
23 11

Article 12.4.4
Journal of Integer Sequences, Vol. 15 (2012),2

3

6

1

47

The Abundancy Index of Divisors of

Odd Perfect Numbers

Jose Arnaldo B. Dris
De La Salle University

Manila 1004
The Philippines

jabdris@yahoo.com.ph

Abstract

If N = qkn2 is an odd perfect number, where q is the Euler prime, then we show
that n < q is sufficient for Sorli’s conjecture that k = νq(N) = 1 to hold. We also prove
that qk < 2

3n
2, and that I(qk) < I(n), where I(x) is the abundancy index of x.

1 Introduction

Perfect numbers are positive integral solutions to the number-theoretic equation σ(N) = 2N ,
where σ is the sum-of-divisors function. Euclid derived the general form for the even case;
Euler proved that every even perfect number is given in the Euclidean form N = 2p−1(2p−1)
where p and 2p − 1 are prime. On the other hand, it is still an open question to determine
the existence (or otherwise) for an odd perfect number. Euler proved that every odd perfect
number is given in the so-called Eulerian form N = qkn2 where q ≡ k ≡ 1 (mod 4) and
gcd(q, n) = 1. (We call q the Euler prime of the odd perfect number N , and the component
qk will be called the Euler factor of N .) As of February 2012, only 47 even perfect numbers
are known (13 of which were found by the distributed computing project GIMPS [14]), while
no single example of an odd perfect number has been found. (Ochem and Rao of CNRS,
France are currently orchestrating an effort to push the lower bound for an odd perfect
number from the previously known 10300 to a significantly improved 101500 (see [9])). Nielsen
has obtained the lower bound: ω(N) ≥ 9, for the number of distinct prime factors of N ([7]);

and the upper bound: N < 24
ω(N)

(see [8]).
We use the following notations. Let σ(x) denote the sum of the divisors of the natural

number x. That is, let σ(x) =
∑

d|x d. Let ω(x) denote the number of distinct prime factors
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of x. Let νq(N) denote the highest power of q that divides N ; that is, if l = νq(N), then
ql|N but ql+1 ∤ N . Let I(x) = σ(x)/x denote the abundancy index of x.

Sorli conjectured in [12] that the exponent k = νq(N) of the Euler prime q for an odd
perfect number N given in the Eulerian form N = qkn2, is one.

Throughout this paper, we will let

N = qkn2 =

ω(N)
∏

j=1

qj
βj

denote the canonical factorization of the odd perfect number N . That is,

min(qj) = q1 < q2 < q3 < · · · < qω(N) = max(qj).

Note that q is never the smallest prime divisor of N . This is because q, being congruent to
1 modulo 4, satisfies (q + 1)|σ(qk)|σ(N) = 2N giving q+1

2
|N , so N must have a smaller odd

prime divisor than q.

2 Odd Perfect Numbers Circa 2008

We begin with the following definition:

Definition 1. An odd perfect number N is said to be given in Eulerian form if N = qkn2

where q ≡ k ≡ 1 (mod 4) and gcd(q, n) = 1.

The author made the following conjecture [4]:

Conjecture 2. Suppose there is an odd perfect number given in Eulerian form. Then
qk < n.

The author formulated Conjecture 2 on the basis of the following result:

Lemma 3. If an odd perfect number N is given in Eulerian form, then I(qk) <
5

4
<

√

8

5
<

I(n).

Proof. Since q is the Euler prime and

I(N) = 2 = I(qk)I(n2),

we appeal to some quick numerical results. Since

I(qk) <
q

q − 1

and q ≡ 1 (mod 4), we know that q ≥ 5. Consequently, we have

1 < I(qk) <
5

4
= 1.25.
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On the other hand,

I(n2) =
2

I(qk)

so that we obtain the bounds

1.6 =
8

5
< I(n2) < 2.

But it is also well-known ([6, 10, 11]) that the abundancy index (as a function) satisfies the
inequality

I(ab) ≤ I(a)I(b)

with equality occurring if and only if gcd(a, b) = 1.
In particular, by setting a = b = n, we get

2

I(qk)
= I(n2) < (I(n))2

whereupon we get the lower bound

√

8

5
<

√

2

I(qk)
=

√

I(n2) < I(n).

We get the rational approximation
√

8/5 ≈ 1.264911.

Remark 4. When Conjecture 2 was formulated in 2008, the author was under the naive
impression that the divisibility constraint gcd(q, n) = 1 induced an “ordering” property for
the Euler prime-power qk and the component n =

√

N/qk, in the sense that the related
inequality qk < n2 followed from the result I(qk) < I(n2). (Indeed, the author was able to
derive the (slightly) stronger result qk < σ(qk) ≤ (2/3)n2 [4]).

We reproduce the proof for a generalization of the author’s result mentioned in Remark
4 in the following theorem.

Theorem 5. Suppose there is an odd perfect number with canonical factorization

N =

ω(N)
∏

i=1

qi
αi

where the qi’s are primes and q1 < q2 < . . . < qω(N). Then, for all i with 1 ≤ i ≤ ω(N), the
numbers ρi = σ(N/qi

αi)/qi
αi are positive integers and satisfy ρi ≥ 3.

Proof. Since

N =

ω(N)
∏

i=1

qi
αi

is an odd perfect number and qi
αi ||N ∀i, then the quantity ρi = σ(N/qi

αi)/qi
αi is an integer

(because gcd(qi
αi , σ(qi

αi)) = 1).
Suppose ρi = 1. Then σ(N/qi

αi) = qi
αi and σ(qi

αi) = 2N/qi
αi . Since N is an odd

perfect number, qi is odd, whereupon we have an odd αi by considering parity conditions
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from the last equation. But this means that qi is the Euler prime q, and we rewrite the
equations using qi

αi = qk and N/qi
αi = N/qk = n2, giving σ(qk) = 2n2 and σ(n2) = qk. This

contradicts Dandapat, et. al. [2] who showed in 1975 that no odd perfect number satisfies
these constraints. This implies that ρi 6= 1.

Suppose ρi = 2. Then σ(N/qi
αi) = 2qi

αi and σ(qi
αi) = N/qi

αi . Since N/qi
αi is odd, then

the last equation gives αi is even. Applying the σ function to both sides of the last equation,
we get σ(σ(qi

αi)) = σ(N/qi
αi) = 2qi

αi . This last equation implies that qi
αi is superperfect.

This contradicts Suryanarayana [13] who showed in 1973 that “There is no odd superperfect
number of the form p2α” (where p is prime). This implies that ρi 6= 2. Since ρi ∈ N, ρi ≥ 3
and we are done.

Corollary 6. If an odd perfect number N is given in Eulerian form, then qk < (2/3)n2.

Next, we define the functions L(q) and U(q).

Definition 7. If q is the Euler prime of an odd perfect number N given in Eulerian form,
then

L(q) = (3q2 − 4q + 2)/(q(q − 1))

and
U(q) = (3q2 + 2q + 1)/(q(q + 1)).

The author obtained the following results in the same year (2008).

Lemma 8. Let N be an odd perfect number given in Eulerian form. Then we have the
bounds L(q) < I(qk) + I(n2) ≤ U(q).

Proof. Starting from the (trivial) inequalities

q + 1

q
≤ I(qk) <

q

q − 1

we get
2(q − 1)

q
< I(n2) =

2

I(qk)
≤ 2q

q + 1
.

Notice that
q

q − 1
<

2(q − 1)

q

for q an Euler prime. Consequently

I(qk) < I(n2)

a result which was mentioned earlier in Remark 4.

Consider the product

(

I(qk)− q + 1

q

)(

I(n2)− q + 1

q

)

. This product is nonnegative

since
q + 1

q
≤ I(qk) < I(n2). Expanding the product and simplifying using the equation

I(qk)I(n2) = 2, we get the upper bound U(q) =
3q2 + 2q + 1

q(q + 1)
for the sum I(qk) + I(n2).
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Next, consider the product

(

I(qk)− q

q − 1

)(

I(n2)− q

q − 1

)

. This product is negative

since I(qk) <
q

q − 1
< I(n2). Again, expanding the product and simplifying using the

equation I(qk)I(n2) = 2, we get the lower bound L(q) =
3q2 − 4q + 2

q(q − 1)
for the same sum

I(qk) + I(n2).
A quick double-check gives you that, indeed, the lower bound L(q) is less than the upper

bound U(q), if q is an Euler prime.

Remark 9. Notice that, from the proof of Lemma 8, we have

q

q − 1
<

2(q − 1)

q

which implies that

(

q

q − 1

)2

< 2. Thus

1 < I(qk) <
q

q − 1
<

√
2 =

2√
2
<

2(q − 1)

q
< I(n2) < 2.

Also, observe from Lemma 3 that

I(qk) <
5

4
<

√

8

5
<

√

2

I(qk)

which implies that I(qk)
√

I(qk) <
√
2. It follows that

I(qk) <
3
√
2.

We get the rational approximation 3
√
2 ≈ 1.259921.

We give explicit bounds for the sum I(qk) + I(n2) in the following corollary.

Corollary 10. Let N be an odd perfect number given in Eulerian form. Then we have the
following (explicit) numerical bounds:

2.85 =
57

20
< I(qk) + I(n2) < 3

with the further result that they are best-possible.

Proof. This corollary can be proved using Lemma 8 and basic differential calculus, and is
left as an exercise to the interested reader.

Remark 11. As remarked by Joshua Zelinsky in 2005: “Any improvement on the upper
bound of 3 would have (similar) implications for all arbitrarily large primes and thus would
be a very major result.” (e.g. L(q) < 2.99 implies q ≤ 97.) In this sense, the inequality

2.85 =
57

20
< I(qk) + I(n2) < 3

is best-possible.
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Remark 12. Note that, from Lemma 8,

L(q) =
3q2 − 4q + 2

q(q − 1)
= 3− q − 2

q(q − 1)

and

U(q) =
3q2 + 2q + 1

q(q + 1)
= 3− q − 1

q(q + 1)
.

Observe that, when L(x) and U(x) are viewed as functions on the domain D = R\{−1, 0, 1},
then

L(x+ 1) = U(x)

and

U(2) = U(3) = L(3) =
17

6
< 2.84.

3 Sorli’s Conjecture [2003]

We now state Sorli’s conjecture on odd perfect numbers:

Conjecture 13. If N is an odd perfect number with Euler prime q then q||N .

Remark 14. In other words, if the odd perfect number N is given in the Eulerian form
N = qkn2, then Sorli’s conjecture predicts that k = νq(N) = 1. Note that, in general by
Remark 4 we have

qk <
√
N = qk/2n

which gives qk/2 < n. Sorli’s conjecture, if proved, will enable easier computations with odd
perfect numbers because then the abundancy index I(qk) for the Euler factor qk collapses to
I(q) = (q + 1)/q.

We give a set of sufficient conditions for Sorli’s conjecture to hold. (In that direction,
recall that the components qk and n2 of the odd perfect number N = qkn2 are related via
the inequality qk < n2, as mentioned in Remark 4.)

Lemma 15. Let N be an odd perfect number given in Eulerian form. If n < q, then k = 1.

Proof. If n < q, then by Corollary 6, q ≤ qk < n2 < q2 so k = 1.

Remark 16. Via a similar argument, we get that n < q2 also implies k = 1.

Lemma 17. Let N be an odd perfect number given in Eulerian form. If σ(n) ≤ σ(q), then
k = 1.

Proof. Suppose that σ(n) ≤ σ(q). Since I(q) < I(n) by Lemma 3, it follows that
σ(q)

σ(n)
<

q

n
.

By our assumption, 1 ≤ σ(q)

σ(n)
, whereupon we get n < q. Therefore, Lemma 15 gives

k = 1.
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Lemma 18. Let N be an odd perfect number given in Eulerian form. If
σ(n)

q
<

σ(q)

n
, then

k = 1.

Proof. If
σ(n)

q
<

σ(q)

n
, then since

σ(q)

q
<

σ(n)

n
, it follows that

σ(n) + σ(q)

q
<

σ(q) + σ(n)

n
,

whereupon we get n < q. By Lemma 15, we have k = 1.

Theorem 19. Let N be an odd perfect number given in Eulerian form. Then n < q if and
only if N < q3.

Proof. Suppose that qkn2 = N < q3. Then n2 < q3−k ≤ q2, which implies that n < q. We
prove the other direction via the contrapositive. Suppose that q < N1/3. We want to show
that q < n. Assume to the contrary that n < q. By Lemma 15, k = 1. Therefore, we have

q < N1/3 = qk/3n2/3 = q1/3n2/3 < q1/3q2/3 = q

which is a contradiction.

Remark 20. If N is an odd perfect number given in Eulerian form, then since qk < n2 by
Corollary 6, we have q2 ≤ q2k < N . Recently in [1], Acquaah and Konyagin have been able
to show that the Euler prime q satisfies q < (3N)1/3.
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