Journal of Integer Sequences, Vol. 15 (2012),

Dedekind Sums with Arguments Near Euler's Number e

Kurt Girstmair
Institut für Mathematik
Universität Innsbruck
Technikerstr. 13/7
A-6020 Innsbruck
Austria
Kurt.Girstmair@uibk.ac.at

Abstract

We study the asymptotic behaviour of the classical Dedekind sums $s(m / n)$ for convergents m / n of e, e^{2}, and $(e+1) /(e-1)$, where $e=2.71828 \ldots$ is Euler's number. Our main tool is the Barkan-Hickerson-Knuth formula, which yields a precise description of what happens in all cases.

1 Introduction and results

Dedekind sums have quite a number of interesting applications in analytic number theory (modular forms), algebraic number theory (class numbers), lattice point problems and algebraic geometry (for instance [1, 7, 9, 12]).

Let n be a positive integer and $m \in \mathbb{Z},(m, n)=1$. The classical Dedekind sum $s(m / n)$ is defined by

$$
s(m / n)=\sum_{k=1}^{n}((k / n))((m k / n))
$$

where $((\ldots))$ is the usual sawtooth function (for example, [9, p. 1]). In the present setting it is more natural to work with

$$
S(m / n)=12 s(m / n)
$$

instead.

In the previous paper [3] we used the Barkan-Hickerson-Knuth-formula to study the asymptotic behaviour of $S\left(s_{k} / t_{k}\right)$ for the convergents s_{k} / t_{k} of a periodic simple continued fraction $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, i. e., for a quadratic irrational α. In this situation two cases are possible: The sequence $S\left(s_{k} / t_{k}\right)$ either remains bounded with a finite number of cluster points or it essentially behaves like $C \cdot k$ for some constant C depending on α. In the latter case $S\left(s_{k} / t_{k}\right)-C \cdot k$ remains bounded with finitely many cluster points. The former case occurs, for instance, if the period length of α is odd.

Since the order of magnitude of $|S(m / n)|$ is $\log ^{2} n$ on average [4], quadratic irrationalities produce Dedekind sums of a considerably smaller size. In fact, the inequality $k \leq$ $2 \log t_{k} / \log 2+1$ was already proved in 1841 [11]. Accordingly, if $\left|S\left(s_{k} / t_{k}\right)\right|$ is not bounded, we have $\left|S\left(s_{k} / t_{k}\right)\right|=O\left(\log t_{k}\right)$ for a quadratic irrational α.

Because the structure of the continued fraction expansions of transcendental numbers like e or e^{2} is similar to that of quadratic irrationals [8, p. 123 ff .], nothing prevents us from applying the Barkan-Hickerson-Knuth-formula ((2) below) to these cases. It turns out that the asymptotic behaviour of Dedekind sums is quite similar to the case of quadratic irrationals. Only the case " $S\left(s_{k} / t_{k}\right)$ bounded" cannot occur, as the said formula shows, since the continued fraction expansions of these numbers have unbounded digits. We shall show

Theorem 1. For a nonnegative integer k put

$$
L(k)= \begin{cases}\frac{k}{3}, & \text { if } k \equiv 0,1,5 \quad(\bmod 6) ; \\ -\frac{k}{3}, & \text { otherwise } .\end{cases}
$$

Then we have, for the convergents s_{k} / t_{k} of Euler's number e,

$$
S\left(s_{k} / t_{k}\right)-L(k)=O\left(\frac{1}{k}\right)+\left\{\begin{array}{lll}
e-3, & \text { if } k \equiv 3 & (\bmod 6) ; \\
e-3-\frac{5}{6}, & \text { if } k \equiv 1 \quad(\bmod 6) ; \\
e-3+\frac{2}{3}, & \text { if } k \equiv 2 \quad(\bmod 6) ; \\
e-3+\frac{5}{6}, & \text { if } k \equiv 4 \quad(\bmod 6) ; \\
e-3-\frac{2}{3}, & \text { if } k \equiv 5(\bmod 6) .
\end{array}\right.
$$

The continued fraction expansion of $e^{2}=7.38905 \ldots$ is more complicated than that of e. This has the effect that the analogue of Theorem 1 also looks more complicated. We obtain

Theorem 2. For a nonnegative integer k put

$$
L(k)= \begin{cases}-\frac{3 k}{5}, & \text { if } k \equiv 1,2,3 \quad(\bmod 10) ; \\ \frac{3 k}{5}, & \text { if } k \equiv 6,7,8 \quad(\bmod 10) ; \\ -\frac{6 k}{5}, & \text { if } k \equiv 0,4 \quad(\bmod 10) \\ \frac{6 k}{5}, & \text { if } k \equiv 5,9 \quad(\bmod 10) .\end{cases}
$$

Then we have, for the convergents s_{k} / t_{k} of the number e^{2},

$$
S\left(s_{k} / t_{k}\right)-L(k)=O\left(\frac{1}{k}\right)+\left\{\begin{array}{lll}
e^{2}-7, & \text { if } k \equiv 0(\bmod 10) ; \\
e^{2}-\frac{37}{5}, & \text { if } k \equiv 1 \quad(\bmod 10) ; \\
e^{2}-\frac{29}{5}, & \text { if } k \equiv 2(\bmod 10) ; \\
e^{2}-\frac{31}{5}+\frac{1}{2}, & \text { if } k \equiv 3(\bmod 10) ; \\
e^{2}-\frac{16}{5}, & \text { if } k \equiv 4(\bmod 10) ; \\
e^{2}+1, & \text { if } k \equiv 5(\bmod 10) ; \\
e^{2}+\frac{7}{5}, & \text { if } k \equiv 6(\bmod 10) ; \\
e^{2}-\frac{1}{5}, & \text { if } k \equiv 7(\bmod 10) ; \\
e^{2}-\frac{4}{5}+\frac{1}{2}, & \text { if } k \equiv 8(\bmod 10) ; \\
e^{2}-\frac{14}{5}, & \text { if } k \equiv 9(\bmod 10) .
\end{array}\right.
$$

Finally, we consider the case of $e^{*}=(e+1) /(e-1)$, which is fairly simple.
Theorem 3. For a nonnegative integer k put

$$
L(k)= \begin{cases}-2 k, & \text { if } k \text { is even } \\ 2 k, & \text { if } k \text { is odd } .\end{cases}
$$

Then we have, for the convergents s_{k} / t_{k} of e^{*},

$$
S\left(s_{k} / t_{k}\right)-L(k)=O\left(\frac{1}{k}\right)+ \begin{cases}e^{*}-2, & \text { if } k \text { is even } ; \\ e^{*}-1, & \text { if } k \text { is odd } .\end{cases}
$$

2 Proofs

We start with the continued fraction expansion $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ of an arbitrary irrational number. The numerators and denominators of its convergents s_{k} / t_{k} are defined by the recursion formulas

$$
\begin{array}{ll}
s_{-2}=0, & s_{-1}=1, \quad s_{k}=a_{k} s_{k-1}+s_{k-2} \text { and } \\
t_{-2}=1, & t_{-1}=0, \quad t_{k}=a_{k} t_{k-1}+t_{k-2}, \quad \text { for } k \geq 0 . \tag{1}
\end{array}
$$

The Barkan-Hickerson-Knuth formula says that for $k \geq 0$

$$
S\left(s_{k} / t_{k}\right)=\sum_{j=1}^{k}(-1)^{j-1} a_{j}+ \begin{cases}\left(s_{k}^{\prime}+t_{k-1}^{\prime}\right) / t_{k}^{\prime}-3, & \text { if } k \text { is odd } \tag{2}\\ \left(s_{k}^{\prime}-t_{k-1}^{\prime}\right) / t_{k}^{\prime}, & \text { if } k \text { is even }\end{cases}
$$

[2], [5], [6]. Here s_{k}^{\prime} and t_{k}^{\prime} are defined as in (1), but for the number $\left[0, a_{1}, a_{2}, \ldots\right]$ instead of $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$. We prove the simplest case first.

Proof of Theorem 3. The digits a_{j} of the continued fraction expansion of e^{*} are $a_{j}=4 j+2$, $j=0,1,2, \ldots[8$, p. 124]. An easy calculation shows that for $k \geq 0$

$$
\sum_{j=1}^{k}(-1)^{j-1} a_{j}= \begin{cases}-2 k, & \text { if } k \text { is even } \tag{3}\\ 2 k+4, & \text { if } k \text { is odd }\end{cases}
$$

Now $s_{k}^{\prime} / t_{k}^{\prime}$ converges against $\left[0, a_{1}, a_{2}, \ldots\right]=e^{*}-2$, and $\left|e^{*}-2-s_{k}^{\prime} / t_{k}^{\prime}\right|<1 / t_{k}^{\prime 2}[8, \mathrm{p} .37]$. We remarked in the Introduction that $k=O\left(\log t_{k}^{\prime}\right)$. Hence we also have $\left|e^{*}-2-s_{k}^{\prime} / t_{k}^{\prime}\right|=O(1 / k)$. Finally, (1) gives $t_{k-1}^{\prime} / t_{k}^{\prime}=t_{k-1}^{\prime} /\left(a_{k} t_{k-1}^{\prime}+t_{k-2}^{\prime}\right) \leq 1 / a_{k}=O(1 / k)$. These observations, together with (2) and (3), prove the theorem.

Proof of Theorem 1. In the case of $e=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ one easily derives from [8, p. 124] that

$$
a_{j}= \begin{cases}2, & \text { if } j=0 \\ 2(j-1) / 3+2, & \text { if } j \equiv 2 \quad(\bmod 3) \\ 1, & \text { otherwise }\end{cases}
$$

An elementary computation with arithmetic series (which is more laborious than that of the proof of Theorem 3) yields

$$
\sum_{j=1}^{k}(-1)^{j-1} a_{j}=\left\{\begin{array}{lll}
\frac{k}{3}, & \text { if } k \equiv 0 & (\bmod 6) \tag{4}\\
-\frac{k}{3}+1, & \text { if } k \equiv 3 & (\bmod 6) \\
\frac{k-1}{3}+1, & \text { if } k \equiv 1 & (\bmod 6) \\
-\frac{k-1}{3}, & \text { if } k \equiv 4 & (\bmod 6) \\
-\frac{k-2}{3}-1, & \text { if } k \equiv 2 & (\bmod 6) \\
\frac{k-2}{3}+2, & \text { if } k \equiv 5 & (\bmod 6)
\end{array}\right.
$$

In the same way as in the proof Theorem 3 we have $s_{k}^{\prime} / t_{k}^{\prime} \rightarrow e-2$ and $\left|e-2-s_{k}^{\prime} / t_{k}^{\prime}\right|=O(1 / k)$. If $k \equiv 2(\bmod 3)$, we note $t_{k-1}^{\prime} / t_{k}^{\prime} \leq 1 / a_{k}=O(1 / k)$. If $k \equiv 0(\bmod 3)$ and $k \geq 3$, we have

$$
\begin{equation*}
\frac{t_{k-1}^{\prime}}{t_{k}^{\prime}}=\frac{t_{k-1}^{\prime}}{t_{k-1}^{\prime}-t_{k-2}^{\prime}}=\frac{1}{1+t_{k-2}^{\prime} / t_{k-1}^{\prime}} \tag{5}
\end{equation*}
$$

Since $t_{k-2}^{\prime} / t_{k-1}^{\prime}=O(1 / k)$, this shows $t_{k-1}^{\prime} / t_{k}^{\prime}=1+O(1 / k)$. If $k \equiv 1(\bmod 3)$ and $k \geq 4$, formula (5) also holds. Together with $t_{k-2}^{\prime} / t_{k-1}^{\prime}=1+O(1 / k)$, it gives $t_{k-1}^{\prime} / t_{k}^{\prime}=1 / 2+O(1 / k)$. These observations, combined with (2) and (4), prove the theorem.

Proof of Theorem 2. The proof follows the above pattern. One obtains from [8, p. 125]

$$
a_{j}= \begin{cases}7, & \text { if } j=0 ; \\ (3 j+7) / 5, & \text { if } j \equiv 1 \quad(\bmod 5) ; \\ (3 j+3) / 5, & \text { if } j \equiv 4 \quad(\bmod 5) ; \\ 12 j / 5+6, & \text { if } j \equiv 0 \quad(\bmod 5), j>0 \\ 1, & \text { otherwise }\end{cases}
$$

Further,

$$
\sum_{j=1}^{k}(-1)^{j-1} a_{j}=\left\{\begin{array}{lll}
-\frac{6 k}{5}, & \text { if } k \equiv 0 & (\bmod 10) ; \tag{6}\\
\frac{6 k}{5}+11, & \text { if } k \equiv 5 & (\bmod 10) ; \\
-\frac{3(k-1)}{5}+2, & \text { if } k \equiv 1 & (\bmod 10) ; \\
\frac{3(k-1)}{5}+9, & \text { if } k \equiv 6 & (\bmod 10) ; \\
-\frac{3(k-2)}{5}+1, & \text { if } k \equiv 2 & (\bmod 10) ; \\
\frac{3(k-2)}{5}+10, & \text { if } k \equiv 7 & (\bmod 10) ; \\
-\frac{3(k-3)}{5}+2, & \text { if } k \equiv 3 & (\bmod 10) ; \\
\frac{3(k-3)}{5}+9, & \text { if } k \equiv 8 & (\bmod 10) ; \\
-\frac{6(k-4)}{5}-1, & \text { if } k \equiv 4 & (\bmod 10) ; \\
\frac{6(k-4)}{5}+12, & \text { if } k \equiv 9 & (\bmod 10)
\end{array}\right.
$$

In the same way as in the proof of Theorem 1 we observe $\left|e^{2}-7-s_{k}^{\prime} / t_{k}^{\prime}\right|=O(1 / k)$ and

$$
\frac{t_{k-1}^{\prime}}{t_{k}^{\prime}}=O\left(\frac{1}{k}\right)+ \begin{cases}0, & \text { if } k \equiv 0,1,4 \quad(\bmod 5) \\ 1, & \text { if } k \equiv 2(\bmod 5) \\ \frac{1}{2}, & \text { if } k \equiv 3 \quad(\bmod 5)\end{cases}
$$

Thereby, and by (6), we obtain the theorem.
Remark 4. 1. It is easy to see that the error term $O(1 / k)$ in the theorems cannot be made smaller. Accordingly, the convergence is rather slow, which is a further difference between the present cases and the case of quadratic irrationals.
2. The continued fraction expansions of $e^{2 / q}$ and $\left(e^{2 / q}+1\right) /\left(e^{2 / q}-1\right)$ for integers $q \geq 1$ have a shape similar to that of e, e^{2}, and $e^{*}[8, \mathrm{p} .124 \mathrm{f}$.$] . The same holds for the the$ numbers $\tan (1 / q)$. Therefore, similar theorems about Dedekind sums can be expected for the convergents of these numbers.
3. Due to a theorem of Hurwitz [8, p. 119] one may even hope for similar results for the numbers

$$
\frac{a e^{2 / q}+b}{c e^{2 / q}+d}
$$

where the integer q is ≥ 1 and $a, b, c, d \in \mathbb{Z}$ are such that $a d-b c \neq 0$. It seems, however, that not all continued fraction expansions of these numbers are explicitly known.
4. The continued fraction expansions of the numbers

$$
\sum_{j=0}^{\infty} b^{-2^{j}}, b \in \mathbb{Z}, b \geq 3
$$

are also known [10]. They are, however, much more involved than those considered here. Accordingly, the asymptotic behaviour of the corresponding Dedekind sums seems to be far more complicated.

References

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
[2] Ph. Barkan, Sur les sommes de Dedekind et les fractions continues finies, C. R. Acad. Sci. Paris Sér. A-B 284 (1977) A923-A926.
[3] K. Girstmair, Dedekind sums in the vicinity of quadratic irrationals, J. Number Th. 132 (2012), 1788-1792.
[4] K. Girstmair and J. Schoißengeier, On the arithmetic mean of Dedekind sums, Acta Arith. 116 (2005), 189-198.
[5] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116.
[6] D. E. Knuth, Notes on generalized Dedekind sums, Acta Arith. 33 (1977), 297-325.
[7] C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über quadratischen Zahlkörpern, Akademie-Verlag, 1957.
[8] O. Perron, Die Lehre von den Kettenbrüchen, vol. I (3rd ed.), Teubner, 1954.
[9] H. Rademacher and E. Grosswald, Dedekind Sums, Mathematical Association of America, 1972.
[10] J. Shallit, Simple continued fractions for some irrational numbers, J. Number Th. 11 (1979), 209-217.
[11] J. Shallit, Origins of the analysis of the Euclidean algorithm, Hist. Math 21 (1994), 401-419.
[12] G. Urzúa, Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010), 335-365.

2010 Mathematics Subject Classification: Primary 11F20; Secondary 11A55.
Keywords: asymptotic behaviour of Dedekind sums, continued fraction expansions of transcendental numbers.

Received May 8 2012; revised version received May 31 2012. Published in Journal of Integer Sequences, June 122012.

Return to Journal of Integer Sequences home page.

