

Some *n*-Color Compositions

Yu-hong Guo¹ Department of Mathematics Hexi University Gansu, Zhangye, 734000 P. R. China gyh7001@163.com

Abstract

An *n*-color odd composition is defined as an *n*-color composition with odd parts, and an *n*-color composition with parts $\neq 1$ is an *n*-color composition whose parts are > 1. In this paper, we get generating functions, explicit formulas and recurrence formulas for *n*-color odd compositions and *n*-color compositions with parts $\neq 1$.

1 Introduction

In the classical theory of partitions, compositions were first defined by MacMahon [1] as ordered partitions. For example, there are 5 partitions and 8 compositions of 4. The partitions are 4, 31, 22, 21², 1⁴ and the compositions are 4, 31, 13, 22, 21², 121, 1²2, 1⁴.

Agarwal and Andrews [2] defined an *n*-color partition as a partition in which a part of size n can come in n different colors. They denoted different colors by subscripts: n_1, n_2, \ldots, n_n . Analogous to MacMahon's ordinary compositions Agarwal [3] defined an *n*-color composition as an *n*-color ordered partition. Thus, for example, there are 21 *n*-color compositions of 4, viz.,

$$\begin{array}{l} 4_1, 4_2, 4_3, 4_4, \\ 3_1 1_1, 3_2 1_1, 3_3 1_1, 1_1 3_1, 1_1 3_2, 1_1 3_3, \\ 2_1 2_1, 2_1 2_2, 2_2 2_2, 2_2 2_1, \\ 2_1 1_1 1_1, 2_2 1_1 1_1, 1_1 2_1 1_1, 1_1 1_2 1_1, 1_1 2_2 1_1, 1_1 1_2 2_1 \\ 1_1 1_1 1_1 1_1. \end{array}$$

 $^{^{1}}$ This work is supported by the Fund of the Education Department of Gansu Province (No. 200809-04) and the fund of Hexi University.

More properties of *n*-color compositions were found in [4, 5]. In 2006, G. Narang and Agarwal [6, 7] also defined an *n*-color self-inverse composition and gave some properties. In 2010, Guo [8] defined an *n*-color even self-inverse composition and proved some properties.

In this paper, we shall study some n-color compositions. We first give the following definitions.

Definition 1. An *n*-color odd composition is an *n*-color composition with odd parts.

Thus, for example, there are 7 *n*-color odd compositions of 4, viz.,

$$3_11_1, 3_21_1, 3_31_1, \\ 1_13_1, 1_13_2, 1_13_3, 1_11_11_11_1$$

Definition 2. An *n*-color composition with parts $\neq 1$ is an *n*-color composition whose parts are > 1.

For example, there are 17 *n*-color compositions with parts $\neq 1$ of 5, viz.,

$$\begin{aligned} & 5_1, 5_2, 5_3, 5_4, 5_5, \\ & 2_1 3_1, 2_1 3_2, 2_1 3_3, 2_2 3_1, 2_2 3_2, 2_2 3_3, \\ & 3_1 2_1, 3_2 2_1, 3_3 2_1, 3_1 2_2, 3_2 2_2, 3_3 2_2. \end{aligned}$$

In section 2 we shall give generating functions, recurrence formulas and explicit formulas for n-color compositions above.

Agarwal [3] proved the following theorem.

Theorem 3. ([3]) Let C(m,q) and C(q) denote the enumerative generating functions for $C(m,\nu)$ and $C(\nu)$, respectively, where $C(m,\nu)$ is the number of n-color compositions of ν into m parts and $C(\nu)$ is the number of n-color compositions of ν . Then

$$C(m,q) = \frac{q^m}{(1-q)^{2m}},$$
(1)

$$C(q) = \frac{q}{1 - 3q + q^2},\tag{2}$$

$$C(m,\nu) = \binom{\nu+m-1}{2m-1},\tag{3}$$

$$C(\nu) = F_{2\nu}.\tag{4}$$

2 Main results

We denote the number of *n*-color odd compositions of ν by $C(o, \nu)$ and the number of *n*-color odd compositions of ν into *m* parts by $C(m, o, \nu)$, respectively. In this section, we first prove the following theorem.

Theorem 4. Let C(m, o, q) and C(o, q) denote the enumerative generating functions for $C(m, o, \nu)$ and $C(o, \nu)$, respectively. Then

$$C(m, o, q) = \frac{q^m (1+q^2)^m}{(1-q^2)^{2m}},$$
(5)

$$C(o,q) = \frac{q+q^3}{1-q-2q^2-q^3+q^4},$$
(6)

$$C(m, o, \nu) = \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j},$$
(7)

$$C(o,\nu) = \sum_{m \le \nu} \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j}.$$
(8)

where $(\nu - m)$ is even, and $(\nu - m) \ge 0$; $0 \le i, j$ are integers.

Proof. Similar to the proof of Agarwal [3], we have

$$C(m, o, q) = \sum_{\nu=1}^{\infty} C(m, o, \nu) q^{\nu} = (q + 3q^3 + \dots +)^m = \frac{q^m (1 + q^2)^m}{(1 - q^2)^{2m}}$$

This proves (5).

$$C(o,q) = \sum_{m=1}^{\infty} C(m,o,q) = \sum_{m=1}^{\infty} \frac{q^m (1+q^2)^m}{(1-q^2)^{2m}} = \frac{q+q^3}{1-q-2q^2-q^3+q^4}.$$

We get (6).

On equating the coefficients of q^{ν} in (5), we have

$$C(m, o, \nu) = \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j}.$$

Since ν is even if m is even, and ν is odd if m is odd, then $\nu - m$ is even. This proves (7).

Obviously $m \leq \nu$, so (8) is also proven. We complete the proof of this theorem.

In this section, we also prove the following recurrence formula.

Theorem 5. Let O_{ν} denote the number of n-color odd compositions of ν . Then

$$O_1 = 1, O_2 = 1, O_3 = 4, O_4 = 7$$

and

$$O_{\nu} = O_{\nu-1} + 2O_{\nu-2} + O_{\nu-3} - O_{\nu-4}, \text{ for } \nu > 4.$$

Proof. (Combinatorial) To prove that $O_{\nu} = O_{\nu-1} + 2O_{\nu-2} + O_{\nu-3} - O_{\nu-4}$, we split the *n*-color compositions enumerated by $O_{\nu} + O_{\nu-4}$ into four classes:

(A) enumerated by O_{ν} with 1_1 on the right.

(B) enumerated by O_{ν} with 3_3 on the right.

(C) enumerated by O_{ν} with h_t on the right, $h > 1, 1 \le t \le h - 2$ (where, h is odd).

(D) enumerated by O_{ν} with h_t on the right, $h > 1, h - 1 \le t \le h$ except 3_3 and those enumerated by $O_{\nu-4}$.

We transform the *n*-color odd compositions in class (A) by deleting 1_1 on the right. This produces n-color compositions enumerated by $O_{\nu-1}$. Conversely, for any n-color composition enumerated by $O_{\nu-1}$ we add 1_1 on the right to produce the elements of the class (A). In this way we prove that there are exactly $O_{\nu-1}$ elements in the class (A).

Similarly, we can produce $O_{\nu-3}$ n-color odd compositions in the class (B) by deleting 3_3 on the right.

Next, we transform the *n*-color odd compositions in class (C) by subtracting 2 from h, that is, replacing h_t by $(h-2)_t$. This transformation also establishes the fact that there are exactly $O_{\nu-2}$ elements in class (C). This correspondence being one to one.

Finally, we transform the elements in class (D) as follows: Subtract 2_2 from h_t on the right when h > 3, $h - 1 \le t \le h$, that is, replace h_t by $(h - 2)_{(t-2)}$; in this way we will get n-color odd compositions of $\nu - 2$ with part $h'_{t'}$ on the right, where, $h' > 1, t' \ge h' - 1$. After that we replace h_t by $(h-2)_{(t-1)}$ when h=3, t=2. This produces n-color odd compositions of $\nu - 2$ with part 1_1 on the right. To get the remaining *n*-color odd compositions from $O_{\nu-4}$, we add 2 to the right parts, that is, replace h_t by $(h+2)_t$ to get the n-color odd compositions of $(\nu - 2)$ with part $h'_{t'}$ on the right, where, $h' > 1, 1 \le t' \le h' - 2$. We see that the number of n-color odd compositions in class (D) is also equal to $O_{\nu-2}$. Hence, $O_{\nu} + O_{\nu-4} = O_{\nu-1} + 2O_{\nu-2} + O_{\nu-3}$. viz., $O_{\nu} = O_{\nu-1} + 2O_{\nu-2} + O_{\nu-3} - O_{\nu-4}$.

Thus, we complete the proof.

We also give another proof of Theorem 5.

Proof. We have

$$\begin{aligned} O_{\nu} &= \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} \\ &= \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+(i-1)-1}{2m-1} \binom{m}{j} + \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+(i-1)-1}{2m-2} \binom{m}{j} \\ &\quad \text{(by the binomial identity} \binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} \\ &= \sum_{m \leq \nu-2} \sum_{i+j = \frac{(\nu-2)-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} + \binom{2\nu-2}{2\nu-1} \binom{\nu}{0} \\ &\quad + \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} - \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-2}{2m-1} \binom{m}{j} \end{aligned}$$

$$\begin{split} &= O_{\nu-2} + \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} \\ &- \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-2}{2m-1} \binom{m}{j} - \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-3}{2m-2} \binom{m}{j} \\ &= O_{\nu-2} + \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} \\ &- \sum_{m \leq \nu-4} \sum_{i+j = \frac{(\nu-4)-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} - \binom{2\nu-2-1}{2\nu-1} \binom{\nu}{0} \\ &- \binom{2(\nu-2)-2-1}{2(\nu-2)-1} \binom{\nu-2}{1} - \binom{2(\nu-2)-1-1}{2(\nu-2)-1} \binom{\nu-2}{0} \\ &- \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-3}{2m-2} \binom{m}{j} \\ &= O_{\nu-2} - O_{\nu-4} + \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-3}{2m-2} \binom{m}{j} \\ &+ \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2(m+i-2)}{2m-2} \binom{m}{j} \\ &= 2O_{\nu-2} - O_{\nu-4} + \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2m+i-3}{2m-3} \binom{m}{j} \\ &= 2O_{\nu-2} - O_{\nu-4} + \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2(m-1)+i-1}{2(m-1)-1} \binom{m-1}{j} \\ &+ \sum_{m \leq \nu} \sum_{i+j = \frac{\nu-m}{2}} \binom{2(m-1)+i-1}{2(m-1)-1} \binom{m-1}{j} \\ &+ \sum_{m \leq \nu-4} \sum_{i+j = \frac{(\nu-3)-m}{2}} \binom{2(m+i-1)}{2m-1} \binom{m}{j} \\ &= 2O_{\nu-2} - O_{\nu-4} + \sum_{m \leq \nu} \sum_{i+j = \frac{(\nu-3)}{2}} \binom{2(m+i-1)}{2(m-1)} \binom{m-1}{j} \\ &+ \sum_{m \leq \nu-3} \sum_{i+j = \frac{(\nu-3)-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} \\ &= 2O_{\nu-2} - O_{\nu-4} + \sum_{m \leq \nu-1} \sum_{i+j = \frac{(\nu-1)-m}{2}} \binom{2m+i-1}{2(m-1)} \binom{m}{j} \\ &+ \sum_{m \leq \nu-3} \sum_{i+j = \frac{(\nu-3)-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} \end{aligned}$$

So we have $O_{\nu} = O_{\nu-1} + 2O_{\nu-2} + O_{\nu-3} - O_{\nu-4}$.

From recurrence formula above we have the following corollary easily.

Corollary 6. If $\nu > 4$, then

$$\sum_{m \le \nu - 4} \left(\sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} - \sum_{i+j=\frac{\nu-1-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} - 2\sum_{i+j=\frac{\nu-2-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} - \sum_{i+j=\frac{\nu-3-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} + \sum_{i+j=\frac{\nu-4-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j} = 0.$$

Next, we shall study *n*-color compositions with parts $\neq 1$. We denote the number of *n*-color compositions with parts $\neq 1$ of ν by $C_{\neq 1}(\nu)$ and the number of *n*-color compositions with parts $\neq 1$ of ν into *m* parts by $C_{\neq 1}(m, \nu)$, respectively. In this section, we present the following theorem.

Theorem 7. Let $C_{\neq 1}(m,q)$ and $C_{\neq 1}(q)$ denote the enumerative generating functions for $C_{\neq 1}(m,\nu)$ and $C_{\neq 1}(\nu)$, respectively. Then

$$C_{\neq 1}(m,q) = \frac{q^{2m}(2-q)^m}{(1-q)^{2m}},\tag{9}$$

$$C_{\neq 1}(q) = \frac{2q^2 - q^3}{1 - 2q - q^2 + q^3},\tag{10}$$

$$C_{\neq 1}(m,\nu) = \sum_{i+j=\nu-2m} (-1)^j 2^{m-j} \binom{2m+i-1}{2m-1} \binom{m}{j},\tag{11}$$

$$C_{\neq 1}(\nu) = \sum_{m \le \frac{\nu}{2}} \sum_{i+j=\nu-2m} (-1)^j 2^{m-j} \binom{2m+i-1}{2m-1} \binom{m}{j}.$$
 (12)

where $(\nu - 2m)$ is an integer, and $(\nu - 2m) \ge 0$; $0 \le i, j$ are integers.

Proof. Similar to the proof of Agarwal [3], we have

$$C_{\neq 1}(m,q) = \sum_{\nu=1}^{\infty} C_{\neq 1}(m,\nu)q^{\nu} = (2q^2 + 3q^3 + \dots +)^m = \frac{q^{2m}(2-q)^m}{(1-q)^{2m}}$$

This proves (9).

$$C_{\neq 1}(q) = \sum_{m=1}^{\infty} C_{\neq 1}(m,q) = \sum_{m=1}^{\infty} \frac{q^{2m}(2-q)^m}{(1-q)^{2m}} = \frac{2q^2-q^3}{1-2q-q^2+q^3}.$$

This proves (10).

On equating the coefficients of q^{ν} in (9), we have

$$C_{\neq 1}(m,\nu) = \sum_{i+j=\nu-2m} (-1)^j 2^{m-j} \binom{2m+i-1}{2m-1} \binom{m}{j}.$$

Since $\nu \ge 2m$, then $\nu - 2m \ge 0$, $i + j \ge 0$, and $0 \le i, j$ are integers. This proves (11). Obviously $m \le \frac{\nu}{2}$, therefore (12) is also proven.

We complete the proof of this theorem.

In this section, we also prove the following recurrence formula.

Theorem 8. Let $C_{\neq 1}(\nu)$ denote the number of n-color compositions with parts $\neq 1$ of ν . Then

$$C_{\neq 1}(2) = 2, C_{\neq 1}(3) = 3, C_{\neq 1}(4) = 8$$

and

$$C_{\neq 1}(\nu) = 2C_{\neq 1}(\nu - 1) + C_{\neq 1}(\nu - 2) - C_{\neq 1}(\nu - 3) \text{ for } \nu > 4$$

Proof. (Combinatorial) To prove that $C_{\neq 1}(\nu) = 2C_{\neq 1}(\nu-1) + C_{\neq 1}(\nu-2) - C_{\neq 1}(\nu-3)$, we split the *n*-color compositions enumerated by $C_{\neq 1}(\nu) + C_{\neq 1}(\nu-3)$ into three classes:

(A) enumerated by $C_{\neq 1}(\nu)$ with 2_1 on the right.

(B) enumerated by $C_{\neq 1}(\nu)$ with h_t on the right, $h > 2, 1 \le t \le h - 1$.

(C) enumerated by $C_{\neq 1}(\nu)$ with h_h on the right, $h \ge 2$ and those enumerated by $C_{\neq 1}(\nu - 3)$.

We transform the *n*-color compositions in class (A) by deleting 2_1 on the right. This produces *n*-color compositions enumerated by $C_{\neq 1}(\nu - 2)$. Conversely, for any *n*-color composition enumerated by $C_{\neq 1}(\nu - 2)$ we add 2_1 on the right to produce the elements of the class (A). In this way we prove that there are exactly $C_{\neq 1}(\nu - 2)$ elements in the class (A).

Next, we transform the *n*-color compositions in class (B) by subtracting 1 from *h*, that is, replacing h_t by $(h-1)_t$; this transformation also establishes the fact that there are exactly $C_{\neq 1}(\nu - 1)$ elements in class (B). This correspondence being one to one.

Finally, we transform the elements in class (C) as follows: Subtract 1_1 from h_h on the right when h > 2, that is, replace h_h by $(h - 1)_{(h-1)}$; in this way we will get *n*-color compositions of $\nu - 1$ with part $h'_{h'}(h' > 1)$ on the right. We also replace h_h by $(h - 1)_{(h-1)}$ when h = 2. This produces *n*-color compositions of $\nu - 1$ with part 1_1 on the right. Now we delete 1_1 and add 1 to the preceding part of it. For example, $2_12_22_2 \longrightarrow 2_12_21_1 \longrightarrow 2_13_2$; $4_12_2 \longrightarrow 4_11_1 \longrightarrow 5_1$. Then we have *n*-color compositions of $\nu - 1$ with part h'_t on the right, where, $h' > 2, 1 \le t \le h' - 1$. To get the remaining *n*-color compositions from $C_{\ne 1}(\nu - 3)$, we set 2_1 on the right. This produces *n*-color compositions with parts $\ne 1$ of $\nu - 1$ with 2_1 on the right. We see that the number of *n*-color compositions in class (C) is also equal to $C_{\ne 1}(\nu - 1)$. Hence, $C_{\ne 1}(\nu) + C_{\ne 1}(\nu - 3) = 2C_{\ne 1}(\nu - 1) + C_{\ne 1}(\nu - 2)$. viz., $C_{\ne 1}(\nu) = 2C_{\ne 1}(\nu - 1) + C_{\ne 1}(\nu - 2) - C_{\ne 1}(\nu - 3)$.

Thus, we complete the proof.

We also give another proof of Theorem 8.

Proof. We have

$$C_{\neq 1}(\nu) = \sum_{m \le \frac{\nu}{2}} \sum_{i+j=\nu-2m} (-1)^j 2^{m-j} \binom{2m+i-1}{2m-1} \binom{m}{j}$$

$$\begin{split} &= \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+(i-1)-1}{2m-1} \binom{m}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-1}{2m-2} \binom{m}{j} \\ & (\text{by the binomial identity} \binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}) \\ &= \sum_{m \leq \frac{w-1}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-1}{2m-1} \binom{m}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-3} \binom{m}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-3} \binom{m}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-3} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-3} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-3} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m-1}{j} \\ &+ \sum_{m \leq \frac{w}{2} \ i+j = \nu - 2m} \binom{m-1}{2$$

$$\begin{aligned} &+ \sum_{m \leq \frac{\nu}{2}} \sum_{i+j=\nu-2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-3} \binom{m-1}{j} \\ &= C_{\neq 1}(\nu-1) - C_{\neq 1}(\nu-3) \\ &+ \sum_{m \leq \frac{\nu}{2}} \sum_{i+j=\nu-2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-2} \binom{m}{j} \\ &+ \sum_{m \leq \frac{\nu}{2}} \sum_{i+j=\nu-2m} (-1)^{j} 2^{m-j} \binom{2(m-1)+i-1}{2(m-1)-1} \binom{m-1}{j} \\ &= C_{\neq 1}(\nu-1) - C_{\neq 1}(\nu-3) \\ &+ \sum_{m \leq \frac{\nu}{2}} \sum_{i+j=\nu-2m} (-1)^{j} 2^{m-j} \binom{2m+i-2}{2m-1} \binom{m}{j} \\ &- \sum_{m \leq \frac{\nu}{2}} \sum_{i+j=\nu-2m} (-1)^{j} 2^{m-j} \binom{2m+i-2-1}{2m-1} \binom{m}{j} \\ &+ \sum_{m \leq \frac{\nu-2}{2}} \sum_{i+j=(\nu-2)-2m} (-1)^{j} 2^{m+1-j} \binom{2m+i-1}{2m-1} \binom{m}{j} \\ &= C_{\neq 1}(\nu-1) - C_{\neq 1}(\nu-3) + C_{\neq 1}(\nu-1) - C_{\neq 1}(\nu-2) + 2C_{\neq 1}(\nu-2) \\ &= 2C_{\neq 1}(\nu-1) + C_{\neq 1}(\nu-2) - C_{\neq 1}(\nu-3). \end{aligned}$$

Thus we have $C_{\neq 1}(\nu) = 2C_{\neq 1}(\nu - 1) + C_{\neq 1}(\nu - 2) - C_{\neq 1}(\nu - 3).$

3 Acknowledgement

The author would like to thank the referee for his/her suggestions and comments which have improved the quality of this paper.

References

- [1] P. A. MacMahon, Combinatory Analysis, AMS Chelsea Publishing, 2001.
- [2] A. K. Agarwal and G. E. Andrews, Rogers-Ramanujan identities for partitions with "n copies of n", J. Combin. Theory Ser. A 45 (1987), 40–49.
- [3] A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (2000), 1421–1427.
- [4] A. K. Agarwal, An analogue of Euler's identity and new combinatorial properties of n-colour compositions, J. Comput. Appl. Math. 160 (2003), 9–15.
- [5] Yu-Hong Guo, Some identities between partitions and compositions, Acta Math. Sinica (Chin. Ser.) 50 (2007), 707–710.

- [6] G. Narang and A. K. Agarwal, n-colour self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 257–266.
- [7] G. Narang and A. K. Agarwal, Lattice paths and n-color compositions, *Discrete Math.* 308 (2008), 1732–1740.
- [8] Yu-Hong Guo, n-colour even self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), 27–33.
- [9] G. E. Andrews, *The Theory of Partitions*, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1998.

2010 Mathematics Subject Classification: Primary 05A17.

Keywords: n-color odd composition, *n*-color composition, generating function, explicit formula, recurrence formula.

Received June 12 2011 revised version received November 27 2011. Published in *Journal of Integer Sequences*, December 26 2011.

Return to Journal of Integer Sequences home page.