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Abstract

We consider the problem of finding sets of points on xy = 1, where all of the inter-

point distances are rational. The search for such points has links to both congruent

and concordant numbers.

1 Introduction

Consider a curve in two dimensions, given in the form f(x, y) = 0. Let P = {P1, P2, . . . , Pn}
be a set of n distinct points. How many of the n(n− 1)/2 inter-point distances can we make
rational? This problem is obviously related to the discussion in section D20 of Guy’s book
[5].

If the curve is a straight line then there are clearly an infinite number of points, so we
usually restrict the points in P to have no more than two on any line.

For the circle f(x, y) = x2 + y2 − 1, let µ and θ be two distinct angles with s = tan µ and
t = tan θ both rational. Let P1 = (cos 4µ, sin 4µ) and P2 = (cos 4θ, sin 4θ), then the distance
from P1 to P2 is

4|s − t||1 + st|

(1 + s2)(1 + t2)

which is clearly rational. Thus there are an infinite number of distinct points on the unit
circle with rational distances from each other. This normally forces a second restriction on
P - no more than 3 points on any circle.

Very recently, Solymosi and de Zeeuw [9] proved that lines and circles are the only two-
dimensional curves that give an infinite number of rational distances.
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Even before this, Campbell [1] discussed the problem for the basic parabola y = x2.
Based on an early preprint on this investigation, the present author found one of the first
examples of a set of 4 acceptable points on the parabola with all 6 inter-point distances
rational. Choudhry [2] also discussed this parabola, and showed how to find 5 points with 9
distances rational.

The current work discusses this problem for the rectangular hyperbola

x y = 1. (1)

After this paper was initially submitted, Goins and Mugo [4] released a preprint which is
clearly extremely related to this discussion, but from a different perspective. They consider
the general conic section

axy + bx + cy + d = 0

with a 6= 0 and ad 6= bc. They show that, if the congruent number elliptic curve

Y 2 = X3 − D2X D =
ad − bc

2a2

has rank greater than 0, then there are an infinite number of sets of 4 points on the conic,
with the usual conditions on lines and circles.

For the rectangular hyperbola xy = 1 we have D = −1/2, but it is straight-forward that
the elliptic curve Y 2 = X3−X/4 is equivalent to V 2 = U3−4U which asks if 2 is a congruent
number. It is an old result that this is not the case, see Chapter XVI of Dickson’s History
[3].

So the Goins-Mugo result does not apply in this special case.

2 Basic Results

Let P = (p, 1/p) and Q = (q, 1/q) be on the hyperbola with p 6= q. Then the distance is
given by

|PQ|2 = (p − q)2 + (1/p − 1/q)2 =
(p − q)2

p2q2
(1 + p2q2) (2)

Clearly, we can go a long way to making this rational if we restrict p and q to being
rational themselves, and we assume from now on that all points are themselves rational.
Thus |PQ| will be rational if 1 + p2q2 = u2 for u ∈ Q.

Thus, we can assume, without loss of generality, that

p q =
a2 − 1

2a
≡ φ(a) (3)

where a ∈ Q.
Let Q′ = (−q,−1/q) which is also on the curve, and

|PQ′| =
(p + q)2

p2q2
(1 + p2q2)
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so if |PQ| rational so is |PQ′|. Thus if we have a point with negative coordinates, we can
always replace it with one with positive ones. We thus assume, from now on, that all points
are in the first quadrant.

It should be noted that we do not lose anything by this, since we can never have Q and
Q′ in P , as this would require 1+q4 to be a square, which is impossible as shown by Fermat.

As stated in the introduction, the basic assumption in rational distance sets is that we
look for no more than 2 points on a single line or more than 3 points on a single circle. The
hyperbola meets y = ax + b where

ax2 + bx − 1 = 0

so that any line can only meet the hyperbola at a maximum of 2 points, so the first condition
is automatically satisfied.

For a circle, assume R = (r, 1/r) with r 6= p, q, then the unique circle through P,Q,R
meets the hyperbola at a fourth point with x-coordinate 1/(pqr).

3 Three Points

Suppose we have points P,Q,R, then, if the 3 inter-point distances are rational, we require

p q =
a2 − 1

2a
p r =

b2 − 1

2b
q r =

c2 − 1

2c
(4)

with a, b, c ∈ Q.
Thus

a2 − 1

2ap

b2 − 1

2bp
=

c2 − 1

2c
(5)

so that

p2 =
(a2 − 1)(b2 − 1)c

2ab(c2 − 1)

which implies that there must exist a rational e with

e2 = 2abc(a2 − 1)(b2 − 1)(c2 − 1) (6)

Define a = A/N and b = B/N , with A,B,N ∈ Z, so that

2ab(a2 − 1)(b2 − 1) =
2AB(A2 − N2)(B2 − N2)

N6

and, if we define f = eN3 and 2AB(A2 − N2)(B2 − N2) = KM2, where K is a square-free
integer, we get

f 2 = KM2(c3 − c)

Now, define y = Kf/M and x = Kc, giving

EK : y2 = x3 − K2x (7)
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This is an elliptic curve, and, in fact, is the elliptic curve related to the congruent number
problem. This forms the basis for the book by Koblitz [6].

The curve EK has the obvious rational points (0, 0), (K, 0), (−K, 0), which give c =
0, 1,−1 respectively, which cause problems with the identity qr = 2c/(c2 − 1). Thus to have
a practical solution we need another rational point, which means that the rank of EK must
be greater than 0.

The famous result of Tunnell [10] shows that this will be the case if K is ≡ 5, 6, 7 mod 8,
and possibly when K is ≡ 1, 2, 3 mod 8.

For example, when a = 3/2, b = 4/3, we have 2AB(A2 − N2)(B2 − N2) = 181440 =
35 × 722, so that K = 35,M = 72. The curve E35 has rank 0 and so there are no trios of
points in this case.

Alternatively, when a = 4/3, b = 2/1, we have 2AB(A2−N2)(B2−N2) = 9072 = 7×362,
giving K = 7,M = 36. The curve E7 has rank 1 with, for example, the point (25, 120). This
gives c = 25/7, and pq = 7/24 and pr = 3/4 so that

qr =
21

96p2
=

288

175

leading to p = 35/96, q = 4/5 and r = 72/35.
We now analyse what happens when we add torsion points to points of infinite order.

As stated, the curve has 3 finite torsion points (0, 0), (K, 0), (−K, 0). Let (g, h) be a point
of infinite order giving a value of c, which we call c1, and leading to the 3 points on the
hyperbola (p1, 1/p1), (q1, 1/q1) and (r1, 1/r1).

Forming (g, h)+(0, 0) gives x = −K2/g, which gives a new value of c given by c2 = −1/c1.
Thus c2/(c

2

2
− 1) = c1/(c

2

1
− 1) and so p2 = p1, giving the same set of three points.

Forming (g, h) + (K, 0) gives x = K(g + K)/(g − K) so c3 = (c1 + 1)/(c1 − 1) and
p3 = p1(c

2

1
− 1)/2c1. Thus q3 = 1/r1 and r3 = 1/q1, and we have a different set of three

points (1/r1, r1), (1/q1, q1) and (p3, 1/p3). We can invert each of the x-coordinates to give
the set (q1, 1/q1), (r1, 1/r1) and (1/p3, p3). Note, however, that

p1q1r1

1

p3

= p1

(a2 − 1)

2ap1

(b2 − 1)

2bp1

2c1

(c2

1
− 1)p1

= 1

so the four points actually lie on a circle.
Similarly, if we add (g, h) + (−K, 0), we get the same situation.
Finally, in this section, note that, if p, q, r give 3 points with rational distances, the point

1/(pqr) (on the circle through the three points) is at a rational distance from the other
points.

4 Four Points

Suppose we wish a fourth point S = (s, 1/s) to have a rational distance to each of P,Q,R.
We assume pqrs 6= 1, so that the four points do not lie on a circle.

Then we require

1 + p2s2 = 2 1 + q2s2 = 2 1 + r2s2 = 2 (8)
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Consider the first two conditions, noting that p, q, r are known quantities. We have

p s =
f 2 − 1

2f
q s =

g2 − 1

2g
(9)

with f, g ∈ Q, giving
p f(g2 − 1) − q(f 2 − 1)g = 0

This quadratic must have rational roots, so the discriminant must be a rational square,
giving

h2 = q2(f 2 − 1)2 + 4p2f 2

with h ∈ Q, and so, defining Y = qh,X = qf , we have the quartic

Y 2 = X4 + (4p2 − 2q2)X2 + q4 (10)

This quartic has an obvious rational point (0, q2), so is birationally equivalent to the elliptic
curve

V 2 = U(U + p2)(U + q2) (11)

with f = V/(q(U + p2)).
Since p, q ∈ Q, express p = J/I, q = L/I, U = Z/I2, V = W/I3 with I, J, L ∈ Z, so that

W 2 = Z(Z + J2)(Z + L2) , f =
W

L(Z + J2)
(12)

This is the elliptic curve for a specific subset of Euler’s concordant forms, namely x2+J2y2 =
2 , x2 + L2y2 = 2, as discussed by Ono [7]. The curve has

(a) 3 points of order 2, at (0, 0), (−J2, 0), (−L2, 0),

(b) 4 points of order 4 at (JL,±JL(J + L)) and (−JL,±JL(J − L)),

(c) the point at infinity.

It is even possible to have points of order 8, so the torsion subgroup is usually Z2 × Z4

but could be Z2 × Z8. None of these torsion points lead to a non-trivial value of s.
Note that r is already a solution to equation (9), which gives a point on this curve. From

equation (4), let X1 = q b and (X1, Y1) be the solution of (10) then

U =
X2

1
+ Y1 − q2

2

gives a point on (10), meaning that the curves all have rank at least 1.
We now investigate the effect of adding torsion points to a point on the curve. Suppose

(Z0,W0) is a point on the elliptic curve so that W 2

0
= Z0(Z0 + J2)(Z0 + L2), and let f0 =

W0/(L(Z0 + J2)), from which we find a value for s.
Adding (0, 0) gives Z1 = J2L2/Z0 and W1 = −J2L2W0/Z

2

0
leading to

f1 = −
LW0

Z0(Z0 + L2)
= −

L(Z0 + J2)

W0

= −
1

f0
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Adding (−J2, 0) gives

Z2 =
−J2(Z0 + L2)

Z0 + J2
, W2 =

W0J
2(L2 − J2)

(Z0 + J2)2

which just gives f2 = −f0.
Adding (−L2, 0) gives

Z3 =
−L2(Z0 + J2)

Z0 + L2
, W3 =

W0L
2(J2 − L2)

(Z0 + L2)2

which just gives f3 = 1/f0.
These 3 new values of f just lead to the same values of s. If, however, we add the points

of order 4 we do get a different point.
To understand the effect of adding the points of order 4, it is simpler to use the elliptic

curve given in equation (10). Let (U0, V0) be a non-torsion rational point on the curve, which
gives

s0 =
U2

0
− p2q2

2pqV0

(13)

Now, consider adding the point of order 4 given by (pq, pq(p + q)). Using a symbolic
algebra package gives

s4 =
2(U2

0
+ U0(p

2 + q2) − V0(p + q) + p2q2)(U0(p + q) − V0)

−(U0 − pq)(U0 + pq)(U2

0
+ U0(2p2 + 2pq + 2q2) − 2V0(p + q) + p2q2)

which does not seem too helpful.
Using V 2

0
= U3

0
+ (p2 + q2)U2

0
+ p2q2U0, however, allows us to simplify this to

s4 =
2V0

U2

0
− p2q2

=
1

pqs0

(14)

which is just the fourth point on the hyperbola and the circle through p, q, s. The other
points of order 4 also give this value, which we disallow.

5 Numerical Results

To find size 3 and 4 rational distance sets, we need to determine points of infinite order
on both types of elliptic curves. Determining the rank of an elliptic curve and a full set of
generators is a non-trivial process. We avoid this problem, and use both a simple search
procedure and a very simple descent procedure to determine independent points of infinite
order moderately quickly. All the programming was done using the software package Pari.

For the search, we determine the minimal form of the curve and search this for points
with integer coordinates up to a specified size. Clearly, we must restrict the search on the
infinite component, and we often must also do this on the closed finite component. Thus it
is possible that we might miss a possible generator.
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For the descent, we note that the curves we must search are of the general form

y2 = x3 + Gx2 + Hx (15)

A rational point on such curves has form (du2/v2, duw/v3) where d is squarefree and
gcd(d, v) = 1. Substituting gives

dw2 = d2u4 + dGu2v2 + Hv4

so that d|H, allowing us to find possible values of d easily.
We have

4dw2 = 4d2u4 + 4dGu2v2 + 4Hv4 = (2du2 + Gv2)2 − (G2 − 4H)v4

and we find that, in both equations (7) and (12), the corresponding values of G and H give
G2 − 4H = 2 = C2 say.

Thus, define Z = 2w, X = 2du2 − Gv2 and Y = Cv2, leading to X2 = Y 2 + dZ2. This
has a simple parametric solution Y = p2 − dq2, Z = 2pq and X = p2 + dq2. This gives

u2

v2
=

(C − G)p2 + d(C + G)q2

2d(p2 − dq2)
(16)

We generate small-size pairs (p, q), with gcd(p, q) = 1, compute the right-hand-side of
this ratio and test whether it is square. We find several non-integer point of infinite order
using this approach, which are usually generators, but might not be.

Combining the above two approaches, we find k independent points of infinite order
G1, . . . , Gk and then compute

a1G1 + . . . + akGk + T (17)

with T a torsion-point and |ai| less than some preset limit. Using this allows us to find, after
a reasonable amount of computation, the following table of size 4 rational distance sets on
x y = 1.

TABLE 1
Size 4 rational distance sets

p q r s
77/340 15/56 96/55 77/18
14/65 60/77 462/325 26/9
11/60 117/418 5681/17490 80/39
27/80 320/231 319/168 55/19

287/1380 595/1254 715/238 99/10
3/11 1275/2288 319/416 52/45
7/78 145/264 25/28 864/235

437/702 63/46 8/5 697/210
9/34 9675/16898 208/81 3689/390

207/434 221/300 160/161 91/24
21/110 424/1071 39/62 24/5

2/9 876/1771 4125/5168 884/495
715/2352 1548/16575 34/33 28/17
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The method of Choudhry, for finding larger sets, is based on the fact that (s, s2) and
(t, t2) have a rational distance if s + t = φ(k) for k ∈ Q. For the hyperbola, (s, 1/s) and
(t, 1/t) have a rational distance if s t = φ(k). So we move from an additive approach to
a multiplicative one. This makes finding relations such as those given by Choudhry much
more difficult.
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