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Abstract

The triangulations of a regular polygon are enumerated according to the number

of diagonals parallel to a fixed edge. We also point out the connection to Dyck paths

avoiding certain points on the x-axis.

1 Introduction

The purpose of this note is to enumerate triangulations of a regular convex polygon according
to the number of diagonals parallel to a fixed edge. This enumeration is of interest because
it provides insight into the “shape of a typical triangulation” and because of its connection
to the Shapiro convolution identity (see (4) below).

We consider a triangulation of an n-gon as a labeled graph with vertices 0, 1, . . . , n−11 and
edges denoted xy for distinct vertices x and y. The edges include n sides 01, 12, . . . , (n− 1)0
and n− 3 diagonals.

Definition 1. Let fxy(n, k) be the number of triangulations of a regular n-gon which include
exactly k diagonals parallel to the edge xy. Also let fxy(n) denote fxy(n, 0).

For example, there are 14 triangulations of a hexagon, 4 of which include a diagonal
parallel to 01 (see Figure 1). The remaining 10 triangulations all have zero diagonals parallel
to 01. Therefore f01(6, 1) = 4 and f01(6) = 10.

1For convenience, the vertex 0 of an n-gon is sometimes also labeled n.
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Figure 1: The triangulations of a hexagon that include one diagonal parallel to 01.

Given n and k, by symmetry fxy(n, k) depends only on the value of y − x modulo n and
not on the specific choice of x and y. Furthermore, two edges ab and cd in a triangulation of
an n-gon are parallel if and only if a+ b and c + d are congruent modulo n. It follows that
for all n, x and y,

fxy(2n, k) =

{

f01(2n, k), if x+ y is odd;

f02(2n, k), if x+ y is even,

and
fxy(2n+ 1, k) = f01(2n+ 1, k).

The question at hand is thus reduced to finding f01(2n, k), f02(2n, k) and f01(2n+ 1, k).
Theorems 2 and 4 below provide explicit formulas for these functions when k = 0 and when
k > 0, respectively. These formulas are given in terms of the Catalan numbers [5, A000108]

Cn =
1

n+ 1

(

2n

n

)

.

Recall that there are Cn−2 triangulations of an n-gon. Therefore for all n, x and y,
∑

k≥0

fxy(n, k) = Cn−2. (1)

The recursion relation
n

∑

i=0

CiCn−i = Cn+1 (2)

implies the identity
n

∑

i=0

C2iC2n+1−2i =
1

2
C2n+2, (3)

which is used below. We also make use of the Shapiro convolution identity:
n

∑

j=0

C2jC2n−2j = 4nCn (4)

(see [5, A151403]). Andrews [1] recently gave several proofs of (4) and its q-analogs, with
one of these proofs being purely combinatorial (however, finding a direct bijective proof of
(4) is still an open problem).
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Figure 2: Illustration of the proof of (5). The dotted lines represent the avoided diagonals.

2 Avoiding diagonals of a fixed direction

We begin by enumerating the triangulations that avoid all diagonals parallel to a fixed edge.

Theorem 2. For any n ≥ 2,

f01(2n) = 2C2n−3 (5)

and

f02(2n) = C2n−1 + 2C2n−2 − 22n−1Cn−1. (6)

For any n ≥ 1,

f01(2n+ 1) = 22n−1Cn−1 − C2n−1. (7)

Equations (5), (6) and (7) can be proved by induction on n as follows; the base cases are
easily verified.

Proof of (5):

Enumerate the triangulations of a 2n-gon that include at least one diagonal parallel to 01
according to the minimal number i, with 2 ≤ i ≤ n− 1, such that i(2n+1− i) is a diagonal
of the triangulation (see Figure 2). The (2n− 2i+2)-gon with vertices i, i+1, . . . , 2n+1− i

can be triangulated in C2n−2i ways. By induction the 2i-gon with vertices 0, 1, . . . , i, 2n +
1− i, 2n+ 2− i, . . . , 2n− 1 can be triangulated in 2C2i−3 ways. Subtracting these from the
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Figure 3: Illustration of the proof of (7).

total number of triangulations of a 2n-gon gives

f01(2n) = C2n−2 −

n−1
∑

i=2

C2n−2i · 2C2i−3

= C2n−2 − 2
n

∑

i=2

C2n−2iC2i−3 + 2C0C2n−3

= 2C2n−3,

where in the last equality we have used (3). Another proof of (5), using a result of Callan
on Dyck paths, is outlined in Section 4.

Proof of (7):

Enumerate the triangulations of a (2n+1)-gon that include at least one diagonal parallel to
01 according to their diagonal i(2n+2− i) with minimal i (see Figure 3). The (2n− 2i+3)-
gon with vertices i, i + 1, . . . , 2n + 2 − i can be triangulated in C2n−2i+1 ways. By (5), the
2i-gon with vertices 0, 1, . . . , i, 2n + 2 − i, 2n + 3 − i, . . . , 2n can be triangulated in 2C2i−3
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Figure 4: Example illustrating the proof of Lemma 3.

ways. Therefore

f01(2n+ 1) = C2n−1 −

n
∑

i=2

C2n−2i+1 · 2C2i−3

=
2n−2
∑

j=0

CjC2n−2−j − 2
n

∑

i=2

C2n−2i+1C2i−3

=
2n−2
∑

j=0

(−1)jCjC2n−2−j.

Thus by (2) and (4),

f01(2n+ 1) = 2
n−1
∑

j=0

C2jC2n−2−2j −

2n−2
∑

j=0

CjC2n−2−j = 22n−1Cn−1 − C2n−1.

The following lemma will be used in the proof of (6).

Lemma 3. For any n ≥ 2,

n−1
∑

i=1

22i−1Ci−1C2n−1−2i = 4n−1Cn−1 − C2n−2. (8)

Proof. Let h(n) be the number of triangulations of a 2n-gon together with a marking either
on one of the sides 01, n(n+1) or on one of the diagonals k(2n+1−k), with 2 ≤ k ≤ n− 1,
if any such diagonals are present. For example, Figure 4 shows a triangulation of a 16-gon
with the diagonal 4(13) marked. Consider the following two ways to enumerate these marked
triangulations.
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1. First mark the edge (j + 1)(2n − j), with 0 ≤ j ≤ n − 1. For example, the marked
triangulation in Figure 4 corresponds to n = 8 and j = 3. Then choose one of the
C2j triangulations of the (2j + 2)-gon with vertices 0, 1, . . . , j + 1, 2n − j, 2n − j +
1, . . . , 2n− 1 and one of the C2n−2j−2 triangulations of the (2n− 2j)-gon with vertices
j + 1, j + 2, . . . , 2n− j. Thus there are C2j−2C2(n−1)−2j such marked triangulations for
each j. By (4),

h(n) =
n−1
∑

j=0

C2jC2(n−1)−2j = 4n−1Cn−1. (9)

2. There are C2n−2 marked triangulations whose edge n(n + 1) is the one marked. The
remaining marked triangulations can be enumerated according to the maximal i, with
1 ≤ i ≤ n − 1, such that i(2n + 1 − i) is one of the diagonals in the triangulation
(where the case i = 1 corresponds to triangulations avoiding all diagonals parallel to
01.) For example, in Figure 4 we have n = 8 and i = 6. For each such i, there are
h(i) marked triangulations of the 2i-gon with vertices 0, 1, . . . , i, 2n−2i+1, . . . , 2n−1,
and there are f01(2n− 2i+ 2) triangulations of the (2n − 2i + 2)-gon with vertices
i, i+1, . . . , 2n+1− i which avoid the diagonals (i+1)(2n− i), . . . , n(n+1). Thus by
(5) and (9),

h(n) = C2n−2 +
n−1
∑

i=1

h(i)f01(2n− 2i+ 2)

= C2n−2 +
n−1
∑

i=1

4i−1Ci−1 · 2C2n−2i−1.

Comparing this with (9) completes the proof.

Proof of (6):

For convenience we calculate f1(2n−1)(2n) = f02(2n). Enumerate the triangulations of a
2n-gon that include at least one diagonal parallel to 1(2n − 1) according to their diagonal
i(2n− i) with minimal i, where 1 ≤ i ≤ n− 1 (see Figure 5). By (7), the (2i+ 1)-gon with
vertices 0, 1, . . . , i, 2n− i, 2n+1− i, . . . , 2n−1 can be triangulated in 22i−1Ci−1−C2i−1 ways.
The (2n − 2i + 1)-gon with vertices i, i + 1, . . . , 2n + 2 − i can be triangulated in C2n−2i−1

ways. Therefore
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Figure 5: Illustration of the proof of (6).

f02(2n) = C2n−2 −

n−1
∑

i=1

(22i−1Ci−1 − C2i−1)C2n−2i−1

= C2n−2 −

n−1
∑

i=1

22i−1Ci−1C2n−1−2i +
n−1
∑

i=1

C2i−1C2n−2i−1

= C2n−2 − (4n−1Cn−1 − C2n−2) + (C2n−1 − 4n−1Cn−1)

= 2C2n−2 + C2n−1 − 22n−1Cn−1,

where in the penultimate equality we have used (4) and (8).

3 Including a number of diagonals of a fixed direction

The next theorem enumerates the triangulations with a fixed positive number of diagonals
parallel to a fixed edge.

Theorem 4. Let n ≥ 2 and k ≥ 1. Then

f01(2n, k) =
∑

i1+...+ik+1=n−1

2k+1C2i1−1C2i2−1 · · ·C2ik+1−1, (10)

and

f02(2n, k) =
∑

i1+...+ik+1=n−1

2k−1(2i1−1Ci1−1 − C2i1−1)(2
i2−1Ci2−1 − C2i2−1)C2i3−1C2i4−1 · · ·C2ik+1−1. (11)
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If n, k ≥ 1 then

f01(2n+ 1, k) =
∑

i1+...+ik+1=n

(2i1−1Ci1−1 − C2i1−1)C2i2−1C2i3−1 · · ·C2ik+1−1. (12)

Proof. Consider a triangulation of a 2n-gon which includes exactly k diagonals parallel to 01.
These k diagonals partition the 2n-gon into k + 1 triangulated polygons, and partition the
n− 1 edges 12, 23, . . . , (n− 1)n into k + 1 corresponding parts consisting of i1, . . . , ik+1 ≥ 1
edges. The number of vertices in each resulting polygon is 2ij + 2 for all j, and each such
polygon is triangulated with diagonals which are not parallel to one of its sides. Thus

f01(2n, k) =
∑

i1+...+ik+1=n−1
ij≥1

f01(2i1 + 2)f01(2i2 + 2) · · · f01(2ik+1 + 2), (13)

which together with (5) proves equation (10). By similar considerations,

f02(2n, k) =
∑

i1+...+ik+1=n−1
ij≥1

f01(2i1 + 1)f01(2i2 + 1)f01(2i3 + 2)f01(2i4 + 2) · · · f01(2ik+1 + 2),

and

f01(2n+ 1, k) =
∑

i1+...+ik+1=n
ij≥1

f01(2i1 + 1)f01(2i2 + 2)f01(2i3 + 2) · · · f01(2ik+1 + 2).

The differences between these equations and (13) result from considering the regions of the
polygon which contain the vertices 0 and n. The proofs of (11) and (12) now follow from
(6) and (7), respectively.

Note that a consequence of (1), (5) and (10) is the Catalan number identity
∑

k≥0
i1+...+ik+1=n

2k+1C2i1−1C2i2−1 · · ·C2ik+1−1 = C2n. (14)

Another Catalan number identity can be obtained by considering the set of marked
triangulations of a 2n-gon described in the proof of Lemma 3. If k is the number of diagonals
parallel to 01 in a triangulation of a 2n-gon, this triangulation corresponds to k + 2 such
marked triangulations. Thus by (10),

∑

0≤k≤n−2
i1+...+ik+1=n−1

(k + 2) 2k+1C2i1−1C2i2−1 · · ·C2ik+1−1 = 4n−1Cn−1. (15)

Combining (14) and (15) results in the identity

∑

1≤k≤n−1
i1+...+ik+1=n

k 2kC2i1−1C2i2−1 · · ·C2ik+1−1 = 22n−1Cn − C2n.
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4 Remarks

The next theorem was proposed as a problem in the American Mathematical Monthly by
Callan in 2003, and a solution appeared in 2005.

Theorem 5. [2] The number of Dyck 2n-paths that avoid the points (4k, 0), k = 1, 2, . . . , n−1
is twice the number of Dyck (2n− 1)-paths.

Callan proved Theorem 5 using a bijection on Dyck paths. The result is equivalent to (5),
since the Dyck paths in question are equinumerous with the triangulations of a (2n− 2)-gon
which avoid all diagonals parallel to 01. To see this, compare the initial conditions for both
sequences, and observe that the Dyck paths in question satisfy analogous recursive relations
to the ones given by equations (1) and (10). Similarly, it can be shown that f02(2n) is equal
to the number of Dyck 2n-paths avoiding all points (4k + 2, 0) with k = 0, 1, . . . , n− 1, and
that f01(2n+ 1) is equal to the number of Dyck (2n + 1)-paths avoiding all points (4k, 0)
with k = 1, 2, . . . , n− 1.

The relation with Dyck paths also gives another interpretation of these results in terms of
triangulations. Consider the bijection between Dyck paths and triangulations implicit in the
paper of Forder [4]. Using this bijection, the points (4k, 0) and (4k+2, 0) of a Dyck 2n-path
correspond to the diagonals of the form 0(2k+ 1) and 0(2k), respectively, of a triangulation
of an (n+ 2)-gon. This gives analogous results to those of the present note, concerning the
number of diagonals of this form instead of the number of diagonals parallel to a fixed edge.

The sequences f02(2n) and f01(2n+ 1) appear in [5, A066357] and [5, A079489], respec-
tively. The interpretation in terms Dyck paths is given there, along with other interpretations
and several interesting properties. Callan ([3] and [5, A066357]) proved the analog of (6)
using generating functions. Barry [5, A066357] gave an alternative formula for this sequence:

f02(2n+ 2) =
1

n

n
∑

k=0

(

4n

k

)(

3n− k − 2

n− k − 1

)

.

Callan used Dyck paths to prove that

f02(2n+ 2) =
n

∑

k=1

f01(2k + 1)f01(2(n− k) + 1).

Another relation between these sequences is evident from (6) and (7):

f01(2n+ 1) + f02(2n) = 2C2n−2. (16)

A direct proof of (16) may also be of interest.
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