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Abstract

Following a statement of the well-known Erdős-Turán conjecture, Erdős mentioned
the following even stronger conjecture: if the n-th term an of a sequence A of positive
integers is bounded by αn2, for some positive real constant α, then the number of
representations of n as a sum of two terms from A is an unbounded function of n.
Here we show that if an differs from αn2 (or from a quadratic polynomial with rational
coefficients q(n)) by at most o(

√
log n), then the number of representations function is

indeed unbounded.

1 Introduction

In 1941, Erdős and Turán [5] conjectured that if a sequence A = {a1 < a2 < · · · < an < · · · }
of positive integers is an asymptotic basis of the set N = {0, 1, 2, . . . } of natural numbers,
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i.e., if all large enough integers n are sums of two terms from A, then the number of rep-
resentations rA(n) = |{(ai, aj) ∈ A × A : ai + aj = n}| of n, as a sum of two terms from
A, is unbounded. This is the well-known “Erdős-Turán conjecture”. A few years later (the
earliest we are aware of), in 1955 and 1956, Erdős [6], and Erdős and Fuchs [7] asserted
that an even stronger conjecture would be that if an ≤ αn2, for all n, with a real constant
α > 0, then lim sup rA(n) = ∞. This came to be known as the “generalized Erdős-Turán
conjecture”. It is indeed stronger than the former one, since if A is an asymptotic basis of
N, then an ≪ n2 [13, p. 105].

Much work has been done concerning the “Erdős-Turán conjecture”, e.g., [3, 7, 8, 16, 1,
21, 19], including disproofs of analogues of this conjecture in many semigroups other than N,
e.g., [20, 16, 17, 11, 12, 2, 14]. In contrast, much less has been done about the “generalized
Erdős-Turán conjecture”. In a previous, co-authored, paper [9], we studied the class of
sequences that can replace {αn2} in the condition an ≤ αn2 for all n, to imply that rA(n)
is unbounded, and we gave several statements equivalent to the “generalized Erdős-Turán
conjecture”. In particular, we showed that if the conjecture holds with α = 1, then it holds
with any α > 0. Moreover, it is not difficult to see that if an = o(n2), then the conjecture
holds [9, 10]. So we can essentially focus on the case where an is not too small compared to
n2, while bounded by a constant multiple of n2. In particular, we can consider the case where
an is, in a sense, “close” to a constant multiple of n2, or to a quadratic polynomial in n. This
is basically the goal of the present paper. We thus show that if |an−αn2| = o

(√
log n

)

, with
a real constant α > 0, or if |an − q(n)| = o(

√
log n), where q(n) is a quadratic polynomial

with rational coefficients, then the representation function rA(n) of A is unbounded.

2 Technical tools

Let C = {c1 < c2 < · · · < cn < · · · } ⊂ R
+ be a strictly increasing sequence, in the set

R
+ of real numbers ≥ 0. For any x ∈ R

+, let C[x] = C ∩ [0, x] = {c ∈ C : c ≤ x}, and
C (x) = |C[x]| the cardinality of C[x]. Note that C(x) is finite for every x ≥ 0 if and only if
the sequence C is unbounded. This is in particular true when cn+1− cn ≥ 1 for large enough
n, and more particularly if C is a subset of the set N = {0, 1, 2, 3, . . .} of natural numbers.

The sumset C + C is defined by C + C = {c+ d : (c, d) ∈ C × C} .
Now let A = {a1 < a2 < · · · < an < · · · } ⊂ N be a strictly increasing sequence of

natural numbers. In addition to the above notions, valid for A as for C, the representation
function rA of A is defined by rA(n) = |{(a, b) ∈ A× A : a+ b = n}| , for n ∈ N, and we set
s (A) = sup

n∈N
rA (n) , in N = N ∪ {∞} .

In the sequel, i, j, k, l,m, n generally denote positive integers, unless it is specified that
they lie in N, i.e., that they are integers ≥ 0, while x, y denote real numbers ≥ 0, i.e., they
lie in R

+.

Note that if A = {a1 < a2 < · · · < an < · · · } ⊂ N
∗, where N

∗ = {1, 2, 3, . . .} is the set of
positive integers, then an ≥ n for all n ∈ N

∗.
For any x ∈ R

+, let

UA (x) = |{(a, b) ∈ A× A : a+ b ≤ x}| =
∑

0≤n≤x

rA(n). (1)

2



Then
UA(x) =

∑

n∈(A+A)[x]

rA(n) ≤
∑

n∈(A+A)[x]

s(A) = (A+ A) (x) · s(A) (2)

and

A (x)2 = |{(a, b) ∈ A× A : a, b ≤ x}| ≤ |{(a, b) ∈ A× A : a+ b ≤ 2x}| = UA (2x) ≤
≤ (A+ A) (2x) · s(A), (3)

so that, for all x ∈ R
+,

(A+ A) (2x)

A (x)2
s(A) ≥ 1. (4)

Define

h (A) = lim inf
x→∞

(A+ A) (2x)

A (x)2
. (5)

Lemma 1. If h (A) = 0, then s (A) = ∞.

Proof. This follows immediately from (4).

Corollary 2. If lim inf
n→∞

A(x)√
x

> 0 and lim inf
n→∞

(A+ A) (x)

x
= 0, then h (A) = 0, and therefore

s (A) = ∞.

Proof. By assumption, lim sup
n→∞

√
x

A(x)
= 1

lim inf
n→∞

A(x)
√
x

is finite, while lim inf
n→∞

(A+A)(2x)
2x

= 0. So, using

properties of the lower and upper limits, we get

h(A) = lim inf
x→∞

(A+ A)(2x)

A(x)2
= 2 lim inf

x→∞

(A+ A)(2x)

2x

( √
x

A(x)

)2

≤

≤ 2

(

lim inf
x→∞

(A+ A)(2x)

2x

)

·
(

lim sup
x→∞

√
x

A(x)

)2

= 0.

The conclusion follows from Lemma 2.1.

Lemma 3. Let A = {a1 < a2 < · · · < an < · · · } ⊂ N
∗ be a strictly increasing sequence

of positive integers, and C = {c1 < c2 < · · · < cn < · · · } ⊂ R
+. For x ∈ R

+, set e(x) =
sup
n≤x

|an − cn| . We then have, for all x ∈ R
+,

(A+ A) (x) ≤ (4e (x) + 1) · (C + C) (x+ 2e (x)) . (6)

If we further assume that c1 ≥ 1 and cn+1 − cn ≥ 1 for all n ≥ 1, we then also have, for
all x ∈ R

+,
A(x) ≥ C (x− e(x)) . (7)
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Proof. Note first that the function e(x) is increasing, in the sense that x ≤ y implies e(x) ≤
e(y).

Note also that, since A ⊂ N
∗, we have i ≤ ai for all i. So, for n ≤ x, if n = ai + aj,

then i ≤ ai ≤ n ≤ x and similarly j ≤ x, and therefore |n− ci − cj| = |ai + aj − ci − cj| ≤
|ai − ci|+ |aj − cj| ≤ 2e(x). Hence

(A+ A) [x] = {n ≤ x : ∃i, j, n = ai + aj} ⊂ {n ≤ x : ∃i, j, |n− ci − cj| ≤ 2e(x)},

and setting s = ci + cj, we get s ∈ C + C and |n− s| ≤ 2e(x), so that s ≤ n + 2e(x) ≤
x+ 2e(x), and therefore

{n ≤ x : ∃i, j, |n− ci − cj| ≤ 2e(x)} ⊂ {n : ∃s ∈ (C + C)[x+ 2e(x]), |n− s| ≤ 2e(x)}.

Thus
(A+ A) [x] ⊂

⋃

s∈(C+C)[x+2e(x)]

([s− 2e(x), s+ 2e(x)] ∩ N) ,

and therefore

(A+ A) (x) ≤
∑

n∈(C+C)[x+2e(x)]

(4e(x) + 1) = (C + C) (x+ 2e(x)) · (4e(x) + 1) .

This proves (6).
Now, if c1 ≥ 1 and cn+1 − cn ≥ 1 for all n, then cn ≥ n for all n. So if cn ≤ x − e(x),

then n ≤ cn ≤ x, so that |an − cn| ≤ e(x), and therefore an ≤ cn + e(x) ≤ x.

Hence {n : cn ≤ x− e(x)} ⊂ {n : an ≤ x}, and thus

C (x− e(x)) = |{n : cn ≤ x− e(x)}| ≤ |{n : an ≤ x}| = A(x),

which proves (7).

Lemma 4. Let A = {a1 < a2 < · · · < an < · · · } ⊂ N
∗ and C = {c1 < c2 < · · · < cn <

· · · } ⊂ R
+ be two strictly increasing sequences in N

∗ and in R
+, respectively. For x ∈ R

+,
set e(x) = sup

n≤x

|an − cn| . Assume that e(x) is not identically zero, and that c1 ≥ 1 and

cn+1 − cn ≥ 1 for all n ≥ 1. Then the condition

lim inf
x→∞

e (2x) · (C + C) (2x+ 2e (2x))

C(x− e(x))2
= 0 (H)

implies that h (A) = 0, and therefore s (A) = ∞.

Proof. Since e(x) is increasing and not identically zero, there exists a real constant t > 0

such that e(x) ≥ 1

t
for large enough x. In view of the inequalities (6) and (7) in Lemma 2.3,

we have
(A+ A) (2x)

A (x)2
≤ (4e (2x) + 1) · (C + C) (2x+ 2e (2x))

C (x− e(x))2
.
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Moreover, for large enough x, we have t·e(2x) ≥ 1, and therefore 4e (2x)+1 ≤ (4 + t)·e (2x) .
Thus

(A+ A) (2x)

A (x)2
≤ (4 + t)

e (2x) · (C + C) (2x+ 2e (2x))

C(x− e(x))2
,

for large enough x, so that the condition (H) implies that lim inf
x→∞

(A+ A) (2x)

A (x)2
= 0, i.e.,

h (A) = 0, and therfore, by Lemma 2.1, s (A) = ∞.

Remark 5. The scope of Lemma 2.4 is broader than it seems to be. Indeed, for a subset A of
N, modifying, removing or adding finitely many elements does not modify the fact that s(A)
is infinite or finite. Thus Lemma 2.4 can be used in more general situations than specified
by its assumptions, as shown by the next result.

Fundamental Lemma 6. Let B = {b1 < b2 < · · · < bn < · · · } ⊂ N and D = {d1 <

d2 < · · · < dn < · · · } ⊂ R
+ be two strictly increasing sequences in N and in R

+ respectively.
Assume that there exists an increasing function f : R+ → R

+ and a positive integer m such
that dm ≥ 1, dn+1 − dn ≥ 1 for n ≥ m, and sup

m≤n≤x

|bn − dn| ≤ f(x) for x ≥ m. Then the

condition

lim inf
x→∞

f (2x) · (D +D) (2x+ 2f (2x))

D(x− f(x))2
= 0 (K)

implies that s (B) = ∞.

Proof. For n ∈ N
∗, set an = bn+m and cn = dn+m, and let A = {a1 < a2 < · · · < an < · · · } ⊂

N
∗ and C = {c1 < c2 < · · · < cn < · · · } ⊂ R

+ be the strictly increasing sequences, in N
∗ and

R
+, obtained by deleting the first m terms of B and D respectively. Then c1 = dm+1 ≥ 2

and cn+1 − cn = dn+m+1 − dn+m ≥ 1 for n ≥ 1. Moreover, setting e (x) = sup
n≤x

|an − cn| , for
x ∈ R

+, and using the assumptions on B and D, we have

e(x) = sup
n≤x

|an − cn| = sup
n≤x

|bn+m − dn+m| = sup
m<i≤x+m

|bi − di| ≤ f(x+m).

Thus, setting y = x+m, we have e(x) ≤ f(y), and since the functions e and f are increasing,

e (2x) ≤ f (2x+m) ≤ f (2y) .

Also, taking into account that C ⊂ D and C+C ⊂ D+D, so that (C + C) (t) ≤ (D +D) (t)
for all t ∈ R

+, and that the function t 7→ (C + C)(t) is increasing, we get

(C + C) (2x+ 2e (2x)) ≤ (C + C) (2y + 2f (2y)) ≤ (D +D) (2y + 2f (2y)) .

Thus
e (2x) · (C + C) (2x+ 2e (2x)) ≤ f (2y) · (D +D) (2y + 2f (2y)) , (8)

for x ∈ R
+, and y = x+m.
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Moreover, for t ≥ m, we have

D(t)− C (t) = |{dn ∈ D : dn ≤ t}| − |{cn ∈ C : cn = dn+m ≤ t}| = m

and
C (t)− C (t−m) = |{cn ∈ C : t−m < cn ≤ t}| ≤ m,

since cn+1 − cn ≥ 1 for all n ∈ N
∗, so that C (t) ≤ C (t−m) +m and D (t) = C (t) +m ≤

C (t−m) + 2m. Therefore C (t−m) ≥ D (t) − 2m for t ≥ m. Hence, taking into account
that the function t 7→ C(t) is increasing and that e(x) ≤ f(y) we get, for large enough x,

C (x− e(x)) ≥ C (x− f (y)) = C (y −m− f(y)) ≥ D (y − f(y))− 2m. (9)

It follows from (8) and (9) that, for large enough x and for y = x+m,

e (2x) · (C + C) (2x+ 2e (2x))

C(x− e(x))2
≤ f (2y) · (D +D) (2y + 2f (2y))

(D (y − f(y))− 2m)2
. (10)

Set P (x) = f (2x) · (D +D) (2x+ 2f (2x)) and Q (x) = D (x− f(x)), and suppose that the

condition (K) is satisfied, i.e., that lim inf
x→∞

P (x)

Q (x)2
= 0. Then there exists a strictly increasing

sequence (xn)n≥1 in R
+, tending to infinity, such that lim

n→∞

P (xn)

Q (xn)
2 = 0. Since P (x) is an

increasing unbounded function, lim
n→∞

P (xn) = ∞, and therefore the sequence (Q (xn))n≥1 is

unbounded. So there exists a subsequence (xnk
)
k∈N∗ of (xn)n≥1 such that lim

k→∞
Q (xnk

) = ∞,

while lim
k→∞

P (xnk
)

Q (xnk
)2

= 0. Hence lim
k→∞

P (xnk
)

(Q (xnk
)− 2m)2

= 0, and therefore

lim inf
y→∞

f (2y) · (D +D) (2y + 2f (2y))

(D (y − f(y))− 2m)2
= lim inf

x→∞

P (x)

(Q (x)− 2m)2
= 0.

It then follows from (10) that lim inf
x→∞

e (2x) · (C + C) (2x+ 2e (2x))

C(x− e(x))2
= 0. Thus the condition

(H) of Lemma 2.4 holds, and therefore, in view of this Lemma, s(A) = ∞. As A ⊂ B, it
follows that s (B) = ∞ too.

Remark 7. In the statement of Lemma 2.6, we may replace D by D′ = D + γ, i.e., dn by
d′n = dn + γ (n ∈ N

∗), where γ is any fixed real number, since a translation of the general
term of D does not affect the condition (K).

3 Main results

Theorem 8. Let A = {a1 < a2 < · · · < an < · · · } ⊂ N be a strictly increasing sequence
of natural numbers, and q(x) = αx2 with a real number α > 0. If the function e(x) =
sup
n≤x

|an − q(n)| ( x ∈ R
+) satisfies e (x) = o

(√
log x

)

as x → ∞, then s (A) = ∞.
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Proof. We apply Lemma 2.6 to B = A and D = {q(1) < q(2) < · · · < q(n) < · · · }. Indeed,
the sequence (q(n))n≥1 is strictly increasing and unbounded, with q(n+1)−q(n) = α (2n+ 1)
unbounded too, so that q(n) ≥ 1 and q(n+1)− q(n) ≥ 1 for large enough n. There remains
to show that the condition (K) holds for f(x) = e(x).

Let S = {n2 : n ∈ N
∗} . By a classical result of Landau [15], there exists a constant

c > 0 such that (S + S) (x) ∼ c
x√
log x

as x → ∞.

For m,n ∈ N
∗ and x ∈ R

+, as q(m) + q(n) ≤ x is equivalent to m2 + n2 ≤ x

α
, we have

(D +D) (x) = (S + S)
(x

α

)

∼ c

α

x√
log x

, so that

(D +D) (x) ≤ c1
x√
log x

,

for large enough x, with a constant c1 >
c

α
.

Moreover, as q(n) ≤ x if and only if n ≤
√

x

α
, we also have D(x) =

[√

x

α

]

>

√

x

α
− 1.

It follows that, for large enough x,

e (2x) · (D +D) (2x+ 2e (2x))

D(x− e(x))2
≤ c1 · e (2x) · (2x+ 2e (2x))

√

log (2x+ 2e (2x))

(

√

x−e(x)
α

− 1

)2 =

=
c1α · e (2x) · (2x+ 2e (2x))

√

log (2x+ 2e (2x))
(

√

x− e(x)−√
α
)2 .

As e(x) = o
(√

log x
)

,

e (2x) · (2x+ 2e (2x))
√

log (2x+ 2e (2x))
(

√

x− e(x)−√
α
)2 ∼ 2x · e (2x)

√

log (2x) · x
∼ 2e(2x)

√

log (2x)
,

and, since e (x) = o
(√

log x
)

, we have limx→∞
2e(2x)

√

log (2x)
= 0. Therefore

lim
x→∞

e (2x) · (D +D) (2x+ 2e (2x))

D(x− e(x))2
= 0,

and the condition (K) holds. Thus, by Lemma 2.6, s (B) = ∞, i.e., s (A) = ∞.

Remark 9. In the statement of Theorem 3.1, we may replace q(x) = αx2 by q(x) = αx2 + γ,
where γ is any real constant, in view of Remark 2.7.

Also, if A = {an = [αn2 + γ] : n ∈ N} is the set of the integral parts [αn2 + γ] = [q(n)],
then s(A) = ∞, since e(x) = sup

n≤x

|an − q(n)| ≤ 1 trivially satisfies the condition in Theorem

3.1.
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Theorem 10. Let A = {a1 < a2 < · · · < an < · · · } ⊂ N and q(x) be a quadratic poly-
nomial with rational coefficients and positive leading coefficient. If the function e(x) =
sup
n≤x

|an − q(n)| ( x ∈ R
+) satisfies e (x) = o

(√
log x

)

as x → ∞, then s (A) = ∞.

Proof. As q(x) has rational coefficients, there exist integers a, b, c, d, with a, d > 0, such that
dq(x) = (ax+ b)2 + c.

Let bn = dan − c and dn = (an+ b)2, for n ∈ N
∗. Clearly, there exists m ∈ N

∗ such that
bm ≥ 1, dm ≥ 1 and dn+1−dn ≥ 1 for n ≥ m. Set B = {bn : n ≥ m} and D = {dn : n ≥ m}.
Then B and D are strictly increasing sequences in N, and, for all n ≥ m,

|dn − bn| = |(an+ b)2 − dan + c| = d|q(n)− an|.

For x > m, Let f(x) = sup
m≤n≤x

|dn − bn|, for x ∈ R
+. Then f(x) is an increasing nonnegative

function satisfying f(x) ≤ d · e(x), so that f(x) = o
(√

log x
)

(like e(x)). Thus, we may
apply Lemma 2.6, provided we show that the condition (K) is satisfied.

Let S = {n2 : n ∈ N}. Then D ⊂ S, and therefore D+D ⊂ S+S, so that (D+D)(x) ≤
(S + S)(x), for x ∈ R

+.

By Landau’s theorem [15], (S + S) (x) ∼ c0
x√
log x

, with a constant c0 > 0. So there

exists a constant c1 > 0 such that (D +D)(x) ≤ (S + S)(x) ≤ c1
x√
log x

, and therefore

(D +D) (2x+ 2f(2x)) ≤ c1
2x+ 2f(2x)

√

log (2x+ 2f(2x))
. (11)

Moreover, for x > max(m, b2), if n ≤
√
x−|b|
a

, then dn = (an + b)2 ≤ x. Hence, for large
enough x,

D (x) = |{n ≥ m : dn ≤ x}| ≥
∣

∣

∣

∣

{

n ≥ m : n ≤
√
x− |b|
a

}
∣

∣

∣

∣

≥
√
x− |b|
a

−m ≥ c2
√
x− c3,

with constants c2, c3 > 0, and therefore

D (x− f(x)) ≥ c2
√

x− f(x)− c3. (12)

It follows from (11) and (12) that, for large enough x,

f (2x) · (D +D) (2x+ 2f (2x))

D (x− f(x))2
≤ c1

f (2x) · (2x+ 2f (2x))
√

log (2x+ 2f (2x))
(

c2
√

x− f(x)− c3

)2 ,

and, since f (x) = o
(√

log x
)

, we have

f (2x) · (2x+ 2f (2x))
√

log (2x+ 2f (2x))
(

c2
√

x− f(x)− c3

)2 ∼ 2f(2x)

c22
√
log x

= o(1).
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Therefore

lim inf
x→∞

f (2x) · (D +D) (2x+ 2f (2x))

D (x− f(x))2
= 0.

Thus the condition (K) is satisfied, and by Lemma 2.6, s(B) = ∞. As B is a translate of a
homothetic of a subsequence Am = {an : n ≥ m} of A, namely B = d ·Am+ |c|, we conclude,
e.g., see [9], that s(Am) = s(B) = ∞, and therefore s (A) = ∞.
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