Journal of Integer Sequences, Vol. 15 (2012),

Representation of Integers by Near Quadratic Sequences

Labib Haddad
120 rue de Charonne
75011 Paris
France
labib.haddad@wanadoo.fr
Charles Helou
Department of Mathematics
Pennsylvania State University
25 Yearsley Mill Road
Media, PA 19063
USA
cxh22@psu.edu

Abstract

Following a statement of the well-known Erdős-Turán conjecture, Erdős mentioned the following even stronger conjecture: if the n-th term a_{n} of a sequence A of positive integers is bounded by αn^{2}, for some positive real constant α, then the number of representations of n as a sum of two terms from A is an unbounded function of n. Here we show that if a_{n} differs from αn^{2} (or from a quadratic polynomial with rational coefficients $q(n))$ by at most $o(\sqrt{\log n})$, then the number of representations function is indeed unbounded.

1 Introduction

In 1941, Erdős and Turán [5] conjectured that if a sequence $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\}$ of positive integers is an asymptotic basis of the set $\mathbb{N}=\{0,1,2, \ldots\}$ of natural numbers,
i.e., if all large enough integers n are sums of two terms from A, then the number of representations $r_{A}(n)=\left|\left\{\left(a_{i}, a_{j}\right) \in A \times A: a_{i}+a_{j}=n\right\}\right|$ of n, as a sum of two terms from A, is unbounded. This is the well-known "Erdős-Turán conjecture". A few years later (the earliest we are aware of), in 1955 and 1956, Erdős [6], and Erdős and Fuchs [7] asserted that an even stronger conjecture would be that if $a_{n} \leq \alpha n^{2}$, for all n, with a real constant $\alpha>0$, then $\lim \sup r_{A}(n)=\infty$. This came to be known as the "generalized Erdős-Turán conjecture". It is indeed stronger than the former one, since if A is an asymptotic basis of \mathbb{N}, then $a_{n} \ll n^{2}[13$, p. 105].

Much work has been done concerning the "Erdős-Turán conjecture", e.g., $[3,7,8,16,1$, $21,19]$, including disproofs of analogues of this conjecture in many semigroups other than \mathbb{N}, e.g., $[20,16,17,11,12,2,14]$. In contrast, much less has been done about the "generalized Erdős-Turán conjecture". In a previous, co-authored, paper [9], we studied the class of sequences that can replace $\left\{\alpha n^{2}\right\}$ in the condition $a_{n} \leq \alpha n^{2}$ for all n, to imply that $r_{A}(n)$ is unbounded, and we gave several statements equivalent to the "generalized Erdős-Turán conjecture". In particular, we showed that if the conjecture holds with $\alpha=1$, then it holds with any $\alpha>0$. Moreover, it is not difficult to see that if $a_{n}=o\left(n^{2}\right)$, then the conjecture holds $[9,10]$. So we can essentially focus on the case where a_{n} is not too small compared to n^{2}, while bounded by a constant multiple of n^{2}. In particular, we can consider the case where a_{n} is, in a sense, "close" to a constant multiple of n^{2}, or to a quadratic polynomial in n. This is basically the goal of the present paper. We thus show that if $\left|a_{n}-\alpha n^{2}\right|=o(\sqrt{\log n})$, with a real constant $\alpha>0$, or if $\left|a_{n}-q(n)\right|=o(\sqrt{\log n})$, where $q(n)$ is a quadratic polynomial with rational coefficients, then the representation function $r_{A}(n)$ of A is unbounded.

2 Technical tools

Let $C=\left\{c_{1}<c_{2}<\cdots<c_{n}<\cdots\right\} \subset \mathbb{R}^{+}$be a strictly increasing sequence, in the set \mathbb{R}^{+}of real numbers ≥ 0. For any $x \in \mathbb{R}^{+}$, let $C[x]=C \cap[0, x]=\{c \in C: c \leq x\}$, and $C(x)=|C[x]|$ the cardinality of $C[x]$. Note that $C(x)$ is finite for every $x \geq 0$ if and only if the sequence C is unbounded. This is in particular true when $c_{n+1}-c_{n} \geq 1$ for large enough n, and more particularly if C is a subset of the set $\mathbb{N}=\{0,1,2,3, \ldots\}$ of natural numbers.

The sumset $C+C$ is defined by $C+C=\{c+d:(c, d) \in C \times C\}$.
Now let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subset \mathbb{N}$ be a strictly increasing sequence of natural numbers. In addition to the above notions, valid for A as for C, the representation function r_{A} of A is defined by $r_{A}(n)=|\{(a, b) \in A \times A: a+b=n\}|$, for $n \in \mathbb{N}$, and we set $s(A)=\sup _{n \in \mathbb{N}} r_{A}(n)$, in $\overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$.

In the sequel, i, j, k, l, m, n generally denote positive integers, unless it is specified that they lie in \mathbb{N}, i.e., that they are integers ≥ 0, while x, y denote real numbers ≥ 0, i.e., they lie in \mathbb{R}^{+}.

Note that if $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subset \mathbb{N}^{*}$, where $\mathbb{N}^{*}=\{1,2,3, \ldots\}$ is the set of positive integers, then $a_{n} \geq n$ for all $n \in \mathbb{N}^{*}$.

For any $x \in \mathbb{R}^{+}$, let

$$
\begin{equation*}
U_{A}(x)=|\{(a, b) \in A \times A: a+b \leq x\}|=\sum_{0 \leq n \leq x} r_{A}(n) . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
U_{A}(x)=\sum_{n \in(A+A)[x]} r_{A}(n) \leq \sum_{n \in(A+A)[x]} s(A)=(A+A)(x) \cdot s(A) \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
A(x)^{2} & =|\{(a, b) \in A \times A: a, b \leq x\}| \leq|\{(a, b) \in A \times A: a+b \leq 2 x\}|=U_{A}(2 x) \leq \\
& \leq(A+A)(2 x) \cdot s(A), \tag{3}
\end{align*}
$$

so that, for all $x \in \mathbb{R}^{+}$,

$$
\begin{equation*}
\frac{(A+A)(2 x)}{A(x)^{2}} s(A) \geq 1 \tag{4}
\end{equation*}
$$

Define

$$
\begin{equation*}
h(A)=\liminf _{x \rightarrow \infty} \frac{(A+A)(2 x)}{A(x)^{2}} . \tag{5}
\end{equation*}
$$

Lemma 1. If $h(A)=0$, then $s(A)=\infty$.
Proof. This follows immediately from (4).
Corollary 2. If $\liminf _{n \rightarrow \infty} \frac{A(x)}{\sqrt{x}}>0$ and $\liminf _{n \rightarrow \infty} \frac{(A+A)(x)}{x}=0$, then $h(A)=0$, and therefore $s(A)=\infty$.

Proof. By assumption, $\limsup _{n \rightarrow \infty} \frac{\sqrt{x}}{A(x)}=\frac{1}{\liminf _{n \rightarrow \infty} \frac{A(x)}{\sqrt{x}}}$ is finite, while $\liminf _{n \rightarrow \infty} \frac{(A+A)(2 x)}{2 x}=0$. So, using properties of the lower and upper limits, we get

$$
\begin{aligned}
h(A) & =\liminf _{x \rightarrow \infty} \frac{(A+A)(2 x)}{A(x)^{2}}=2 \liminf _{x \rightarrow \infty} \frac{(A+A)(2 x)}{2 x}\left(\frac{\sqrt{x}}{A(x)}\right)^{2} \leq \\
& \leq 2\left(\liminf _{x \rightarrow \infty} \frac{(A+A)(2 x)}{2 x}\right) \cdot\left(\limsup _{x \rightarrow \infty} \frac{\sqrt{x}}{A(x)}\right)^{2}=0
\end{aligned}
$$

The conclusion follows from Lemma 2.1.
Lemma 3. Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subset \mathbb{N}^{*}$ be a strictly increasing sequence of positive integers, and $C=\left\{c_{1}<c_{2}<\cdots<c_{n}<\cdots\right\} \subset \mathbb{R}^{+}$. For $x \in \mathbb{R}^{+}$, set $e(x)=$ $\sup _{n \leq x}\left|a_{n}-c_{n}\right|$. We then have, for all $x \in \mathbb{R}^{+}$,

$$
\begin{equation*}
(A+A)(x) \leq(4 e(x)+1) \cdot(C+C)(x+2 e(x)) . \tag{6}
\end{equation*}
$$

If we further assume that $c_{1} \geq 1$ and $c_{n+1}-c_{n} \geq 1$ for all $n \geq 1$, we then also have, for all $x \in \mathbb{R}^{+}$,

$$
\begin{equation*}
A(x) \geq C(x-e(x)) \tag{7}
\end{equation*}
$$

Proof. Note first that the function $e(x)$ is increasing, in the sense that $x \leq y$ implies $e(x) \leq$ $e(y)$.

Note also that, since $A \subset \mathbb{N}^{*}$, we have $i \leq a_{i}$ for all i. So, for $n \leq x$, if $n=a_{i}+a_{j}$, then $i \leq a_{i} \leq n \leq x$ and similarly $j \leq x$, and therefore $\left|n-c_{i}-c_{j}\right|=\left|a_{i}+a_{j}-c_{i}-c_{j}\right| \leq$ $\left|a_{i}-c_{i}\right|+\left|a_{j}-c_{j}\right| \leq 2 e(x)$. Hence

$$
(A+A)[x]=\left\{n \leq x: \exists i, j, n=a_{i}+a_{j}\right\} \subset\left\{n \leq x: \exists i, j,\left|n-c_{i}-c_{j}\right| \leq 2 e(x)\right\}
$$

and setting $s=c_{i}+c_{j}$, we get $s \in C+C$ and $|n-s| \leq 2 e(x)$, so that $s \leq n+2 e(x) \leq$ $x+2 e(x)$, and therefore

$$
\left\{n \leq x: \exists i, j,\left|n-c_{i}-c_{j}\right| \leq 2 e(x)\right\} \subset\{n: \exists s \in(C+C)[x+2 e(x]),|n-s| \leq 2 e(x)\}
$$

Thus

$$
(A+A)[x] \subset \bigcup_{s \in(C+C)[x+2 e(x)]}([s-2 e(x), s+2 e(x)] \cap \mathbb{N})
$$

and therefore

$$
(A+A)(x) \leq \sum_{n \in(C+C)[x+2 e(x)]}(4 e(x)+1)=(C+C)(x+2 e(x)) \cdot(4 e(x)+1)
$$

This proves (6).
Now, if $c_{1} \geq 1$ and $c_{n+1}-c_{n} \geq 1$ for all n, then $c_{n} \geq n$ for all n. So if $c_{n} \leq x-e(x)$, then $n \leq c_{n} \leq x$, so that $\left|a_{n}-c_{n}\right| \leq e(x)$, and therefore $a_{n} \leq c_{n}+e(x) \leq x$.

Hence $\left\{n: c_{n} \leq x-e(x)\right\} \subset\left\{n: a_{n} \leq x\right\}$, and thus

$$
C(x-e(x))=\left|\left\{n: c_{n} \leq x-e(x)\right\}\right| \leq\left|\left\{n: a_{n} \leq x\right\}\right|=A(x),
$$

which proves (7).
Lemma 4. Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subset \mathbb{N}^{*}$ and $C=\left\{c_{1}<c_{2}<\cdots<c_{n}<\right.$ $\cdots\} \subset \mathbb{R}^{+}$be two strictly increasing sequences in \mathbb{N}^{*} and in \mathbb{R}^{+}, respectively. For $x \in \mathbb{R}^{+}$, set $e(x)=\sup _{n \leq x}\left|a_{n}-c_{n}\right|$. Assume that $e(x)$ is not identically zero, and that $c_{1} \geq 1$ and $c_{n+1}-c_{n} \geq 1$ for all $n \geq 1$. Then the condition

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{e(2 x) \cdot(C+C)(2 x+2 e(2 x))}{C(x-e(x))^{2}}=0 \tag{H}
\end{equation*}
$$

implies that $h(A)=0$, and therefore $s(A)=\infty$.
Proof. Since $e(x)$ is increasing and not identically zero, there exists a real constant $t>0$ such that $e(x) \geq \frac{1}{t}$ for large enough x. In view of the inequalities (6) and (7) in Lemma 2.3, we have

$$
\frac{(A+A)(2 x)}{A(x)^{2}} \leq \frac{(4 e(2 x)+1) \cdot(C+C)(2 x+2 e(2 x))}{C(x-e(x))^{2}} .
$$

Moreover, for large enough x, we have $t \cdot e(2 x) \geq 1$, and therefore $4 e(2 x)+1 \leq(4+t) \cdot e(2 x)$. Thus

$$
\frac{(A+A)(2 x)}{A(x)^{2}} \leq(4+t) \frac{e(2 x) \cdot(C+C)(2 x+2 e(2 x))}{C(x-e(x))^{2}}
$$

for large enough x, so that the condition (H) implies that $\liminf _{x \rightarrow \infty} \frac{(A+A)(2 x)}{A(x)^{2}}=0$, i.e., $h(A)=0$, and therfore, by Lemma 2.1, $s(A)=\infty$.

Remark 5. The scope of Lemma 2.4 is broader than it seems to be. Indeed, for a subset A of \mathbb{N}, modifying, removing or adding finitely many elements does not modify the fact that $s(A)$ is infinite or finite. Thus Lemma 2.4 can be used in more general situations than specified by its assumptions, as shown by the next result.

Fundamental Lemma 6. Let $B=\left\{b_{1}<b_{2}<\cdots<b_{n}<\cdots\right\} \subset \mathbb{N}$ and $D=\left\{d_{1}<\right.$ $\left.d_{2}<\cdots<d_{n}<\cdots\right\} \subset \mathbb{R}^{+}$be two strictly increasing sequences in \mathbb{N} and in \mathbb{R}^{+}respectively. Assume that there exists an increasing function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and a positive integer m such that $d_{m} \geq 1, \quad d_{n+1}-d_{n} \geq 1$ for $n \geq m$, and $\sup _{m \leq n \leq x}\left|b_{n}-d_{n}\right| \leq f(x)$ for $x \geq m$. Then the condition

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{f(2 x) \cdot(D+D)(2 x+2 f(2 x))}{D(x-f(x))^{2}}=0 \tag{K}
\end{equation*}
$$

implies that $s(B)=\infty$.
Proof. For $n \in \mathbb{N}^{*}$, set $a_{n}=b_{n+m}$ and $c_{n}=d_{n+m}$, and let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subset$ \mathbb{N}^{*} and $C=\left\{c_{1}<c_{2}<\cdots<c_{n}<\cdots\right\} \subset \mathbb{R}^{+}$be the strictly increasing sequences, in \mathbb{N}^{*} and \mathbb{R}^{+}, obtained by deleting the first m terms of B and D respectively. Then $c_{1}=d_{m+1} \geq 2$ and $c_{n+1}-c_{n}=d_{n+m+1}-d_{n+m} \geq 1$ for $n \geq 1$. Moreover, setting $e(x)=\sup _{n \leq x}\left|a_{n}-c_{n}\right|$, for $x \in \mathbb{R}^{+}$, and using the assumptions on B and D, we have

$$
e(x)=\sup _{n \leq x}\left|a_{n}-c_{n}\right|=\sup _{n \leq x}\left|b_{n+m}-d_{n+m}\right|=\sup _{m<i \leq x+m}\left|b_{i}-d_{i}\right| \leq f(x+m)
$$

Thus, setting $y=x+m$, we have $e(x) \leq f(y)$, and since the functions e and f are increasing,

$$
e(2 x) \leq f(2 x+m) \leq f(2 y)
$$

Also, taking into account that $C \subset D$ and $C+C \subset D+D$, so that $(C+C)(t) \leq(D+D)(t)$ for all $t \in \mathbb{R}^{+}$, and that the function $t \mapsto(C+C)(t)$ is increasing, we get

$$
(C+C)(2 x+2 e(2 x)) \leq(C+C)(2 y+2 f(2 y)) \leq(D+D)(2 y+2 f(2 y))
$$

Thus

$$
\begin{equation*}
e(2 x) \cdot(C+C)(2 x+2 e(2 x)) \leq f(2 y) \cdot(D+D)(2 y+2 f(2 y)) \tag{8}
\end{equation*}
$$

for $x \in \mathbb{R}^{+}$, and $y=x+m$.

Moreover, for $t \geq m$, we have

$$
D(t)-C(t)=\left|\left\{d_{n} \in D: d_{n} \leq t\right\}\right|-\left|\left\{c_{n} \in C: c_{n}=d_{n+m} \leq t\right\}\right|=m
$$

and

$$
C(t)-C(t-m)=\left|\left\{c_{n} \in C: t-m<c_{n} \leq t\right\}\right| \leq m,
$$

since $c_{n+1}-c_{n} \geq 1$ for all $n \in \mathbb{N}^{*}$, so that $C(t) \leq C(t-m)+m$ and $D(t)=C(t)+m \leq$ $C(t-m)+2 m$. Therefore $C(t-m) \geq D(t)-2 m$ for $t \geq m$. Hence, taking into account that the function $t \mapsto C(t)$ is increasing and that $e(x) \leq f(y)$ we get, for large enough x,

$$
\begin{equation*}
C(x-e(x)) \geq C(x-f(y))=C(y-m-f(y)) \geq D(y-f(y))-2 m . \tag{9}
\end{equation*}
$$

It follows from (8) and (9) that, for large enough x and for $y=x+m$,

$$
\begin{equation*}
\frac{e(2 x) \cdot(C+C)(2 x+2 e(2 x))}{C(x-e(x))^{2}} \leq \frac{f(2 y) \cdot(D+D)(2 y+2 f(2 y))}{(D(y-f(y))-2 m)^{2}} . \tag{10}
\end{equation*}
$$

Set $P(x)=f(2 x) \cdot(D+D)(2 x+2 f(2 x))$ and $Q(x)=D(x-f(x))$, and suppose that the condition (K) is satisfied, i.e., that $\liminf _{x \rightarrow \infty} \frac{P(x)}{Q(x)^{2}}=0$. Then there exists a strictly increasing sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}^{+}, tending to infinity, such that $\lim _{n \rightarrow \infty} \frac{P\left(x_{n}\right)}{Q\left(x_{n}\right)^{2}}=0$. Since $P(x)$ is an increasing unbounded function, $\lim _{n \rightarrow \infty} P\left(x_{n}\right)=\infty$, and therefore the sequence $\left(Q\left(x_{n}\right)\right)_{n \geq 1}$ is unbounded. So there exists a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}^{*}}$ of $\left(x_{n}\right)_{n \geq 1}$ such that $\lim _{k \rightarrow \infty} Q\left(x_{n_{k}}\right)=\infty$, while $\lim _{k \rightarrow \infty} \frac{P\left(x_{n_{k}}\right)}{Q\left(x_{n_{k}}\right)^{2}}=0$. Hence $\lim _{k \rightarrow \infty} \frac{P\left(x_{n_{k}}\right)}{\left(Q\left(x_{n_{k}}\right)-2 m\right)^{2}}=0$, and therefore

$$
\liminf _{y \rightarrow \infty} \frac{f(2 y) \cdot(D+D)(2 y+2 f(2 y))}{(D(y-f(y))-2 m)^{2}}=\liminf _{x \rightarrow \infty} \frac{P(x)}{(Q(x)-2 m)^{2}}=0
$$

It then follows from (10) that $\liminf _{x \rightarrow \infty} \frac{e(2 x) \cdot(C+C)(2 x+2 e(2 x))}{C(x-e(x))^{2}}=0$. Thus the condition (H) of Lemma 2.4 holds, and therefore, in view of this Lemma, $s(A)=\infty$. As $A \subset B$, it follows that $s(B)=\infty$ too.

Remark 7. In the statement of Lemma 2.6, we may replace D by $D^{\prime}=D+\gamma$, i.e., d_{n} by $d_{n}^{\prime}=d_{n}+\gamma\left(n \in \mathbb{N}^{*}\right)$, where γ is any fixed real number, since a translation of the general term of D does not affect the condition (K).

3 Main results

Theorem 8. Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subset \mathbb{N}$ be a strictly increasing sequence of natural numbers, and $q(x)=\alpha x^{2}$ with a real number $\alpha>0$. If the function $e(x)=$ $\sup _{n \leq x}\left|a_{n}-q(n)\right|\left(x \in \mathbb{R}^{+}\right)$satisfies $e(x)=o(\sqrt{\log x})$ as $x \rightarrow \infty$, then $s(A)=\infty$.

Proof. We apply Lemma 2.6 to $B=A$ and $D=\{q(1)<q(2)<\cdots<q(n)<\cdots\}$. Indeed, the sequence $(q(n))_{n \geq 1}$ is strictly increasing and unbounded, with $q(n+1)-q(n)=\alpha(2 n+1)$ unbounded too, so that $q(n) \geq 1$ and $q(n+1)-q(n) \geq 1$ for large enough n. There remains to show that the condition (K) holds for $f(x)=e(x)$.

Let $S=\left\{n^{2}: n \in \mathbb{N}^{*}\right\}$. By a classical result of Landau [15], there exists a constant $c>0$ such that $(S+S)(x) \sim c \frac{x}{\sqrt{\log x}}$ as $x \rightarrow \infty$.

For $m, n \in \mathbb{N}^{*}$ and $x \in \mathbb{R}^{+}$, as $q(m)+q(n) \leq x$ is equivalent to $m^{2}+n^{2} \leq \frac{x}{\alpha}$, we have $(D+D)(x)=(S+S)\left(\frac{x}{\alpha}\right) \sim \frac{c}{\alpha} \frac{x}{\sqrt{\log x}}$, so that

$$
(D+D)(x) \leq c_{1} \frac{x}{\sqrt{\log x}}
$$

for large enough x, with a constant $c_{1}>\frac{c}{\alpha}$.
Moreover, as $q(n) \leq x$ if and only if $n \leq \sqrt{\frac{x}{\alpha}}$, we also have $D(x)=\left[\sqrt{\frac{x}{\alpha}}\right]>\sqrt{\frac{x}{\alpha}}-1$. It follows that, for large enough x,

$$
\begin{aligned}
\frac{e(2 x) \cdot(D+D)(2 x+2 e(2 x))}{D(x-e(x))^{2}} \leq & \frac{c_{1} \cdot e(2 x) \cdot(2 x+2 e(2 x))}{\sqrt{\log (2 x+2 e(2 x))}\left(\sqrt{\frac{x-e(x)}{\alpha}}-1\right)^{2}}= \\
& =\frac{c_{1} \alpha \cdot e(2 x) \cdot(2 x+2 e(2 x))}{\sqrt{\log (2 x+2 e(2 x))}(\sqrt{x-e(x)}-\sqrt{\alpha})^{2}} .
\end{aligned}
$$

As $e(x)=o(\sqrt{\log x})$,

$$
\frac{e(2 x) \cdot(2 x+2 e(2 x))}{\sqrt{\log (2 x+2 e(2 x))}(\sqrt{x-e(x)}-\sqrt{\alpha})^{2}} \sim \frac{2 x \cdot e(2 x)}{\sqrt{\log (2 x)} \cdot x} \sim \frac{2 e(2 x)}{\sqrt{\log (2 x)}},
$$

and, since $e(x)=o(\sqrt{\log x})$, we have $\lim _{x \rightarrow \infty} \frac{2 e(2 x)}{\sqrt{\log (2 x)}}=0$. Therefore

$$
\lim _{x \rightarrow \infty} \frac{e(2 x) \cdot(D+D)(2 x+2 e(2 x))}{D(x-e(x))^{2}}=0
$$

and the condition (K) holds. Thus, by Lemma 2.6, $s(B)=\infty$, i.e., $s(A)=\infty$.
Remark 9. In the statement of Theorem 3.1, we may replace $q(x)=\alpha x^{2}$ by $q(x)=\alpha x^{2}+\gamma$, where γ is any real constant, in view of Remark 2.7.

Also, if $A=\left\{a_{n}=\left[\alpha n^{2}+\gamma\right]: n \in \mathbb{N}\right\}$ is the set of the integral parts $\left[\alpha n^{2}+\gamma\right]=[q(n)]$, then $s(A)=\infty$, since $e(x)=\sup _{n \leq x}\left|a_{n}-q(n)\right| \leq 1$ trivially satisfies the condition in Theorem 3.1.

Theorem 10. Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subset \mathbb{N}$ and $q(x)$ be a quadratic polynomial with rational coefficients and positive leading coefficient. If the function $e(x)=$ $\sup _{n \leq x}\left|a_{n}-q(n)\right|\left(x \in \mathbb{R}^{+}\right)$satisfies $e(x)=o(\sqrt{\log x})$ as $x \rightarrow \infty$, then $s(A)=\infty$.

Proof. As $q(x)$ has rational coefficients, there exist integers a, b, c, d, with $a, d>0$, such that $d q(x)=(a x+b)^{2}+c$.

Let $b_{n}=d a_{n}-c$ and $d_{n}=(a n+b)^{2}$, for $n \in \mathbb{N}^{*}$. Clearly, there exists $m \in \mathbb{N}^{*}$ such that $b_{m} \geq 1, d_{m} \geq 1$ and $d_{n+1}-d_{n} \geq 1$ for $n \geq m$. Set $B=\left\{b_{n}: n \geq m\right\}$ and $D=\left\{d_{n}: n \geq m\right\}$. Then B and D are strictly increasing sequences in \mathbb{N}, and, for all $n \geq m$,

$$
\left|d_{n}-b_{n}\right|=\left|(a n+b)^{2}-d a_{n}+c\right|=d\left|q(n)-a_{n}\right| .
$$

For $x>m$, Let $f(x)=\sup _{m \leq n \leq x}\left|d_{n}-b_{n}\right|$, for $x \in \mathbb{R}^{+}$. Then $f(x)$ is an increasing nonnegative function satisfying $f(x) \leq d \cdot e(x)$, so that $f(x)=o(\sqrt{\log x})$ (like $e(x))$. Thus, we may apply Lemma 2.6, provided we show that the condition (K) is satisfied.

Let $S=\left\{n^{2}: n \in \mathbb{N}\right\}$. Then $D \subset S$, and therefore $D+D \subset S+S$, so that $(D+D)(x) \leq$ $(S+S)(x)$, for $x \in \mathbb{R}^{+}$.

By Landau's theorem [15], $\quad(S+S)(x) \sim c_{0} \frac{x}{\sqrt{\log x}}$, with a constant $c_{0}>0$. So there exists a constant $c_{1}>0$ such that $(D+D)(x) \leq(S+S)(x) \leq c_{1} \frac{x}{\sqrt{\log x}}$, and therefore

$$
\begin{equation*}
(D+D)(2 x+2 f(2 x)) \leq c_{1} \frac{2 x+2 f(2 x)}{\sqrt{\log (2 x+2 f(2 x))}} \tag{11}
\end{equation*}
$$

Moreover, for $x>\max \left(m, b^{2}\right)$, if $n \leq \frac{\sqrt{x}-|b|}{a}$, then $d_{n}=(a n+b)^{2} \leq x$. Hence, for large enough x,

$$
\begin{aligned}
D(x) & =\left|\left\{n \geq m: d_{n} \leq x\right\}\right| \geq\left|\left\{n \geq m: n \leq \frac{\sqrt{x}-|b|}{a}\right\}\right| \\
& \geq \frac{\sqrt{x}-|b|}{a}-m \geq c_{2} \sqrt{x}-c_{3},
\end{aligned}
$$

with constants $c_{2}, c_{3}>0$, and therefore

$$
\begin{equation*}
D(x-f(x)) \geq c_{2} \sqrt{x-f(x)}-c_{3} . \tag{12}
\end{equation*}
$$

It follows from (11) and (12) that, for large enough x,

$$
\frac{f(2 x) \cdot(D+D)(2 x+2 f(2 x))}{D(x-f(x))^{2}} \leq c_{1} \frac{f(2 x) \cdot(2 x+2 f(2 x))}{\sqrt{\log (2 x+2 f(2 x))}\left(c_{2} \sqrt{x-f(x)}-c_{3}\right)^{2}},
$$

and, since $f(x)=o(\sqrt{\log x})$, we have

$$
\frac{f(2 x) \cdot(2 x+2 f(2 x))}{\sqrt{\log (2 x+2 f(2 x))}\left(c_{2} \sqrt{x-f(x)}-c_{3}\right)^{2}} \sim \frac{2 f(2 x)}{c_{2}^{2} \sqrt{\log x}}=o(1) .
$$

Therefore

$$
\liminf _{x \rightarrow \infty} \frac{f(2 x) \cdot(D+D)(2 x+2 f(2 x))}{D(x-f(x))^{2}}=0 .
$$

Thus the condition (K) is satisfied, and by Lemma 2.6, s(B)=m. As B is a translate of a homothetic of a subsequence $A_{m}=\left\{a_{n}: n \geq m\right\}$ of A, namely $B=d \cdot A_{m}+|c|$, we conclude, e.g., see [9], that $s\left(A_{m}\right)=s(B)=\infty$, and therefore $s(A)=\infty$.

4 Acknowledgment

We thank an anonymous reader who suggested the use of Landau's theorem to improve a previous result.

References

[1] P. Borwein, S. Choi, and F. Chu, An old conjecture of Erdős-Turán on additive bases, Math. Comp. 75 (2006), 475-484.
[2] Y-G. Chen, The analogue of Erdős-Turán conjecture in \mathbb{Z}_{m}, J. Number Theory 128 (2008), 2573-2581.
[3] G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312-313.
[4] M. Dowd, Questions related to the Erdős-Turán conjecture, SIAM J. Discrete Math. 1 (1988), 142-150.
[5] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
[6] P. Erdős, Problems and results in additive number theory, in Colloque sur la Théorie des Nombres, Bruxelles, 1955, George Thone, Liège; Masson \& Cie, Paris, 1956, pp. 127-137.
[7] P. Erdős and W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956), 67-73.
[8] G. Grekos, L. Haddad, C. Helou, and J. Pihko, On the Erdős-Turán conjecture, J. Number Theory 102 (2003), 339-352.
[9] G. Grekos, L. Haddad, C. Helou, and J. Pihko, The class of Erdős-Turán sets, Acta Arith. 117 (2005), 81-105.
[10] G. Grekos, L. Haddad, C. Helou, and J. Pihko, Variations on a theme of Cassels for additive bases, Int. J. Number Theory 2 (2006), 249-265.
[11] L. Haddad and C. Helou, Bases in some additive groups and the Erdős-Turán conjecture, J. Combin. Theory Ser. A 108 (2004), 147-153.
[12] L. Haddad and C. Helou, Additive bases representations in groups, Integers 8 (2008), A5.
[13] H. Halberstam and K. F. Roth, Sequences, Oxford Clarendon Press, 1966.
[14] S. V. Konyagin and V. F. Lev, The Erdős-Turán problem in infinite groups, in Additive Number Theory, Springer, 2010, pp. 195-202.
[15] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. der Math. und Phys. 13 (1908), 305-312.
[16] M. B. Nathanson, Unique representation bases for the integers, Acta Arith. 108 (2003), 1-8.
[17] M. B. Nathanson, Representation functions of additive bases for abelian semigroups, Int. J. Math. Math. Sci. 2004, 1589-1597.
[18] M. B. Nathanson, Generalized additive bases, König's lemma, and the Erdős-Turán conjecture, J. Number Theory 106 (2004), 70-78.
[19] J. Nes̆etřil and O. Serra, On a conjecture of Erdős and Turán for additive basis, in Proceedings of the "Segundas Jornadas de Teoria de Números", Bibl. Rev. Mat. Iberoamericana, 2008, pp. 209-220.
[20] V. Pus̆, On multiplicative bases in abelian groups, Czech. Math. J. 41 (1991), 282-287.
[21] C. Sándor, A note on a conjecture of Erdős-Turán, Integers 8 (2008), A30.

2010 Mathematics Subject Classification: Primary 11B34; Secondary 11B83.
Keywords: sequences, representation functions, quadratic, Erdős-Turán conjecture.

Received July 19 2012; revised version received October 14 2012. Published in Journal of Integer Sequences, October 232012.

Return to Journal of Integer Sequences home page.

