two actually agree. This is because
their transformation implicitly specifies the cut points. Moreover, these cut points are all
mapped to − β

β+1
. The following example illustrates this:

Example 15. Consider the map of Example 3 restricted to the interval
[

− β
β+1

, 1
β+1

)

. Our

condition in Theorem 14(a), when restricted to this interval, becomes:

(1, 0) � (xn, xn+1, . . .) � (1, 1, 0) ∨ (0, 0, 1, 0) ≺ (xn, xn+1, . . .) ≺ (0, 1, 0) (4)

for all n ≥ 1. On the other hand, by Ito and Sadahiro [8, Theorem 10] we have:

(1, 0) � (xn, xn+1, . . .) ≺ (0, 1, 0)
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for all n ≥ 1, which suggests that the sequences corresponding to the cut point are redundant.
To see why this is the case, suppose that (x1, x2, . . .) satisfies (4) for all n ≥ 1. Fix k ≥ 1
and assume for now that xk = 1, then we have (xk, xk+1, . . .) � (1, 1, 0) from which it follows
that (1, 0) � (xk+1, xk+2, . . .). This condition, however, is already satisfied which means that
we can reduce the first part of (4) to (1, 0) � (xk, xk+1, . . .). Similarly, we can reduce the
second part of (4) whenever xk = 0 and get

{

(1, 0) � (xn, xn+1, . . .), whenever xn = 1;

(xn, xn+1, . . .) ≺ (0, 1, 0), whenever xn = 0,

which in turn can be neatly written as

(1, 0) � (xn, xn+1, . . .) ≺ (0, 1, 0),

which is the result by Ito and Sadahiro.

4 Shifts and graphs

In Theorem 14 we gave a characterization of the shift-invariant set of T−β-admissible se-
quences. This set will be denoted with ST . In order to turn ST into a shift space, we need
to consider its closure. This closure will be called the (−β)-shift (for the underlying map
T−β) and will be denoted by S−β. The context should make it clear what the underlying
map T−β is. If we wish to emphasize whether T−β is left- or right-continuous, we may write
SL,−β and SR,−β respectively. The most straightforward characterization of the (−β)-shift is
the following.

Lemma 16. Let T−β be given and let x ∈ AN. Then x ∈ S−β if and only if (xp, . . . ,xq) is
T−β-admissible for all 1 ≤ p ≤ q.

We use this lemma to prove the following much more useful characterization.

Theorem 17. Let T−β be given and let x ∈ AN. The following hold:

(a) We have x ∈ SL,−β if and only if d∗
R,−β(ℓxn

) � (xn, xn+1, . . .) � dL,−β(rxn
) for all

n ≥ 1.

(b) We have x ∈ SR,−β if and only if dR,−β(ℓxn
) � (xn, xn+1, . . .) � d∗

L,−β(rxn
) for all

n ≥ 1.

Proof. We only prove (a), as the proof of (b) is similar. The ”if” part follows from Lemma
13 and Lemma 16. Let N ≥ 1 be arbitrary and fixed. If (xN , xN+1, . . .) is TL,−β-admissible,
Theorem 14 applies. Thus, assume it is not TL,−β-admissible. By Lemma 16, every finite
subblock (xN , . . . , xN+k), where k ≥ 1, is TL,−β-admissible. Hence, we have

(xN , . . . , xN+k) � (dL,−β(rxN
, 1), . . . , dL,−β(rxN

, k + 1))

which follows immediately and, by Lemma 8, we also have
(

d∗
R,−β(ℓxN

, 1), . . . , d∗
R,−β(ℓxN

, k + 1)
)

� (xN , . . . , xN+k).

This proves the theorem.
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Based on this theorem, we can classify the shift space S−β. The behaviour of these shift
spaces depend on the sequences d∗

R,−β(ℓa) and dL,−β(ra) (where a ∈ A) if the underlying map
is left-continuous and dR,−β(ℓa) and d∗

L,−β(ra) if the underlying map is right-continuous. The
sequences will be called boundary sequences.

The next theorem states that eventually periodic boundary sequences are a necessary
and sufficient condition for the shift space to be sofic. In order to prove this, we will give
an algorithm, based on the algorithm in [8], that construct a labeled graph recognizing the
shift. For now, we will assume that all boundary sequences are eventually periodic.

Assume that our shift space has a left-continuous underlying map. The shift space has
at most 2(⌊β⌋ + 1) boundary sequences, two for each a ∈ A used by the underlying digit
function: one corresponding to ℓa and the other to ra. In what follows we will assume that
all digits in A are used. Hence, we will need two sets for each digit, mℓ

a and mr
a, which are

subsets of Z≥0. These sets keep track of the (finite) memory of a machine that reads the
sequence (x1, x2, . . .) one digit at a time. The meaning of k ∈ mℓ

a is that the current memory
contains a finite subblock starting with a that equals the prefix of the boundary sequence
corresponding to ℓa and where the next digit needs to be matched against the (k + 1)-th
digit of the boundary sequence corresponding to ℓa (similarly for mr

a). In fact, we can give
an upper bound for each of these memory sets by using the fact that all boundary sequences
are eventually periodic. Let the boundary sequence be eventually periodic with pre-periodic
part of length q ≥ 0 and periodic part of length p ≥ 1, then the upper bounds, denoted by
U ℓ

a and U r
a respectively, are equal to











2p, if q = 0;

2p + q − 1, if q 6= 0 and p is odd;

p + q − 1, if q 6= 0 and p is even.

These upper bounds tell us how many different prefixes we may expect.
Next, assume that we read a new digit of the sequence (x1, x2, . . .), say d. Our memory

has now changed and hence we need to update our memory sets. If k ∈ mℓ
a and we read the

digit d, we change the index k into another index mℓ
a(k/d), which is defined as:

mℓ
a(k/d) :=



















































k + 1, if k < U ℓ
a and d = d∗

R,−β(ℓa, k + 1);

1, if k = U ℓ
a, d = d∗

R,−β(ℓa, k + 1) and q = 0;

q, if k = U ℓ
a, d = d∗

R,−β(ℓa, k + 1) and q 6= 0;

0, if k 6= 0 and (−1)k+1
(

d∗
R,−β(ℓa, k + 1) − d

)

< 0;

0, if k = 0 and d 6= a;

1, if k = 0 and d = a;

F, otherwise.

(5)

Let us shortly explain what each of these seven cases mean. If our memory contains a
subblock matching the prefix of the boundary sequence of ℓa but does not contain one
complete period, then we check digit d against the next digit of the prefix (case 1). If the
boundary sequence is purely periodic and if our memory contains two complete periods (we
need two complete periods in the case p is odd), then move back to the beginning (case
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2). If the boundary sequence is eventually periodic and our memory contains the maximum
number of complete periods (one if p is even, otherwise two), then return to the beginning
of the periodic part (case 3). If our memory contains a subblock that, together with the
digit d, can be accepted bacause of Theorem 17, then accept it and ”forget” about this block
(case 4). If our memory does not contain the digit a and if the new digit also is not a, do
absolutely nothing (case 5). On the other hand, if the new digit equals a, we have a subblock
of length 1 matching the prefix of equal length of the boundary sequence ℓa (case 6). If none
of the above happens, then we are neither undecided (cases 1,2,3,5 and 6) nor can we accept
any subblock (case 4), and hence we must reject it (case 7).

Similarly, we define

mr
a(k/d) :=



















































k + 1, if k < U r
a and d = dL,−β(ra, k + 1);

1, if k = U r
a , d = dL,−β(ra, k + 1) and q = 0;

q, if k = U r
a , d = dL,−β(ra, k + 1) and q 6= 0;

0, if k 6= 0 and (−1)k+1 (d − dL,−β(ra, k + 1)) < 0;

0, if k = 0 and d 6= a;

1, if k = 0 and d = a;

F, otherwise.

(6)

We state the following result, which follows directly from equations (5) and (6):

Corollary 18. Let (z1, . . . , zn) be our current memory containing no forbidden blocks. Then
for some a ∈ A and i ≤ U ℓ

a (or U r
a) either mℓ

a(i/d) or mr
a(i/d) equals F if and only if

(z1, . . . , zn, d) contains a forbidden block.

To construct a labeled graph recognizing the shift SL,−β whose boundary sequences are
all eventually periodic, we perform the following steps:

1. Let V be the set of vertices where each vertex v ∈ V is labeled
(mℓ

0,m
r
0, . . . ,m

ℓ
⌊β⌋,m

r
⌊β⌋) such that mℓ

a is a nonempty subset of

{0, 1, . . . , U ℓ
a} and mr

a is a nonempty subset of {0, 1, . . . , U r
a}.

2. For each vertex v ∈ V and d ∈ A draw an edge with label d from vertex v to vertex
w = (w1, w2, . . . , w2⌊β⌋+2), where

wk =

{

ϕℓ,(k−1)/2(m
ℓ
(k−1)/2, d), if k is odd;

ϕℓ,(k−2)/2(m
r
(k−2)/2, d), if k is even;

and the maps ϕℓ,a and ϕr,a are defined as

ϕℓ,a(v, d) :=







































F, if F ∈ ⋃

i∈v

{

mℓ
a(i/d)

}

;
⋃

i∈v

{

mℓ
a(i/d)

}

\ {0}, if {0} (
⋃

i∈v

{

mℓ
a(i/d)

}

and F /∈ ⋃

i∈v

{

mℓ
a(i/d)

}

;

{1} ∪ ⋃

i∈v

{

mℓ
a(i/d)

}

\ {0}, if 1, F /∈ ⋃

i∈v

{

mℓ
a(i/d)

}

and d = a;
⋃

i∈v

{

mℓ
a(i/d)

}

, otherwise.

(7)
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The definition of ϕr,a is nearly identical; simply replaces all instances of ℓ in (7) with
r.

3. The connected component (i.e., each vertex has at least one outgoing edge) containing
the zero vertex is the labeled graph recognizing SL,−β.

Since our memory sets may contain more than one digit, we need to keep track of the way each
of these indices react to the new digit d and, should they arise, remove any inconsistencies.
This is the job of ϕℓ,a and ϕr,a. Let us explain the four cases in (7) in more detail. If, because
of the new digit d, our memory contains a forbidden subblock, automatically reject it (case
1). If we cannot reject it, then suppose our memory contains at least two subblocks on which
we are undecided, but can accept some (not all) of them after we read the new digit d. In
that case adding a 0 to the memory set would be redundant (case 2). If the new digit equals
a, then add 1 to the memory set, as we have a new subblock (of length 1) starting with a
(case 3). If none of these three cases apply, there are no inconsistencies (case 4).

In practice, one starts with the zero vertex and adds vertices along the way. Since none
of the vertices carry the label F , we do not draw an edge if the update rule in (7) implies
that the edge should point towards such a vertex.

Theorem 19. The shift space S−β is sofic if and only if its boundary sequences are all
eventually periodic.

Proof. Assume, without loss of generality, that the underlying map is left-continuous (in
the remainder of the proof we will write SL,−β). Let G be a right-resolving labeled graph
recognizing SL,−β (recall [9, Theorem 3.3.2]) and let L be the labeling. Fix a ∈ A and consider
d∗

R,−β(ℓa) (the argument is similar for dL,−β(ra)). There exists a path ξ = e1e2 · · · in G such
that (L(e1),L(e2), . . .) = d∗

R,−β(ℓa). By Theorem 17, d∗
R,−β(ℓa) is the smallest sequence with

respect to the order ≺ starting with a and hence ξ is the path that first chooses the edge
with label a and then the edge with the smallest possible label (with respect to ≺). Since
G is finite, the path ξ passes some vertex v infinitely often. Hence, ξ contains a loop of
even length, which implies that for some k, n ≥ 1 we have L(ei) = L(ei+2k). It follows that
d∗

R,−β(ℓa) is eventualy periodic.
Conversely, let SL,−β be given, G the labeled graph that follows from our construction

and let LS and LG be the language of the shift space SL,−β and the edge shift on G respec-
tively. By Corollary 18 and the construction of G it immediately follows that LS ⊂ LG. If
(a1, . . . , an, d) /∈ LS and (a1, . . . , an) ∈ LS (we may assume this without loss of generality),
then from Corollary 18 it follows that either mℓ

a(i/d) or mr
a(i/d) equals F for some i and a.

Hence, by construction, there is a finite path ζ = (e1, . . . , en) such that L(ei) = ai. Say the
path ζ ends at vertex v, then there is no outgoing edge from v with label d. For if it did
exist, it would point to a vertex with label F as one of its coordinates by (7). Such vertices,
however, do not exist (recall step 1 of the construction). It follows that LS = LG.

Remark 20. The construction of the labeled graph is also valid if at least one boundary
sequence is not eventually periodic. In this case, the upper bound U ℓ

a or U r
a corresponding

to this boundary sequence, as well as p for this specific boundary sequence, should be equal
to ∞ (as there is no periodicity to exploit). Using our construction, the number of vertices
in the labeled graphs of these shifts might be countably infinite.
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Let us illustrate the results of this section with two examples.

Example 21. We continue the case of Example 3. In Examples 5 and 11 we determined
the boundary sequences and hence, by Theorem 4.2, a sequence belongs to the shift space
S−β if and only if

(1, 0) � (xn, xn+1, . . .) � (1, 1, 0) ∨ (0, 0, 1, 0) � (xn, xn+1, . . .) � (0, 1)

holds for all n ≥ 1. We can simplify this as

(xn, xn+1, . . .) � (1, 1, 0) ∨ (0, 0, 1, 0) � (xn, xn+1, . . .), (8)

since the other two inequalities are always satisfied, as (1, 0) and (0, 1) are the smallest and
the greatest sequences with respect to the alternate order respectively. It is useful to create
tables stating all possible outcomes of mℓ

a(i/d) and mr
a(i/d) for all a, d ∈ A and all allowed

indices i. In this specific case, we find:

mℓ
0(i/d) 0 1
0 1 0
1 2 0
2 0 3
3 4 0
4 3 F

mr
1(i/d) 0 1
0 0 1
1 0 2
2 3 0
3 2 F

The entries labeled F correspond to forbidden blocks, though not all forbidden blocks can
be found explicitly this way. We see that mℓ

0(4/1) = F , which means we can find a forbidden
block by taking the prefix of length 4 of d∗

R,−β(2−
√

5) and adding a fifth digit to it, in this
case 1. So, (0, 0, 1, 0, 1) is a forbidden block, which is clear from (8). Similarly, mr

1(3/1) = F
tells us that (1, 1, 0, 1) is a forbidden block. Figure 3 shows the labeled graph recognizing
the shift space.

Example 22. Now consider the map given in Example 7. By Example 10, d∗
R,−β(0) =

(0, 1, 1, 0), and thus a sequence belongs to the shift space generated by this map if and only
if

(xn, xn+1, . . .) � (1, 1, 0) ∨ (0, 1, 1, 0) � (xn, xn+1, . . .) (9)

holds for all n ≥ 1. Once again, we omitted two inequalities since they are redundant. We
can proceed as in the previous example and create the following tables:

mℓ
0(i/d) 0 1
0 1 0
1 F 2
2 0 3
3 2 0

mr
1(i/d) 0 1
0 0 1
1 0 2
2 1 0

The tables now only reveal one forbidden block: (0, 0). As we will see in a later section, this
is the only forbidden block. For the moment, assume we are not aware of this. We construct
a labeled graph that recognizes the shift based on our lengthy exposition earlier. This graph
is shown in Figure 4.
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Figure 3: A labeled graph recognizing the shift space given by (8).

As in the case of expansions in positive base, whenever β is Pisot we can improve Theorem
19 a little. Recall that a Pisot number is a positive algebraic integer whose other conjugates
lie in the unit circle in the complex plane. The following theorem shows why Pisot bases are
nice to work with.

Theorem 23. Let β be Pisot, x ∈ I−β and T−β be given and let d−β(x) be the (−β)-expansion
of x generated by T−β. If x ∈ Q(β), then d−β(x) is eventually periodic.

Proof. We will not give the complete proof here, as it is nearly identical to the proof of
[5, Theorem 24]. In our case, replace [l, r) with I−β and note that we have the bound

|rn| < β·⌊β⌋
β2−1

.

As an immediate corollary, we have:

Theorem 24. Let β be Pisot and S−β be given. Then S−β is sofic if and only if the cut
points of the underlying map T−β all lie in Q(β).

5 Forbidden blocks

Example 22 showed that, while technically correct, our construction of the labeled graph can
yield us quite large graphs. However, by carefully looking at Examples 21 and 22 we see why
the first one is only sofic and the latter is actually a shift of finite type. In the first example,
the forbidden blocks contain both a part of the pre-periodic and a part of the periodic part
of the boundary sequence, where in the second example the forbidden block only contained
part of the pre-periodic part. This observation quickly leads us to a conjecture: a shift space
of the form given in Theorem 17 is a shift of finite type if and only if its forbidden blocks only
contain part of either pre-periodic or periodic parts of boundary sequences, but not both.
Indeed, if the latter does happen, we can abuse the periodicity of the boundary sequences
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Figure 4: A labeled graph recognizing the shift space given by (9).

to generate infinitely many forbidden blocks that cannot be covered by a finite set (because
of the pre-periodic part). Based on these observations, we state the following

Theorem 25. Let S−β be a sofic shift. Then S−β is a shift of finite type if and only if the
periodic part of every eventually periodic boundary sequence is a purely periodic boundary
sequence.

Proof. Once again, we assume that the underlying map is left-continuous and write SL,−β

instead of S−β. Let SL,−β be a shift of finite type. Every shift of finite type is sofic and hence
by Theorem 19 we conclude that all boundary sequences are eventually periodic. Assume
that there exists a left-boundary sequence (the proof is similar for right-boundary sequences)
(a1, . . . , ak, ak+1, . . . , ak+p), where k, p ≥ 1, whose periodic part does not equal some other
boundary sequence. Moreover, assume that k is odd (the proof is similar for k even). By
assumption, there exists a smallest integer 1 ≤ j ≤ p such that there exists some b ∈ A for
which we have (−1)k+j(b−ak+j) < 0. It follows that the block (a1, . . . , ak+j−1, b) is forbidden.
Moreover, the blocks w(n) := a1 · · · ak(ak+1 · · · ak+p)

2nak+1 · · · ak+j−1b are forbidden for all
n ≥ 0.

Suppose that there exists some 1 ≤ i ≤ j − 1 such that the subblock ak+i · · · b of length
at most j is forbidden. Then the blocks (ak+1 · · · ak+p)

2nak+1 · · · ak+j−1b are forbidden for all
n ≥ 0 and thus we conclude that

(ak+1 · · · ak+p) ≺ (ak+1 · · · ak+p)
2nak+1 · · · ak+j−1b

holds for all n ≥ 1. This, however, implies that (ak+1, . . . , ak+p) is a right-boundary sequence,
which contradicts our initial assumption. Hence, there exists some integer 1 ≤ m ≤ k such
that the blocks am · · · ak(ak+1 · · · ak+p)

2nak+1 · · · ak+j−1b are forbidden for all n ≥ 0, but any
of their subblocks are admissible. Hence, S−β is not a shift of finite type.

Next, assume that all boundary sequences satisfy the property given in Theorem 25 and
let (a1, a2, . . .) be an arbitrary but fixed left-boundary sequence (the proof is similar for
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right-boundary sequences). If it is purely periodic with period p, then the forbidden blocks
are given by

{

(x1, . . . , x2p) ∈ A2p : (x1, . . . , x2p) ≺ (a1, . . . , a2p) ∧ x1 = a1

}

. (10)

If it is eventually periodic with pre-periodic part of length q and period p, then the set

{

(x1, . . . , xq+1) ∈ Aq+1 : (x1, . . . , xq+1) ≺ (a1, . . . , aq+1) ∧ x1 = a1

}

(11)

is sufficient. To see why, let (y1, y2, . . .) be a sequence such that y1 = a1 and (y1, y2, . . .) ≺
(a1, a2, . . .). Let m be the smallest integer such that yi = ai for i < m and (−1)m(ym−am) < 0
and assume that m > q + 1. Moreover, assume that q is odd (the argument is similar for q
even). Then y1 · · · yq+1 = a1 · · · aq+1 and

(aq+1, . . . , aq+p) ≺ (yk+1, yk+2, . . .).

Since the purely periodic sequence on the left-hand side is another boundary sequence,
it follows that the forbidden blocks of (y1, y2, . . .) are contained within the subsequence
(yq+1, yq+2, . . .). But these forbidden blocks are already covered by a set of the form (10).
Hence, it is sufficient to consider forbidden blocks of the form in (11). Since there are
finitely many boundary sequences and since each of these boundary sequences only have a
finite number of forbidden blocks, the shift space is a shift of finite type.

We can use the result of this theorem to reduce our graphs quite a bit as follows. Consider
any boundary sequence. If its periodic part is a boundary sequence of the same shift space,
then remove this periodic part. If our memory contains the whole pre-periodic part of this
boundary sequence, then accept it and forget about it (i.e., the new memory index in this
specific case would be a zero). The following two examples illustrate this.

Example 26. Reconsider Example 22. Since (1, 0) is a boundary sequence (the smallest
with respect to ≺), we can forget about this periodic part. Moreover, this turns (1, 1, 0) into
the single digit boundary block (1), which itself is redundant, and hence we are left with the
following condition:

(0, 1) � (xn, xn+1)

for all n ≥ 1 such that xn = 0. Although not necessary at this point, we still fill in the table:

mℓ
0(i/d) 0 1
0 1 0
1 F 0

The resulting graph is shown in Figure 5.

The same approach can be applied to any shift space of the form in Theorem 17 as long
as at least one eventually periodic boundary sequence has a periodic part equal to a periodic
boundary sequence.
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Figure 5: Another labeled graph recognizing the shift space of Example 22.

Example 27. Let β = 2 and consider the left-continuous map with cut points −5
6

and −1
6
.

Theorem 17 tells us that (x1, x2, . . .) ∈ S−β if and only if for all n ≥ 1 we have:

(2, 0) � (xn, xn+1, . . .) � (2, 1),
(1, 0, 2) � (xn, xn+1, . . .) � (1, 1, 0),

or (0, 0, 1) � (xn, xn+1, . . .) � (0, 2).

Careful inspection reveals that the boundary sequences (2, 0) and (0, 2) are redundant (the
smallest and largest possible sequence with respect to ≺). Moreover, we may reduce (1, 0, 2)
to the single digit block (1), which is once again redundant. We are left with:











(xn, xn+1, . . .) � (2, 1), whenever xn = 2;

(xn, xn+1, . . .) � (1, 1, 0), whenever xn = 1;

(0, 0, 1) � (xn, xn+1, . . .), whenever xn = 0.

(12)

We create tables one more time:

mℓ
0(i/d) 0 1 2
0 1 0 0
1 2 0 0
2 0 1 F

mr
1(i/d) 0 1 2
0 0 1 0
1 0 2 F
2 1 0 0

mr
2(i/d) 0 1 2
0 0 0 1
1 0 2 F
2 F 1 0

and use these to produce the labeled graph in Figure 6.

6 Discussion

Our goal was to consider a large class of (−β)-transformations and to prove statements
analogous to what Ito and Sadahiro for their (−β)-transformation. Our class of (−β)-

transformations include transformations that, when restricted to the interval
[

− β
β+1

, 1
β+1

)

,

are the Ito-Sadahiro transformation. As to be expected, our results agree with results on
their transformation (compare Theorem 14 and 19 with [8, Theorem 10 & 12] and Theorem
25 with [7, Theorem 4]). While we only considered the canonical alphabet, there are many
other alphabets to be considered. In fact, there is a rather large class of alphabets satisfying
property i of Assumption 1 (compare with [11, Proposition 2.1]) of which we assume the
results in this paper will carry over.

Of the many open problems surrounding (−β)-expansions we want to highlight two. The
first problem is based on the examples in sections 4 and 5 illustrating the output of our
algorithm. Can this algorithm be improved upon? The second problem follows from [8]:
given two sequences x,y ∈ AN (or any other alphabet), is there a (−β)-transformation such
that x and y are boundary sequences of this transformation?
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Figure 6: A labeled graph recognizing the shift from Example 27.
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