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Abstract

Let Fn be the nth Fibonacci number. For 1 ≤ k ≤ m − 1 let

[

m

k

]

F

=
FmFm−1 · · ·Fm−k+1

F1 · · ·Fk

(1)

be the corresponding Fibonomial coefficient. In this paper, we present some divisibility
properties of

[

sn
n

]

F
by 3, for some positive integers n and s. In particular, among other

things, we prove that 3 |
[

3a+1

3a

]

F
, for all a ≥ 1.
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1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by the recurrence relation Fn+2 = Fn+1 + Fn,
with F0 = 0 and F1 = 1. These numbers are well-known for possessing amazing properties
(consult [7] together with its very extensive annotated bibliography for additional references
and history).

In 1915 Fontené published a one–page note [3] suggesting a generalization of binomial
coefficients, replacing the natural numbers by the terms of an arbitrary sequence (An) of real
or complex numbers.

Since 1964, there has been an accelerated interest in the Fibonomial coefficients
[

m

k

]

F
,

which correspond to the choice An = Fn, thus are defined, for 1 ≤ k ≤ m, in the following
way

[

m

k

]

F

=
FmFm−1 · · ·Fm−k+1

F1 · · ·Fk

.

It is surprising that this quantity will always take integer values. This can be shown by
an induction argument and the recursion formula

[

m

k

]

F

= Fk+1

[

m − 1

k

]

F

+ Fm−k−1

[

m − 1

k − 1

]

F

,

which is a consequence of the formula Fm = Fk+1Fm−k + FkFm−k−1.
Several authors became interested in the divisibility properties of binomial coefficients.

Among several interesting results on this subject, we mention the following facts:

• An integer n ≥ 2 is prime if and only if all the binomial coefficients
(

n

1

)

, . . . ,
(

n

n−1

)

are
divisible by n.

• A surprising result, proved by D. Singmaster [13], is that any integer divides almost all
binomial coefficients. More precisely, let d be an integer and let f(N) be the number
of binomial coefficients

(

n

k

)

divisible by d, with n < N . Then

lim
N→∞

f(N)

N(N + 1)/2
= 1.

Since there are N(N + 1)/2 binomial coefficients
(

n

k

)

, with n < N , the density of the
set of binomial coefficients divisible by d is 1.

• Recently Zhi-Wei Sun [16] proved, for example, that for any positive integers k, ℓ and
n the following holds

ℓn + 1 | k

(

kn + ℓn

ℓn

)

.

Other interesting results concerning divisibility properties of binomial coefficients can be
found in [2, 4]. For example the following holds: 3 |

(

sn

n

)

, for all n ≥ 1 if and only if 3 | s.

In a very recent paper, the authors [10] proved, among other things, that 2 |
[

2n

n

]

F
for all

integers n > 1. However, the same is not valid when we replace 2 by 3, as can be seen by
the example 3 ∤

[

3·2
2

]

F
= 40.
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In this paper, we shall study similar problems for the Fibonomial coefficients. Thus we
shall deal with the divisibility of

[

sn

n

]

F
by 3 for some positive integers n and s.

Our first result gives a necessary and sufficient condition for that 3 |
[

3n

n

]

F
.

Theorem 1. We have 3 ∤
[

3n

n

]

F
if and only if n = 1 or n = 2 · 3k for k ≥ 0.

As we said before, we have 3 |
(

sn

n

)

for all n ≥ 1 if and only if 3 | s. Our next theorem
gives a related result in the Fibonomial context.

Theorem 2. Let s > 0 be an integer. The number
[

sn

n

]

F
is a multiple of 3 for all n ≥ 1 if

and only if s ≡ 0 (mod 12).

We organize this paper as follows. In Section 2, we will recall some useful properties of
the Fibonacci numbers such as a result concerning the 3-adic order of Fn. Sections 3 and 4
are devoted to the proof of Theorems 1 and 2, respectively.

2 Auxiliary results

Before proceeding further, we recall some facts about the Fibonacci numbers for the conve-
nience of the reader.

Lemma 3. We have

(a) Fn | Fm if and only if n | m.

(b) If m > k > 1, then
[

m

k

]

F

=
Fm

Fk

[

m − 1

k − 1

]

F

.

Item (a) can be proved by using the well-known Binet formula

Fn =
αn − βn

α − β
, for n ≥ 0,

where α = (1 +
√

5)/2 and β = (1 −
√

5)/2. The proof of item (b) follows directly from
definition (1). We refer the reader to [1, 6, 15, 11] for more properties and additional
bibliography.

The p-adic order (or valuation) of r, νp(r), is the exponent of the highest power of a prime
p which divides r. The p-adic order of Fibonacci numbers was completely characterized, see
[5, 9, 12, 14]. For instance, from the main results of Lengyel [9], we extract the following
result.

Lemma 4. For n ≥ 1, we have

ν3(Fn) =

{

ν3(n) + 1, if n ≡ 0 (mod 4);

0, if n 6≡ 0 (mod 4).
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A proof of a more general result can be found in [9, pp. 236–237 and Section 5].

Lemma 5. For any integer k ≥ 1 and p prime, we have

k

p − 1
−

⌊

log k

log p

⌋

− 1 ≤ νp(k!) ≤ k − 1

p − 1
, (2)

where, as usual, ⌊x⌋ denotes the largest integer less than or equal to x.

Proof. Recall the well-known Legendre formula [8]:

νp(k!) =
k − sp(k)

p − 1
, (3)

where sp(k) is the sum of digits of k in base p. Since k has ⌊log k/ log p⌋ + 1 digits in base
p, and each digit is at most p − 1, we get

1 ≤ sp(k) ≤ (p − 1)

(⌊

log k

log p

⌋

+ 1

)

. (4)

Therefore, the inequality in (2) follows from (3) and (4).

Now we are ready to deal with the proofs of our theorems.

3 Proof of Theorem 1

In order to make our proof clearer, we shall split the statement of Theorem 1 in four propo-
sitions.

Proposition 6. (The “if” part) For all integers k ≥ 0, we have that 3 ∤
[

2·3k+1

2·3k

]

F
.

Proof. Using the definition of the Fibonomial coefficients, we have

[

2 · 3k+1

2 · 3k

]

F

=
2·3k

∏

i=1

F2·3k+1−2·3k+i

Fi

=
2·3k

∏

i=1

F4·3k+i

Fi

and hence

ν3

([

2 · 3k+1

2 · 3k

]

F

)

= ν3





2·3k

∏

i=1

F4·3k+i

Fi



 =
2·3k

∑

i=1

(ν3 (F4·3k+i) − ν3 (Fi)).

Thus, for proving that the assertion holds, it suffices to show that ν3 (Fi) = ν3 (F4·3k+i)
for all i = 1, 2, . . . , 2 · 3k. Since 4 · 3k + i ≡ i (mod 4) and 3 | Fn if and only if 4 | n (Lemma
3 (a)), we need only to consider the case when 4 | i, that is, when i = 4ti, for some positive
integer ti. From this fact together with Lemma 4, we obtain

ν3(Fi) = ν3(F4ti) = ν3(ti) + 1
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while
ν3(F4·3k+i) = ν3(F4(3k+ti)) = ν3(3

k + ti) + 1 = ν3(ti) + 1,

where in the last equality above, we used that ti < 3k (since 4ti = i ≤ 2 · 3k) and the
clear identity νp(a + b) = min{νp(a), νp(b)}, when νp(a) 6= νp(b), where p is any prime. This
completes the proof.

For the “only if” part, we have

Proposition 7. For all integers a ≥ 2 and k ≥ 1, we have that 3 |
[

2a·3k+1

2a·3k

]

F
.

Proof. By Lemma 3 (b), we can write
[

2a · 3k+1

2a · 3k

]

F

=
F2a·3k+1

F2a·3k

[

2a · 3k+1 − 1

2a · 3k − 1

]

F

and so it suffices to prove that 3 | F2a·3k+1/F2a·3k . Indeed, using Lemma 4 and the fact that
a ≥ 2 to get

ν3

(

F2a·3k+1

F2a·3k

)

= ν3(F2a·3k+1) − ν3(F2a·3k) = ν3(2
a · 3k+1) − ν3(2

a · 3k) = 1.

Proposition 8. For all integers a ≥ 1, we have that 3 |
[

3a+1

3a

]

F
.

Proof. Let us suppose, without loss of generality, that a is even (the case of a odd can be
handled in much the same way). Since 3 |

[

27
9

]

F
, we may assume that a > 2. By definition

of the Fibonomial coefficient, we have
[

3a+1

3a

]

F

=
F3a+1 · · ·F2·3a+1

F1 · · ·F3a

.

So we must to compare the 3-adic order of the numerator and denominator of the previous
fraction. Since 3 | Fn if and only if 4 | n, we need only to consider the 3-adic order of
the ⌊3a/4⌋ numbers F4, . . . , F3a−1, for the denominator, and F2·3a+2, . . . , F3a+1−3, for the
numerator. So, in the first case, we use Lemma 4 to obtain

S1 := ν3(F1 · · ·F3a)

= ν3(F4) + ν3(F8) + · · · + ν3(F3a−1)

= (ν3(4) + 1) + (ν3(8) + 1) + · · · + (ν3(3
a − 1) + 1)

= ν3(4) + ν3(8) + · · · + ν3(3
a − 1) +

⌊

3a

4

⌋

. (5)

We note that (5) could be rewritten as

ν3(F1 · · ·F3a) = ν3(12) + ν3(24) + · · · + ν3

(

12

⌊

3a − 1

12

⌋)

+

⌊

3a

4

⌋

= ν3

(⌊

3a − 1

12

⌋

!

)

+

⌊

3a − 1

12

⌋

+

⌊

3a

4

⌋

.
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For the 3-adic order of numerator, we proceed as before to get

S2 := ν3(F3a+1 · · ·F2·3a+1) = ν3(F3a+1−3) + · · · + ν3(F2·3a+2)

= ν3(3
a+1 − 3) + · · · + ν3(2 · 3a + 2) +

⌊

3a

4

⌋

= ν3(3(3a − 1)) + · · · + ν3(3(3a − (3a−1 − 2))) +

⌊

3a

4

⌋

= ν3(3
a − 1) + · · · + ν3(3

a − (3a−1 − 2)) +

+
3a−1 + 1

4
+

⌊

3a

4

⌋

. (6)

Observe that there exist several common terms in sums (5) and (6), so combining them
gives

S2 − S1 =
3a−1 + 1

4
− (ν3(4) + · · · + ν3(3

a − (3a−1 + 3)))

=
3a−1 + 1

4
− (ν3(12) + · · · + ν3

(

12

⌊

2 · 3a−1 − 3

12

⌋)

)

=
3a−1 + 1

4
−

⌊

2 · 3a−1 − 3

12

⌋

− ν3

(⌊

2 · 3a−1 − 3

12

⌋

!

)

. (7)

Hence, when a is even, we have

ν3

([

3a+1

3a

]

F

)

=
3a−1 + 1

4
−

⌊

2 · 3a−1 − 3

12

⌋

− ν3

(⌊

2 · 3a−1 − 3

12

⌋

!

)

. (8)

The fact that ⌊x⌋ ≤ x yields the following estimate

ν3

([

3a+1

3a

]

F

)

≥ 3a−1 + 6

12
− ν3

(⌊

2 · 3a−1 − 3

12

⌋

!

)

. (9)

By applying Lemma 5 to the 3-adic order in the right-hand side of (9), we obtain

ν3

(⌊

2 · 3a−1 − 3

12

⌋

!

)

≤ 2 · 3a−1 − 15

24
. (10)

Now, we combine (9) and (10) to derive

ν3

([

3a+1

3a

]

F

)

≥ 3a−1 + 6

12
− 2 · 3a−1 − 15

24
=

27

24
> 0

as desired. Since 27/24 = 1.125, we actually proved that ν3

(

[

3a+1

3a

]

F

)

≥ 2, when a > 2 is

even.

6



For the sake of completeness, we remark that the related formula to (8), for a odd is

ν3

([

3a+1

3a

]

F

)

=
3a−1 − 1

4
−

⌊

2 · 3a−1 − 2

12

⌋

− ν3

(⌊

2 · 3a−1 − 2

12

⌋

!

)

. (11)

To finish the “only if” case, all that remains is to prove the following.

Proposition 9. For all integers k ≥ 1 and every prime p > 3, we have that 3 |
[

3pk

pk

]

F
.

Proof. To prove this assertion, we take the same approach as in the proof of Proposition
8. Instead of demonstrating the general case, which is notationally complicated, we restrict
ourselves to a particular case that captures the exact essence of our idea. For that, we
shall consider p ≡ k ≡ 1 (mod 12). Although there are several cases to consider (48 cases
depending on the residue of p and k modulo 12), the proofs are very similar.

First, we write
[

3pk

pk

]

F

=
F3pk · · ·F2pk−1

F1 · · ·Fpk

.

We note that again, by Lemma 3 (a) (for n = 4), we need to take care only of the
following sequences of indexes: 4, 8, . . . , pk − 1 and 2pk + 2, . . . , 3pk − 3 which correspond
to indexes of the denominator and numerator respectively, having non-zero 3-adic valuation.
Thus

M1 := ν3(F1F2 · · ·Fpk) = ν3(F4) + ν3(F8) + · · · + ν3(Fpk−1)

= (ν3(4) + 1) + · · · + (ν3(pk − 1) + 1)

= ν3(4) + · · · + ν3(pk − 1) +

⌊

pk

4

⌋

(12)

and

M2 := ν3(F3pkF3pk−1 · · ·F2pk+1)

= ν3(F3pk−3) + ν3(F3pk−7) + · · · + ν3(F2pk+2)

= ν3(3pk − 3) + · · · + ν3(3pk − (pk − 2)) +

⌊

pk

4

⌋

= ν3(3(pk − 1)) + · · · + ν3

(

3

(

pk − pk − 10

3

))

+

⌊

pk

4

⌋

= ν3(pk − 1) + · · · + ν3

(

pk − pk − 10

3

)

+
pk − 1

12
+

+

⌊

pk

4

⌋

. (13)
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Observe that there exist several common terms in sums (12) and (13), thus combining
them

M2 −M1 =
pk − 1

12
− (ν3(4) + · · · + ν3

(

2pk + 2

3

)

)

=
pk − 1

12
− (ν3(12) + · · · + ν3

(

12

⌊

2pk + 2

36

⌋)

)

=
pk − 1

12
−

⌊

2pk + 2

36

⌋

− ν3

(⌊

2pk + 2

36

⌋

!

)

. (14)

Hence

ν3

([

3pk

pk

]

F

)

=
pk − 1

12
−

⌊

2pk + 2

36

⌋

− ν3

(⌊

2pk + 2

36

⌋

!

)

≥ pk − 5

36
− ν3

(⌊

2pk + 2

36

⌋

!

)

(15)

≥ pk − 5

36
− pk − 17

36
(16)

=
1

3
> 0,

where we used that ⌊x⌋ ≤ x (in (15)) and that ν3(⌊(2pk+2)/36⌋!) ≤ (pk−17)/36, by Lemma
5 (in (16)). The proof is then complete.

4 Proof of Theorem 2

Proof. For the “if” part, we write s = 12k, then
[

sn

n

]

F

=

[

12kn

n

]

F

=
F12kn

Fn

[

12kn − 1

n − 1

]

F

.

Now, it suffices to prove that 3 | F12kn/Fn. For that we use Lemma 4 to obtain

ν3

(

F12kn

Fn

)

= ν3(F12kn) − ν3(Fn) = ν3(kn) + 2 − ν3(Fn)

and so

ν3

(

F12kn

Fn

)

=

{

2 + ν3(kn), if 4 ∤ n;

1 + ν3(k), if 4 | n.

Summarizing, we conclude that ν3 (F12kn/Fn) ≥ 1 and this completes the proof of this
case.

Let k be an integer belonging to {1, . . . , 11}. Suppose that s ≡ k (mod 12), in order
to prove the “only if” part, it suffices to exhibit a positive integer Nk such that 3 ∤

[

sNk

Nk

]

F
.

Of course, Nk = 1 is an example of such number for k = 1, 2, 3, 5, 6, 7, 9, 10, 11, because
[

s

1

]

F
= Fs is not a multiple of 3, if 4 ∤ s. We claim that N4 = N8 = 4 are also examples. In

fact, we have
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ν3

([

4s

4

]

F

)

= ν3

(

F4sF4s−1F4s−2F4s−3

F1F2F3F4

)

= ν3

(

F4s

3

)

= (ν3(4s) + 1) − 1 = 0,

where we used that 3 ∤ s when s ≡ 4, 8 (mod 12).

5 Conclusion

In this paper, we study divisibility properties of the Fibonomial coefficients
[

m

k

]

F
by 3.

Among other things, we give necessary and sufficient conditions for
[

sn

n

]

F
being divisible by

3, for some integers s and n. Our method is effective and possibly can be used to work on
divisibility by larger primes. However, it is important to get noticed that for each prime,
this study brings a lot of particular technicalities.
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[16] Zhi-Wei Sun, On divisibility concerning binomial coefficients, preprint, May 6 2010,
available at http://arxiv.org/abs/1005.1054.

2000 Mathematics Subject Classification: Primary 11B39.
Keywords: Fibonacci number, Fibonomial coefficient, divisibility.

(Concerned with sequences A000045 and A144712.)

Received March 1 2012; revised version received June 11 2012. Published in Journal of
Integer Sequences, June 19 2012.

Return to Journal of Integer Sequences home page.

10

http://arxiv.org/abs/1005.1054
http://oeis.org/A000045
http://oeis.org/A144712
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Auxiliary results
	Proof of Theorem 1
	Proof of Theorem 2
	Conclusion
	Acknowledgements

