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Abstract

We study properties of the truncated kernel function γ2 defined on integers n ≥ 2 by
γ2(n) = γ(n)/P (n), where γ(n) =

∏

p|n p is the well-known kernel function and P (n)
is the largest prime factor of n. In particular, we show that the maximal order of γ2(n)
for n ≤ x is (1 + o(1))x/ log x as x → ∞ and that

∑

n≤x 1/γ2(n) = (1 + o(1))ηx/ log x,
where η = ζ(2)ζ(3)/ζ(6). We further show that, given any positive real number u < 1,
limx→∞ 1

x#{n ≤ x : γ2(n) < xu} = limx→∞ 1
x#{n ≤ x : n/P (n) < xu} = 1 − ρ(1/(1 −

u)), where ρ is the Dickman function. We also show that n/P (n) can very often be

1

mailto:jmdk@mat.ulaval.ca
mailto:isma.diouf@gmail.com
mailto:nicodoyon77@hotmail.com


much larger than γ2(n), namely by proving that, given any c ∈ [1, ξ), where ξ is the
unique solution to ξ log 2 = log(1 + ξ) + ξ log(1 + 1/ξ), then

#{n ≤ x : γ2(n) ≥ n/(c log n)} = o (#{n ≤ x : n/P (n) ≥ n/(c log n)}) (x → ∞).

1 Introduction

Let γ(n) =
∏

p|n p for n ≥ 2 and γ(1) = 1 be the traditional kernel function, also at times
called the largest squarefree divisor function. This arithmetic function has been extensively
studied. For instance, it was shown by Cohen [4] that

∑

n≤x

γ(n) = c0 x
2 +O(x3/2 log x), (1)

where

c0 =
1

2

∏

p

(

1 − 1

p(p+ 1)

)

≈ 0.352. (2)

It was later shown by De Koninck and Sitaramachandrarao [5] that, given any positive
integer k,

∑

n≤x

1

n log γ(n)
= log log x+

k−1
∑

m=0

bm
logm x

+O

(

1

logk x

)

,

where the bm’s are computable constants.
The kernel function is at the heart of several problems in number theory, one of which

is the famous abc−conjecture (stated below). Although simple in appearance, the kernel
function remains intriguing and in some aspects very mysterious.

As an example of its intriguing character, let us mention the search for an asymptotic
formula for the sum of its reciprocal values up to a given number x, namely the sum

I(x) :=
∑

n6x

1

γ(n)
.

At first, since γ(n) = n when n is squarefree and since this occurs for approximately 6x/π2

of all integers up to x, one might think that I(x) would be near
∑

n6x

1/n ∼ log x. But, in

1962, N. G. de Bruijn [1] proved that, as x→ ∞,

log I(x) = (1 + o(1))

√

8 log x

loglog x
,

the asymptotic behavior of I(x) itself remaining at that time a total mystery. Three years
later, W. Schwarz [11] came up with the unexpected formula

I(x) = (1 + o(1))
1

21/4
√

4π

(

loglog x

log x

)1/4

Q(x) (x→ ∞),
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where

Q(x) = min
0<σ<∞

xσκ(σ) with κ(σ) :=
∞
∑

n=1

1

nσγ(n)
=
∏

p

(

1 +
1

p(pσ − 1)

)

,

and was thus able to prove the asymptotic formula

I(x) = (1 + o(1))
1

21/4
√

4π

(

loglog x

log x

)1/4

exp{−R(log x)} (x→ ∞),

where, by setting ϕ(σ) := log κ(σ) and Φ(σ) := ϕ′(σ), the function R(u) is defined by the
relation

−R(u) = ϕ(Φ−1(−u)) + uΦ−1(−u).
The study of the kernel function can be seen as a way to investigate the multiplicative

structure of integers. Now, the quantity γ(n) is easy to grasp when it is fairly large compared
with n, say in the neighborhood of n/k for a fixed k ≥ 1. However, when γ(n) is very small
compared with n, say when γ(n) ≤ √

n or even worst when γ(n) ≤ log n, then its behavior
depends on the small prime factors of n (since P (n) is small) and is therefore very hard to
grasp, thus for instance explaining the difficulty in obtaining the above asymptotic value of
I(x). This motivates us to study the truncated kernel function γ2 defined by γ2(1) = 1 and
for each integer n ≥ 2 by γ2(n) = γ(n)/P (n), where P (n) stands for the largest prime factor
of n (with P (1) = 1). This new function is very similar to γ(n) in many respects but it also
has the advantage of being simpler to investigate, essentially because the distribution of its
small values no longer depends on P (n) and is therefore much easier to understand.

We will study the global and local behavior of γ2(n) and also compare it with that of γ(n)
and of n/P (n). Although γ2(n) is not a multiplicative function, in general its behavior is
more easily understood than that of γ(n), as is the case when comparing the corresponding
sums of their reciprocal values. However, as we will see, it turns out to be quite the opposite
in many aspects.

2 Main results

Our first two theorems provide information about the global behavior of γ2(n).

Theorem 1. With c0 defined as in (2), we have
∑

n≤x

γ2(n) = (1 + o(1))2c0x
2δ(x) (x→ ∞), (3)

where

δ(x) =

∫ x

2

1

t2
ρ

(

log x

log t

)

dt (4)

and ρ is the well-known Dickman function defined as the (unique) continuous solution to the
differential-difference equation

uρ′(u) = −ρ(u− 1) (u > 1)

satisfying the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1.
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Theorem 2. For all x ≥ 2,

∑

n≤x

1

γ2(n)
= c2

x

log x
+O

(

x log log x

log2 x

)

, (5)

where c2 =
ζ(2)ζ(3)

ζ(6)
≈ 1.9436 (here ζ stands for the Riemann Zeta Function).

The next theorem allows us to study the distribution of γ2(n), in particular by showing
that it behaves like the function n/P (n) almost everywhere.

Theorem 3. Given any positive real number u < 1,

lim
x→∞

1

x
#{n ≤ x : γ2(n) < xu} = lim

x→∞

1

x
#{n ≤ x : n/P (n) < xu} = 1 − ρ

(

1

1 − u

)

.

Given a real number h ≥ 1, let us set

Ψh(x, y) = #{n ≤ x : P (n) ≤ y, γ(n) < n/h}.

Observe that γ2(n) can be written as the product of two functions, namely γ2(n) =
γ(n)

n
· n

P (n)
.

The next result shows that γ2(n) is the product of two basic functions which are statistically
independent almost everywhere.

Theorem 4. Given real numbers u > 0 and h ≥ 1, then

Ψh(x, x
1/u) = (1 + o(1))xD(h) ρ(u) (x→ ∞), (6)

where

D(h) := lim
x→∞

1

x
#{n ≤ x : γ(n) < n/h},

a number whose existence is established in Lemma 13.

While γ2(n) and n/P (n) are independent almost everywhere, this is not true for extremal
values. Indeed, our next theorem shows that the maximal value of γ2(n) is smaller than the
maximal value of n/P (n), while Theorem 6 shows that n/P (n) takes on large values more
often than γ2(n).

Theorem 5. As x→ ∞,

max
n≤x

γ2(n) = (1 + o(1))
x

log x
. (7)

Theorem 6. Let ξ be the unique solution of the equation

ξ log 2 = log(1 + ξ) + ξ log(1 + 1/ξ),

so that ξ ≈ 3.403. Fix any number c ∈ [1, ξ) and set

A(x) := #

{

n ≤ x : γ2(n) ≥ n

c log n

}

,

B(x) := #

{

n ≤ x :
n

P (n)
≥ n

c log n

}

.

Then,
A(x) = o(B(x)) (x→ ∞).
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The following theorem is essentially the counterpart to the last two theorems, that is that
there are many more integers n with a small γ2(n) than there are integers n with a small
P (n).

Theorem 7. Given a fixed positive integer k,

#{n ≤ x : n/P (n) ≤ k} = C(k)
x

log x
+O

(

x

log2 x

)

,

where C(k) :=
k
∑

j=1

1

j
, and

#{n ≤ x : γ2(n) ≤ k} = E(k)
x

log x
+O

(

x

log2 x

)

,

where E(k) :=
∑

m≥1
γ(m)≤k

1

m
=

k
∑

j=1

µ2(j)

j

∏

p|j

(

1 − 1

p

)−1

=
k
∑

j=1

µ2(j)

φ(j)
.

3 Preliminary results and notations

We say that a function λ : [1,+∞[→ [0,+∞[ is slowly increasing if, for each constant c > 0,

lim
x→∞

λ(cx)/λ(x) = 1.

Proposition 8. Let f be a non negative multiplicative function for which there exist a
positive real number k and a slowly increasing function λ such that, as x→ ∞,

∑

n≤x

f(n) = (1 + o(1))x (logk−1 x)λ(log x),

and such that for all real numbers u > 1, as y → ∞,

∑

y<p<yu

f(p)

p
= (1 + o(1)) k log u.

Then, as x = yu → ∞,
∑

n6x
P (n)6y

f(n) = (1 + o(1)) Γ(k)u1−kρk(u)
∑

n6x

f(n),

uniformly for u bounded, where ρk(u) is the continuous solution to the differential difference
equation with delayed argument, defined by

ρk(u) = 0 (u 6 0),

ρk(u) =
uk−1

Γ(k)
(0 < u 6 1),

uρ′k(u) = (k − 1)ρk(u) − kρk(u− 1) (u > 1),

where Γ stands for the Gamma function.
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Proof. This result is due to de Bruijn and van Lint [3].

Proposition 9. As x→ ∞,

∑

n6x

1

P (n)
=

(

1 +O

(
√

loglog x

log x

))

xδ(x), (8)

∑

n6x

µ2(n)

P (n)
=

(

6

π2
+O

(
√

loglog x

log x

))

∑

n6x

1

P (n)
, (9)

∑

n6x

P (n)2|n

1

P (n)
= x exp

{

−
√

4 log x loglog x

(

1 +O

(

logloglog x

loglog x

))}

= xδ(x)
√

2+o(1), (10)

where δ(x) is the function defined in (4).

Proof. A proof of (8) was established by Erdős, Ivić, and Pomerance [6], while (9) can be
found in Ivić [9], and (10) in Ivić and Pomerance [10].

Remark 10. Using the estimate

ρ(u) = exp{−u(log u+ loglog u− 1 + o(1))} (u→ ∞) (11)

(see the book of Tenenbaum [12]), one can show that the function δ(x) defined in (4) is
slowly increasing and satisfies

δ(x) = exp
{

−(1 + o(1))
√

2 log x loglog x
}

(x→ ∞), (12)

so that
δ(x) = L0(x)

−1+o(1) (x→ ∞),

where
L0(x) := exp{

√

2 log x log log x}, (13)

Lemma 11. As x→ ∞,

∫ x

1

t ρ

(

log t

log y

)

dt =

∫ x

y

t ρ

(

log t

log y

)

dt+O(y) = O(x),

uniformly for 2 6 y 6 x.

Proof. We first estimate the maximum value of

g(t) := t ρ

(

log t

log y

)

(14)

for y 6 t 6 x and fixed y ∈ [2, x]. For this, consider h(t) := log g(t) and solve h′(t) = 0 for t.
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In view of (11), we have

h′(t) =
d

dt

(

− log t

log y
(log log t− log log y + log log log t− log log log y − 1) + log t

)

so that
log log t− log log y = log y,

in which case,
t = yy.

Substituting this value of t in (14), we get in view of (11),

g(t) = ρ(y)yy ≪ e−y log yyy = 1,

which completes the proof of the lemma.

Lemma 12. Uniformly for x ≥ y ≥ 2,

log Ψ(x, y) = Z

{

1 +O

(

1

log y
+

1

log log x

)}

,

where

Z =
log x

log y
log

(

1 +
y

log x

)

+
y

log y
log

(

1 +
log x

y

)

.

Proof. This result is due to de Bruijn [2].

Lemma 13. Given any real number h ≥ 1, the limit

D(h) := lim
x→∞

1

x
#{n ≤ x : γ(n) < n/h} (15)

exists and moreover, as h becomes large,

D(h) ≪ 1√
h
. (16)

Proof. Writing each positive integer n as n = st, where s is powerful and t squarefree with

(s, t) = 1, we have that the condition
γ(n)

n
<

1

h
is equivalent to

γ(s)

s
<

1

h
. In light of these

facts, we have that

∑

n≤x
γ(n)

n < 1
h

1 =
∑

s≤x
γ(s)

s < 1
h

s powerful

∑

t≤x/s
(t,s)=1

µ2(t) = (1 + o(1))
6

π2
x

∑

s≤x
γ(s)

s < 1
h

s powerful

1

s
∏

p|s

(

1 + 1
p

) . (17)

Since
∑

s powerful
γ(s)

s < 1
h

1

s
∏

p|s

(

1 + 1
p

) is clearly a convergent sequence, we can define D(h) as

D(h) =
∑

s powerful
γ(s)

s < 1
h

1

s
∏

p|s

(

1 + 1
p

) .
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Now, recall the following result proved by S. Golomb [7] in 1970:

S(y) := #{n ≤ y : n powerful} = (c3 + o(1))
√
y (y → ∞),

where c3 = ζ(3/2)/ζ(2) ≈ 2.173. Finally, in order to prove (16), we only need to observe

that, since the condition γ(s)
s
< 1

h
certainly implies that s > s

γ(s)
> h, we have

∑

s>x
s powerful

γ(s)
s < 1

h

1

s
<

∑

s>h
s powerful

1

s
≪
∫ ∞

h

1

t
dS(t) =

∫ ∞

h

S(t)

t
dt+

∫ ∞

h

S(t)

t2
dt≪ 1√

h
.

4 The proof of the theorems

4.1 The proof of Theorem 1

We first write

S2(x) :=
∑

n≤x

γ2(n) =
∑

n≤x
P (n)‖n

γ(n)

P (n)
+
∑

n≤x

P (n)2|n

γ(n)

P (n)
= Σ1 + Σ2,

say. Since it follows from (10) of Proposition 9 that

Σ2 6
∑

n6x

P (n)2|n

n

P (n)
6 x

∑

n6x

P (n)2|n

1

P (n)
≪ x2 δ(x)

√
2+o(1) (x→ ∞), (18)

we only need to estimate Σ1.
We first observe that the true order of Σ1 is x2 δ(x) and in fact that

Σ1

(x2δ(x))/2
∈
[

6

π2
, 1

]

since it is easily shown that, as x→ ∞,

(1 + o(1))
6

π2

x2

2
δ(x) 6

∑

n6x
P (n)‖n

γ(n)

P (n)
6 (1 + o(1))

x2

2
δ(x). (19)

Indeed, on the one hand,

∑

n≤x
P (n)‖n

γ(n)

P (n)
6
∑

n6x
P (n)‖n

n

P (n)
= (1 + o(1))

x2

2
δ(x) (x→ ∞),
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by way of (8) and partial summation. On the other hand, using the trivial observation
γ(n) > µ2(n)n valid for all n > 1, we have

∑

n≤x
P (n)‖n

γ(n)

P (n)
>
∑

n6x
P (n)‖n

µ2(n)n

P (n)
=
∑

n6x

µ2(n)n

P (n)
= (1 + o(1))

6

π2

x2

2
δ(x) (x→ ∞),

where first we used (9) and partial summation and thereafter estimate (8) of Proposition 9.
In order to estimate Σ1, we shall first prove that

G(x, y) :=
∑

n≤x
P (n)6y

γ(n) = (1 + o(1)) c1x
2 ρ(u) (x→ ∞), (20)

where u =
log x

log y
and ρ is the Dickman function.

Let f(n) := γ(n)/n. First, it is an easy matter to derive from (1) that

∑

n≤x

γ(n)

n
= c1x+O(x1/2 log x), (21)

where c1 = 2c0.
On the other hand, using Mertens’ formula, we have that

∑

y<p<yu

f(p)

p
=

∑

y<p<yu

1

p
= log u+O(1) (y → ∞). (22)

Hence, it follows from (22) and (21) that f satisfies the conditions of Proposition 8 with
k = 1, yielding

∑

n≤x
P (n)≤y

γ(n)

n
= (1 + o(1)) c1 ρ(u) x (x→ ∞). (23)

Using partial summation and Lemma 11, we get, as x→ ∞,

∑

n≤x
P (n)≤y

γ(n) =
∑

n6x
P (n)≤y

γ(n)

n
n

= (1 + o(1)) c1ρ(u)x
2 − c1(1 + o(1))

∫ x

1

ρ

(

log t

log y

)

t dt

= (1 + o(1)) c1ρ(u)x
2 +O(x),

which proves (20).
Getting back to the definition of Σ1, we obtain

Σ1 =
∑

p6x

∑

mp6x
P (m)<p

γ(m) p

p
=
∑

p6x

∑

m6x/p
P (m)<p

γ(m) =
∑

p6x

∑

m6x/p
P (m)6p

γ(m) −
∑

p6x

∑

m6x/p
P (m)=p

γ(m)

=
∑

p6x

G

(

x

p
, p

)

−
∑

mp6x

P (mp)2|mp

γ(mp)

P (mp)

= T1 − T2, (24)
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where, by (20),

T1 = (1 + o(1))c1x
2
∑

p6x

1

p2
ρ

(

log x

log p
− 1

)

(x→ ∞)

while, by (18),

T2 ≪ x2δ(x)
√

2+o(1) (x→ ∞).

Following an argument used by Ivić and Pomerance [10], we obtain that

T1 = c1(1 + o(1))x2

∫ x

2

1

t2 log t
ρ

(

log x

log t
− 1

)

dt = c1(1 + o(1))x2δ(x) (x→ ∞), (25)

while clearly
T2 = o

(

x2δ(x)
)

(x→ ∞). (26)

Substituting (25) and (26) in (24), (3) follows.

4.2 The proof of Theorem 2

Let K be a fixed large integer. Then,

∑

n≤x

1

γ2(n)
=
∑

k≤K

µ2(k)

k

∑

n≤x
γ2(n)=k

1 +
∑

K<k≤x

µ2(k)

k

∑

n≤x
γ2(n)=k

1 = S1(x;K) + S2(x;K), (27)

say.
Using the fact that, for any squarefree integer k,

∑

n≥1
γ2(n)=k

1

n
=

1

k

∏

p|k

(

1 +
1

p
+

1

p2
+ . . .

)

=
1

φ(k)
,

we easily obtain that

S2(x;K) ≤
∑

K<k≤x

µ2(k)

k

∑

n≤x
γ2(n)=k

x

n
≤ x

∑

k>K

µ2(k)

kφ(k)
< x

∑

k>K

1

k3/2
<

x

K1/2
, (28)

where we used the trivial inequality φ(k) > k1/2 valid for all k ≥ 7.
On the other hand, in light of estimate (47), which is proved in section 4.7, we get

S1(x;K) =
∑

k≤K

µ2(k)

k







∑

n≤x
γ2(n)≤k

1 −
∑

n≤x
γ2(n)≤k−1

1







=
∑

k≤K

µ2(k)

k

(

(E(k) − E(k − 1))
x

log x
+O

(

x

log2 x

)

+O(π(k))

)

=

(

∑

k≤K

µ2(k)

kφ(k)

)

x

log x
+O

(

x logK

log2 x

)

+O

(

K

logK

)

. (29)
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Again using the fact that φ(k) < k1/2 for all k ≥ 7, we have

∑

k≤K

µ2(k)

kφ(k)
=

∞
∑

k=1

µ2(k)

kφ(k)
−
∑

k>K

µ2(k)

kφ(k)
= c2 +O

(

1√
K

)

. (30)

Choosing K = log4 x and using (28), (29) and (30) in (27), estimate (5) follows, thereby
completing the proof of Theorem 2.

4.3 The proof of Theorem 3

Since, for each integer n ≥ 2, we have γ2(n) =
γ(n)

P (n)
≤ n

P (n)
, it follows that

∑

n≤x
γ2(n)<xu

1 ≥
∑

n≤x
n

P (n)
<xu

1 =
∑

n≤x
P (n)

n > 1
xu

1

= [x] −
∑

n≤x
P (n)≤n/xu

1 ≥ [x] −
∑

n≤x

P (n)≤x1−u

1

= x

(

1 − ρ

(

1

1 − u

)

+ o(1)

)

(x→ ∞). (31)

On the other hand, let ε > 0 be an arbitrarily small number and choose k large enough
so that, using estimate (16) of Lemma 13, we can claim that

lim
x→∞

1

x
#{n ≤ x : γ(n)/n < 1/k} < ε. (32)

Then, using (32), provided x is large enough, we have

∑

n≤x
γ2(n)<xu

1 =
∑

n≤x
γ2(n)<xu

γ(n)
n < 1

k

1 +
∑

n≤x
γ2(n)<xu

γ(n)
n ≥ 1

k

1 < εx+
∑

n≤x
n

P (n)
<kxu

1, (33)

where the last sum was obtained using the fact that

n

kP (n)
≤ γ(n)

P (n)
= γ2(n) < xu.

Hence, from (33), we conclude that

∑

n≤x
γ2(n)<xu

1 < εx+ [x] −
∑

n≤x

P (n)≤x1−u

1 = x

(

1 − ρ

(

1

1 − u

)

+ o(1)

)

(x→ ∞). (34)

Combining estimates(31) and (34) completes the proof of Theorem 3.
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4.4 The proof of Theorem 4

First, we can assume that P (n)‖n since we know from Proposition 9 that the number of

positive integers n ≤ x such that P 2(n)|n is no larger than xδ(x)
√

2+1 = o(x).
We will use the same pattern of proof as the one that Granville [8] used to prove that

ψ(x, x1/u) = (1 + o(1))xρ(u) as x→ ∞.
First, in light of the definition of D(h) given in (15), it is clear that

Ψh(x, x
1/u) = (1 + o(1))xD(h)ρ(u) for all 0 < u ≤ 1 (x→ ∞). (35)

Let us now consider the case where u ∈ [1, 2]. Then, with the assumption P (n)‖n, we
have

∑

n≤x

P (n)≤x1/u

γ(n)
n < 1

h

1 =
∑

n≤x
γ(n)

n < 1
h

1 −
∑

n≤x

x1/u<P (n)≤x
γ(n)

n < 1
h

1 = Σ1 − Σ2, (36)

say.
Again, it follows from the definition of D(h) that

Σ1 = (1 + o(1))D(h)x (x→ ∞). (37)

On the other hand, writing n = mp with P (m) < p, then, because u ∈ [1, 2], the
condition P (m) < p is automatically satisfied, while the assumption P (n)‖n guarantees that

the condition γ(n)
n

< 1
h

is equivalent to the condition γ(m)
m

< 1
h
, implying that

Σ2 =
∑

x1/u<p≤x

∑

m≤x
p

P (m)≤p
γ(m)

m < 1
h

1 =
∑

x1/u<p≤x

∑

m≤x
p

γ(m)
m < 1

h

1

=
∑

x1/u<p≤x

x

p
D(h) = (1 + o(1))xD(h) log u (x→ ∞). (38)

Gathering (37) and (38) in (36), we obtain that, in the case u ∈ [1, 2],

Ψh(x, x
1/u) = (1 + o(1))xD(h) (1 − log u) (x→ ∞). (39)

Hence, in light of (35) and (39), we have thus proved that

Ψh(x, x
1/u) = (1 + o(1))xD(h) ρ(u) (x→ ∞) (40)

holds for 0 ≤ u ≤ 2 with

ρ(u) =

{

1, if 0 < u ≤ 1,

1 − log u, if 1 ≤ u ≤ 2.

12



We now use induction. Assuming that (40) holds for all u ∈ (0, N ], we will now prove
that it must also hold for all u ∈ [N,N + 1]. For this, we will need the Buchstab identity
(trivially generalized to Ψh(x, y)), that is

Ψh(x, y) = 1 +
∑

p≤y

∑

mp≤x
P (m)<p
γ(m)

m < 1
h

1 = 1 +
∑

p≤y

Ψh

(

x

p
, p

)

. (41)

Using (41), we have

Ψh(x, x
1/N) = 1 +

∑

p≤x1/N

Ψ

(

x

p
, p

)

,

Ψh(x, x
1/u) = 1 +

∑

p≤x1/u

Ψ

(

x

p
, p

)

.

Subtracting these two equations, we obtain

Ψh(x, x
1/u) = Ψh(x, x

1/N) −
∑

x1/u<p≤x1/N

Ψh

(

x

p
, p

)

. (42)

Now, since p > x1/u and u ∈ [N,N + 1], we have

log(x/p)

log p
=

log x

log p
− 1 <

log x

log(x1/u)
− 1 = u− 1 ≤ N,

implying that (40) holds, say with u′ = log(x/p)
log p

instead of u, thus allowing us to replace (42)
by

Ψh(x, x
1/u) = (1 + o(1))xD(h)ρ(N) − (1 + o(1))D(h)

∑

x1/u<p≤x1/N

x

p
ρ

(

log x

log p
− 1

)

= (1 + o(1))xD(h)ρ(N) − (1 + o(1))xD(h)

∫ x1/N

x1/u

ρ

(

log x

log v
− 1

)

d θ(v)

v log v

= (1 + o(1))xD(h)

(

ρ(N) −
∫ u

N

ρ(t− 1)

t
dt

)

= (1 + o(1))xD(h)ρ(u) (x→ ∞),

(where we used the prime number theorem in the form θ(v) =
∑

p≤v log p = (1 + o(1))v
as v → ∞), thus showing that (40) also holds for u ∈ [N,N + 1] and thus completing the
induction argument.

4.5 The proof of Theorem 5

We first show that the bound is achieved for n =
∏

p≤log x p. Indeed, it follows from the
prime number theorem that, as x→ ∞,

γ2(n) =
1

maxp≤log x p
×
∏

p≤log x

p =
1

maxp≤log x p
× e(1+o(1)) log x = (1 + o(1))

x

log x
.
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On the other hand, this last expression is indeed an upper bound for γ2(n). To prove this,
first assume that P (n) > log(n/ log n). Then, in this case, as x→ ∞,

γ2(n) ≤ n

P (n)
≤ n

log n− log log n
=

n

log n

(

1 +O

(

log log n

log n

))

≤ (1 + o(1))
x

log x
.

If, on the contrary, P (n) ≤ log(n/ log n), we have, by the prime number theorem,

γ2(n) <
∏

p≤P (n)

p ≤
∏

p≤log n−log log n

p = (1 + o(1))
n

log n
≤ (1 + o(1))

x

log x
(x→ ∞).

This completes the proof of Theorem 5.

4.6 The proof of Theorem 6

Let us write each integer n ≥ 2 as n = st, where s is squarefull and t is squarefree with
(s, t) = 1. On the one hand,

γ2(n)

n
≥ 1

c log n
⇐⇒ sP (st)

γ(s)
≤ c log n.

But this last inequality implies that

P (st) ≤ sP (st)

γ(s)
≤ c log n ≤ c log x. (43)

Since γ2(n) ≤ γ(n) ≤ n/
√
s, we get that s ≤ (k log x)2, which combined with (43) implies

that P (t) ≤ c log x.
Therefore, as x→ ∞,

A(x) ≤ #{t ≤ x : µ2(t) = 1, P (t) ≤ c log x}

≤ 2π(c log x) = exp

{

(1 + o(1))c log 2
log x

log log x

}

, (44)

where again we made use of the prime number theorem.
We will now obtain a lower bound for B(x). Given any small δ > 0, we have, using

Lemma 12, that as x→ ∞,

B(x) = #{n ≤ x : P (n) ≤ c log n}
≥ #{x1−δ < n ≤ x : P (n) ≤ c log n}
≥ #{x1−δ < n ≤ x : P (n) ≤ (1 − δ)c log x}
= Ψ(x, (1 − δ)c log x) − Ψ(x1−δ, (1 − δ)c log x)

= (1 + o(1))Ψ(x, (1 − δ)c log x) (45)

= (1 + o(1)) expZ

= exp

{

(1 + o(1))
log x

log log x

(

log(1 + (1 − δ)c) + (1 − δ)c log

(

1 +
1

c(1 − δ)

))}

.
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Since δ can be taken arbitrarily small, it follows from (45) that, as x→ ∞,

B(x) ≥ exp

{

(1 + o(1))
log x

log log x

(

log(1 + c) + c log

(

1 +
1

c

))}

. (46)

Finally, by comparing (44) with (46) and observing that for c < ξ, we have

c log 2 < log(1 + c) + c log

(

1 +
1

c

)

,

the proof of Theorem 6 is complete.

4.7 The proof of Theorem 7

We first evaluate S1 = #{n ≤ x : n/P (n) ≤ k}. Writing each positive integer n ≤ x as
n = mp with P (m) ≤ p, we have

S1 =
∑

m≤k

∑

k<p≤x/m

1

=
∑

m≤k

∑

p≤x/m

1 +O(1)

=
∑

m≤k

π(x/m) +O(1)

=
∑

m≤k

(

x

m log(x/m)
+O

(

x/m

log2(x/m)

))

=
x

log x

k
∑

m=1

1

m
+O

(

x

log2 x

)

,

where we used the prime number theorem, thus proving our first assertion.
Now let S2 = #{n ≤ x : γ2(n) ≤ k}. Again, writing each positive integer n ≤ x as

n = mp with P (m) ≤ p, we have, using Proposition 9,

S2 =
∑

n≤x

P (n)2|n
γ2(n)≤k

1 +
∑

m≤x
p≤x/m

P (m)<p, γ(m)≤k

1

= O

(

x

exp{(1 + o(1))2
√

log x log log x}

)

+
∑

m≤x
γ(m)≤k

∑

P (m)<p≤x/m

1

= O

(

x

log2 x

)

+
∑

m≤x
γ(m)≤k

π(x/m) +O (π(k))

=
∑

m≤x
γ(m)≤k

x/m

log(x/m)
+O

(

x

log2 x

)

+O(π(k))
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=
x

log x

∑

m≥1
γ(m)≤k

1

m
+O

(

x

log2 x

)

+O(π(k))

= E(k)
x

log x
+O

(

x

log2 x

)

+O(π(k)), (47)

as we wanted to prove.

5 Final remarks

One could certainly extend the above results on γ2(n) to the more general case γk(n), with
k ≥ 3, defined by γk(n) = γk−1(n)/P (γk−1(n)). For instance, using the above arguments,
one can easily show that

∑

n≤x

1

γk(n)
= (ck + o(1))x

(log log x)k−2

log x
(x→ ∞)

and that
max
n≤x

γk(n) = (1 + o(1))
x

logk−1 x
(x→ ∞).

On the other hand, an interesting problem would be to investigate what kind of results
one could obtain if k is replaced by a function of n, for instance, by choosing k = ⌊ω(n)

2
⌋.
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