Extremal Orders of Certain Functions Associated with Regular Integers $(\bmod n)$

Brăduţ Apostol
"Spiru Haret" Pedagogical High School
1 Timotei Cipariu St.
RO - 620004 Focşani
Romania
apo_brad@yahoo.com
Lucian Petrescu
"Henri Coandă" Technical College
2 Tineretului St.
RO - 820235 Tulcea Romania
petrescuandreea@yahoo.com

Abstract

Let $V(n)$ denote the number of positive regular integers $(\bmod n)$ that are $\leq n$, and let $V_{k}(n)$ be a multidimensional generalization of the arithmetic function $V(n)$. We find the Dirichlet series of $V_{k}(n)$ and give the extremal orders of some totients involving arithmetic functions which generalize the sum-of-divisors function and the Dedekind function. We also give the extremal orders of other totients regarding arithmetic functions which generalize the sum of the unitary divisors of n and the unitary function corresponding to $\phi(n)$, the Euler function. Finally, we study extremal orders of some compositions, involving the functions mentioned previously.

1 Introduction

Let $n>1$ be an integer. An integer a is called regular $(\bmod n)$ if there exists an integer x such that $a^{2} x \equiv a(\bmod n)$ (sequence A143869 in Sloane's Encyclopedia of Integer Sequences). Several authors investigated properties of regular integers $(\bmod n)$. Alkam and Osba [1], using ring-theoretic considerations, rediscovered some of the statements proved by Morgado $[6,7]$, who showed that $a>1$ is regular $(\bmod n)$ if and only if $\operatorname{gcd}(a, n)$ is a unitary divisor of n. Tóth [15] gave direct proofs of some properties, because the proofs of [6, 7] were lengthy and those of [1] were ring-theoretical.

Let $\operatorname{Reg}_{n}=\{a: 1 \leq a \leq n$ and a is regular $(\bmod n)\}$, and $V(n)=\# \operatorname{Reg}_{n}$. The function V is multiplicative and $V\left(p^{\alpha}\right)=\phi\left(p^{\alpha}\right)+1=p^{\alpha}-p^{\alpha-1}+1$, where ϕ is the Euler function. Consequently, $V(n)=\sum_{d \| n} \phi(d)$, for every $n \geq 1$, where $d \| n$ means that d is a unitary divisor of n, that is, $d \mid n$ and $\operatorname{gcd}\left(d, \frac{n}{d}\right)=1$. Also $\phi(n)<V(n) \leq n$, for every $n>1$, and $V(n)=n$ if and only if n is a squarefree; see $[7,15,1]$. Thus, the function $V(n)$ is an analogue of the Euler function $\phi(n)$. The function $\phi(n)$ is the sequence A000010 in Sloane's On-Line Encyclopedia of Integer Sequences. Also, the function $V(n)$ is the sequence A055653; see [12].

Apostol and Tóth [4] considered the multidimensional generalization of the function $V(n), V_{k}(n)$, where $k \geq 1$ is a fixed integer. The function $V_{k}(n)$ is multiplicative and $V_{k}\left(p^{\alpha}\right)=\phi_{k}\left(p^{\alpha}\right)+1=p^{\alpha k}-p^{(\alpha-1) k}+1$, where ϕ_{k} is the Jordan function of order k. Consequently, $V_{k}(n)=\sum_{d \| n} \phi_{k}(d)$, for every $n \geq 1$. Also $\phi_{k}(n)<V_{k}(n) \leq n^{k}$, for every $n>1$ and $V_{k}(n)=n^{k}$ if and only if n is squarefree; see [4].

Tóth [15] proved results concerning the minimal and maximal orders of the functions $V(n)$ and $V(n) / \phi(n)$. Alkam and Osba [1] investigated the minimal order of $V(n)$. Sándor and Tóth [10] and Apostol [2] studied the extremal orders of compositions of certain functions.

In Section 2 we present some notation and results involving arithmetical functions. Section 3 is devoted to the study of the Dirichlet series of $V_{k}(n)$. Extremal orders of the function $V_{k}(n)$ in connection with $\sigma_{k}(n)$ and $\psi_{k}(n)$ are given in Section 4.

In Section 5 we prove some results regarding $V_{k}(n)$ and unitary analogues of the functions $\sigma_{k}(n)$ and $\phi_{k}(n)$.

In Section 6 we give the extremal orders of some compositions of functions from above.
Section 7 provides other limits of compositions of arithmetical functions. We also present some open problems regarding extremal orders of these compositions.

2 Preliminaries

In what follows let $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}>1$ be a positive integer and let $k \geq 1$ be an integer. Throughout the paper we will use the following notation:

- p_{1}, p_{2}, \ldots - the sequence of the primes;
- $\sigma_{k}(n)$ - the generalization of $\sigma(n)$, defined by $\sigma_{k}(n)=\prod_{i=1}^{r} \frac{p_{i}^{\left(\alpha_{i}+1\right) k}-1}{p_{i}^{k}-1}$;
- $\psi_{k}(n)$ - the generalization of $\psi(n)$, defined by $\psi_{k}(n)=n^{k} \prod_{p \mid n}\left(1+\frac{1}{p^{k}}\right)$;
- $\zeta(s)$ - the Riemann zeta function, $\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}, s=\sigma+i t \in \mathbb{C}$ and $\sigma>1$;
- $\phi(n)$ - the Euler function, $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$;
- $\phi_{k}(n)$ - the Jordan function of order $k, \phi_{k}(n)=n^{k} \prod_{p \mid n}\left(1-\frac{1}{p^{k}}\right)$;
- γ - the Euler constant, $\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}-\log n\right)$;
- $\phi^{*}(n)$ - the unitary analogue of $\phi(n), \phi^{*}(n)=\prod_{i=1}^{k}\left(p_{i}^{\alpha_{i}}-1\right)$;
- $\sigma^{*}(n)$ - the unitary analogue of $\sigma(n), \sigma^{*}(n)=\prod_{i=1}^{k}\left(p_{i}^{\alpha_{i}}+1\right)$.

For other arithmetic functions defined by regular integers modulo n we refer to the papers [5, 14].

Let $f(n)$ be a nonnegative real-valued multiplicative arithmetic function. Let

$$
L=L(f):=\limsup _{n \rightarrow \infty} \frac{f(n)}{\log \log n}
$$

and

$$
\rho(p)=\rho(p, f):=\sup _{\alpha \geq 0} f\left(p^{\alpha}\right)
$$

for primes p, and consider the product $R=R(f):=\prod_{p}\left(1-\frac{1}{p}\right) \rho(p)$.
In order to prove the properties below we apply the following results:
Lemma 1. (Tóth and Wirsing [16, Corollary 1]). If f is a nonnegative real-valued multiplicative arithmetic function such that for each prime p,
(i) $\rho(p)=\sup _{\alpha \geq 0}\left(f\left(p^{\alpha}\right)\right) \leq\left(1-\frac{1}{p}\right)^{-1}$, and
(ii) there is an exponent $e_{p}=p^{o(1)} \in \mathbb{N}$ satisfying $f\left(p^{e_{p}}\right) \geq 1+\frac{1}{p}$,
then $\lim \sup _{n \rightarrow \infty} \frac{f(n)}{\log \log n}=e^{\gamma} \prod_{p}\left(1-\frac{1}{p}\right) \rho(p)$.
Lemma 2. (Tóth and Wirsing [16, Theorem 1]). Suppose that $\rho(p)<\infty$ for all primes p and the product R converges unconditionally (i.e., irrespectively of order), improper limits being allowed, then $L \leq e^{\gamma} R$.
Lemma 3. (Tóth and Wirsing [16, Theorem 3]). Suppose that $\rho(p)<\infty$ for all primes p, that for each prime p there is an exponent $e_{p}=p^{o(1)} \in \mathbb{N}$ such that $\prod_{p} f\left(p^{e_{p}}\right) \rho(p)^{-1}>0$ and that the product R converges, improper limits being allowed. Then $L \geq e^{\gamma} R$.

3 Dirichlet series of $V_{k}(n)$

Apostol and Petrescu [3] studied the Dirichlet series of $V_{1}(n):=V(n)$. In what follows we give the Dirichlet series of $V_{k}(n)$ for $k \geq 2$ and some results involving the Möbius function.

Proposition 4. For every $s=\sigma+i t \in \mathbb{C}$ with $\sigma>k+1$,

$$
\sum_{n \geq 1} \frac{V_{k}(n)}{n^{s}}=\zeta(s-k) \zeta(s) \prod_{p}\left(1-\frac{p^{2 s-k}+p^{s}-p^{s-k}}{p^{3 s-k}}\right)
$$

Proof. Let $f(n)=\frac{V_{k}(n)}{n^{s}}$. We have

$$
\sum_{n \geq 1}|f(n)| \leq \sum_{n \geq 1} \frac{1}{n^{\sigma-k}}<\infty
$$

so the series $\sum_{n \geq 1} \frac{V_{k}(n)}{n^{s}}$ converges absolutely for $\sigma>k+1$. Since V_{k} is multiplicative,

$$
\sum_{n \geq 1} \frac{V_{k}(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s-k}}} \cdot \prod_{p} \frac{1}{1-\frac{1}{p^{s}}} \cdot \prod_{p}\left(1-\frac{p^{2 s-k}+p^{s}-p^{s-k}}{p^{3 s-k}}\right)
$$

and the claim follows.
Corollary 5. Let $s=\sigma+i t \in \mathbb{C}, \sigma>k+1$. Then

$$
\sum_{n \geq 1} \frac{\mu(n) V_{k}(n)}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s-k}}\right)=\frac{1}{\zeta(s-k)}
$$

Also,

$$
\sum_{n \geq 1} \frac{|\mu(n)| V_{k}(n)}{n^{s}}=\prod_{p}\left(1+\frac{1}{p^{s-k}}\right)=\frac{\zeta(s-k)}{\zeta(2 s-2 k)} .
$$

Proof. For $f(n)=\frac{\mu(n) V_{k}(n)}{n^{s}}$ the series $\sum_{n \geq 1}|f(n)|$ converges absolutely, so

$$
\sum_{n \geq 1} \frac{\mu(n) V_{k}(n)}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s-k}}\right)=\frac{1}{\zeta(s-k)}
$$

For the second assertion take $f(n)=\frac{|\mu(n)| V_{k}(n)}{n^{s}}$.

4 Extremal orders concerning classical generalized arithmetic functions

For the quotient $\frac{\sigma_{k}(n)}{V_{k}(n)}$, we notice that $\frac{\sigma_{k}(n)}{V_{k}(n)} \geq 1$ for every $n \geq 1$. Since

$$
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{\sigma_{k}(p)}{V_{k}(p)}=\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{p^{k}+1}{p^{k}}=1
$$

we get

$$
\liminf _{n \rightarrow \infty} \frac{\sigma_{k}(n)}{V_{k}(n)}=1
$$

hence the minimal order of $\frac{\sigma_{k}(n)}{V_{k}(n)}$ is 1 . Now consider the quotient

$$
\frac{\psi_{k}(n)}{V_{k}(n)}
$$

Since

$$
\frac{\psi_{k}(n)}{V_{k}(n)} \geq 1
$$

for every $n \geq 1$ and

$$
\frac{\psi_{k}(p)}{V_{k}(p)}=\frac{p^{k}+1}{p^{k}}
$$

for every prime p, it is immediate that

$$
\liminf _{n \rightarrow \infty} \frac{\psi_{k}(n)}{V_{k}(n)}=1
$$

Thus, the minimal order of $\frac{\psi_{k}(n)}{V_{k}(n)}$ is 1 . It is known that

$$
\limsup _{n \rightarrow \infty} \frac{\sigma(n)}{V(n)(\log \log n)^{2}}=e^{2 \gamma}
$$

and

$$
\limsup _{n \rightarrow \infty} \frac{\psi(n)}{V(n)(\log \log n)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma}
$$

see [2]. Proposition 6 shows that the maximal order of $\frac{\sigma_{k}(n)}{V_{k}(n)}$ and $\frac{\psi_{k}(n)}{V_{k}(n)}$ is $\frac{6}{\pi^{2}} e^{2 \gamma}(\log \log n)^{2}$.
Proposition 6. For $k \geq 2$,

$$
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}(n)}{V_{k}(n)(\log \log n)^{2}}=\limsup _{n \rightarrow \infty} \frac{\psi_{k}(n)}{V_{k}(n)(\log \log n)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma} .
$$

Proof. Take $f(n)=\sqrt{\frac{\sigma_{k}(n)}{V_{k}(n)}}$. Then

$$
f\left(p^{\alpha}\right)=\sqrt{\frac{p^{(\alpha+1) k}-1}{\left(p^{k}-1\right)\left(p^{\alpha k}-p^{(\alpha-1) k}+1\right)}} \leq \sqrt{\frac{p+1}{p-1}}=\rho(p)<\left(1-\frac{1}{p}\right)^{-1}
$$

and

$$
f\left(p^{2}\right)=\sqrt{\frac{p^{3 k}-1}{\left(p^{k}-1\right)\left(p^{2 k}-p^{k}+1\right)}} \geq 1+\frac{1}{p}
$$

for every prime p, so (ii) in Lemma 1 is satisfied. We obtain

$$
\limsup _{n \rightarrow \infty} \frac{\sqrt{\sigma_{k}(n)}}{\sqrt{V_{k}(n)} \log \log n}=\prod_{p} \sqrt{1-\frac{1}{p^{2}}} e^{\gamma}=\sqrt{\frac{6}{\pi^{2}}} e^{\gamma}
$$

So

$$
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}(n)}{V_{k}(n)(\log \log n)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma} .
$$

Since $\psi_{k}(n) \leq \sigma_{k}(n)$ and for the primes p we have $\psi_{k}(p)=\sigma_{k}(p)=p^{k}+1$, the result for $\frac{\psi_{k}(n)}{V_{k}(n)(\log \log n)^{2}}$ follows from the previous one.

5 Extremal orders concerning unitary analogues of σ_{k} and ϕ_{k}

In what follows we consider the functions $\sigma_{k}^{*}(n)$ and $\phi_{k}^{*}(n)$, representing the generalizations for the sum of the unitary divisors of n and the unitary analogue Euler function, respectively. Let $k \geq 1$ be a fixed integer. We have $\sigma_{k}^{*}(n)=\sum_{d \| n} d^{k}$ and $\sigma_{k}^{*}\left(p^{\alpha}\right)=p^{\alpha k}+1$. Also,

$$
\phi_{k}^{*}(n):=\sum_{\substack{\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right) \in\{1,2, \ldots, n\}^{k} \\ \operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right), n\right) *=1}} 1=\sum_{d \| n} d^{k} \mu^{*}\left(\frac{n}{d}\right),
$$

and hence $\phi_{k}^{*}\left(p^{\alpha}\right)=p^{\alpha k}-1$. Note that

$$
\operatorname{gcd}(a, b)_{*}=\max \{d: d \mid a, d \| b\}
$$

and $\mu^{*}(n)$ is the unitary analogue of the Möbius function, given by $\mu^{*}(n)=(-1)^{\omega(n)}$, where $\omega(n)$ is the number of distinct prime factors of n. The functions $\sigma_{k}^{*}(n)$ and $\phi_{k}^{*}(n)$ are multiplicative. Let $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of $n>1$. We obtain

$$
\phi_{k}^{*}(n)=\left(p_{1}^{\alpha_{1} k}-1\right) \cdots\left(p_{r}^{\alpha_{r} k}-1\right) \quad \text { and } \quad \sigma_{k}^{*}(n)=\left(p_{1}^{\alpha_{1} k}+1\right) \cdots\left(p_{r}^{\alpha_{r} k}+1\right) .
$$

Observe that $\sigma_{k}^{*}(n)=\sigma_{k}(n)$ and $\phi_{k}^{*}(n)=\phi_{k}(n)$ for all squarefree n. Furthermore, for every $n \geq 1$,

$$
\phi_{k}(n) \leq \phi_{k}^{*}(n) \leq n^{k} \leq \sigma_{k}^{*}(n) \leq \sigma_{k}(n)
$$

Recall that an integer $n>1$ is called powerful if it is divisible by the square of each of its prime factors. A powerful integer is also called a squarefull integer. We give extremal orders for the quotients $\frac{\sigma_{k}^{*}(n)}{V_{k}(n)}$ and $\frac{\phi_{k}^{*}(n)}{V_{k}(n)}$, the minimal order of $\frac{\phi_{k}^{*}(n)}{V_{k}(n)}$ being studied for powerful numbers. Since $\frac{\sigma_{k}^{*}(n)}{V_{k}(n)} \geq 1$ for every $n \geq 1$ and $\lim _{p \rightarrow \infty} \frac{\sigma_{k}^{*}(p)}{V_{k}(p)}=\lim _{p \rightarrow \infty} \frac{p^{k}+1}{p^{k}}=1$ for prime numbers p, it follows that $\liminf _{n \rightarrow \infty} \frac{\sigma_{k}^{*}(n)}{V_{k}(n)}=1$.

If n is powerful, it is easy to see that $\frac{\phi_{k}^{*}(n)}{V_{k}(n)} \geq 1$, taking into account that $\frac{\phi_{k}^{*}\left(p^{\alpha}\right)}{V_{k}\left(p^{\alpha}\right)} \geq 1$ for $\alpha \geq 2$. For prime numbers p, we notice that

$$
\lim _{p \rightarrow \infty} \frac{\phi_{k}^{*}\left(p^{2}\right)}{V_{k}\left(p^{2}\right)}=\lim _{p \rightarrow \infty} \frac{p^{2 k}-1}{p^{2 k}-p^{k}+1}=1,
$$

which implies that

$$
\liminf _{n \rightarrow \infty} \frac{\phi_{k}^{*}(n)}{V_{k}(n)}=1
$$

so the minimal order of $\frac{\phi_{k}^{*}(n)}{V_{k}(n)}$ is 1 .
For the maximal orders of these quotients we have
Proposition 7. For $k \geq 1$,

$$
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}(n)}{V_{k}(n) \log \log n}=\limsup _{n \rightarrow \infty} \frac{\phi_{k}^{*}(n)}{V_{k}(n) \log \log n}=e^{\gamma} .
$$

Proof. Take $f(n)=\frac{\sigma_{k}^{*}(n)}{V_{k}(n)}$ in Lemma 2, which is a nonnegative real-valued multiplicative arithmetic function. We have

$$
f\left(p^{\alpha}\right)=\frac{p^{\alpha k}+1}{p^{\alpha k}-p^{(\alpha-1) k}+1} \leq\left(1-\frac{1}{p}\right)^{-1}=\rho(p)<\infty
$$

and $R=1$, so

$$
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}(n)}{V_{k}(n) \log \log n} \leq e^{\gamma}
$$

Now let $g(n)=\frac{\phi_{k}^{*}(n)}{V_{k}(n)}$. Here

$$
g\left(p^{\alpha}\right)=\frac{p^{\alpha k}-1}{p^{\alpha k}-p^{(\alpha-1) k}+1} \leq\left(1-\frac{1}{p}\right)^{-1}=\rho(p)
$$

and

$$
R=\prod_{p} g\left(p^{1}\right)(\rho(p))^{-1}=\prod_{p}\left(p^{k}+1\right) \cdot \frac{p-1}{p}>0
$$

Hence, by Lemma 3 we have

$$
\limsup _{n \rightarrow \infty} \frac{\phi_{k}^{*}(n)}{V_{k}(n) \log \log n} \geq e^{\gamma} .
$$

It is obvious that $\phi_{k}^{*}(n) \leq \sigma_{k}^{*}(n)$ for every $n \geq 1$. We obtain

$$
e^{\gamma} \leq \limsup _{n \rightarrow \infty} \frac{\phi_{k}^{*}(n)}{V_{k}(n) \log \log n} \leq \limsup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}(n)}{V_{k}(n) \log \log n} \leq e^{\gamma}
$$

which shows that

$$
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}(n)}{V_{k}(n) \log \log n}=\limsup _{n \rightarrow \infty} \frac{\phi_{k}^{*}(n)}{V_{k}(n) \log \log n}=e^{\gamma},
$$

as desired.
Corollary 8. The maximal order of both $\frac{\sigma_{k}^{*}(n)}{V_{k}(n)}$ and $\frac{\phi_{k}^{*}(n)}{V_{k}(n)}$ is $e^{\gamma} \log \log n$.

6 Extremal orders regarding compositions of arithmetical functions

We now move to the study of extremal orders of some composite arithmetic functions. We start with $V_{k}\left(V_{k}(n)\right)$ and $\phi_{k}\left(V_{k}(n)\right)$.

We know that $V_{k}(n) \leq n^{k}$ for every $n \geq 1$, so

$$
\frac{V_{k}\left(V_{k}(n)\right)}{n^{k^{2}}} \leq \frac{\left(V_{k}(n)\right)^{k}}{n^{k^{2}}} \leq \frac{\left(n^{k}\right)^{k}}{n^{k^{2}}}=1
$$

and

$$
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{V_{k}\left(V_{k}(p)\right)}{p^{k^{2}}}=\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{V_{k}\left(p^{k}\right)}{p^{k^{2}}}=\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{p^{k^{2}}-p^{(k-1) k}+1}{p^{k^{2}}}=1,
$$

so the maximal order of $V_{k}\left(V_{k}(n)\right)$ is $n^{k^{2}}$. Since $\phi_{k}(n) \leq n^{k}$ and $V_{k}(n) \leq n^{k}$ for any $n \geq 1$, we have $\frac{\phi_{k}\left(V_{k}(n)\right)}{n^{k^{2}}} \leq \frac{\left(V_{k}(n)\right)^{k}}{n^{k^{2}}} \leq 1$. But $\lim _{p \rightarrow \infty}^{p \rightarrow \infty} \frac{\phi_{k}\left(V_{k}(p)\right)}{p^{k^{2}}}=\lim _{p \rightarrow \infty} \frac{p^{k^{2}}-p^{(k-1) k}}{p^{k^{2}}}=1$, so the maximal order of $\phi_{k}\left(V_{k}(n)\right)$ is $n^{k^{2}}$.

The maximal order of $V(\phi(n))$ was investigated in [2]. Using the general idea of that proof, we show

Proposition 9. The maximal order of $V_{k}\left(\phi_{k}(n)\right)$ is $n^{k^{2}}$.
Proof. We will use Linnik's theorem which states that if $\operatorname{gcd}(t, \ell)=1$, then there exists a prime p such that $p \equiv \ell(\bmod t)$ and $p \ll t^{c}$, where c is a constant (one can take $\left.c \leq 11\right)$.

Let $A=\prod_{\substack{k<p \leq x \\ p \text { prime }}} p$. Since $\operatorname{gcd}\left(A^{2}, A+1\right)=1$, by Linnik's theorem there is a prime number q such that $q \equiv A+1\left(\bmod A^{2}\right)$ and $q \ll\left(A^{2}\right)^{c}=A^{2 c}$, where c satisfies $c \leq 11$. Also, $q^{k} \equiv k A+1\left(\bmod A^{2}\right)$. Let q be the least prime satisfying the above condition. We have $\phi_{k}(q)=q^{k}-1=A B$, where $B=k+s A$, for some s. Thus $\operatorname{gcd}(A, B)=1$, so B is free of prime factors $\leq x$ and $>k$. Since $V_{k}(n)$ is multiplicative, we have

$$
\begin{equation*}
\frac{V_{k}\left(\phi_{k}(q)\right)}{q^{k^{2}}}=\frac{V_{k}(A B)}{(A B+1)^{k}}=\frac{V_{k}(A)}{A^{k}} \cdot \frac{V_{k}(B)}{B^{k}} \cdot \frac{(A B)^{k}}{(A B+1)^{k}} . \tag{1}
\end{equation*}
$$

Here $\frac{(A B)^{k}}{(A B+1)^{k}} \rightarrow 1$ as $x \rightarrow \infty$, so it is sufficient to study $\frac{V_{k}(A)}{A^{k}}$ and $\frac{V_{k}(B)}{B^{k}}$. Clearly,

$$
\begin{equation*}
\frac{V_{k}(A)}{A^{k}}=1 \tag{2}
\end{equation*}
$$

We have $A=\prod_{k<p \leq x} p \leq \prod_{p \leq x} p=e^{O(x)}$. Since $B \ll A^{10}$ we obtain $B \ll e^{O(x)}$, so

$$
\begin{equation*}
\log B \ll x \tag{3}
\end{equation*}
$$

If $B=\prod_{i=1}^{r} q_{i}^{b_{i}}$ is the prime factorization of B, we obtain, taking into account that $k \geq 1$ is a fixed integer, that $\log B=\sum_{i=1}^{r} b_{i} \log q_{i}>(\log x) \sum_{i=1}^{r} b_{i}$ for sufficiently large x. But $\sum_{i=1}^{r} b_{i} \geq r$, so $\log B>k \log x$, implying that $r<\frac{\log B}{\log x} \ll \frac{x}{\log x}$ (by (3)). Since

$$
\frac{V_{k}(B)}{B^{k}}>\prod_{i=1}^{r}\left(1-\frac{1}{q_{i}^{k}}\right) \geq \prod_{i=1}^{r}\left(1-\frac{1}{q_{i}}\right)>\left(1-\frac{1}{x}\right)^{r} \geq\left(1-\frac{1}{x}\right)^{O\left(\frac{x}{\log x}\right)}
$$

We obtain

$$
\begin{equation*}
\frac{V_{k}(B)}{B^{k}}>1+O\left(\frac{1}{\log x}\right) . \tag{4}
\end{equation*}
$$

By (1), (2), (4) and $\frac{(A B)^{k}}{(A B+1)^{k}} \rightarrow 1$ as $x \rightarrow \infty$, we obtain

$$
\begin{equation*}
\frac{V_{k}\left(\phi_{k}(q)\right)}{q^{k^{2}}}>1+O\left(\frac{1}{\log x}\right) . \tag{5}
\end{equation*}
$$

By relation (5), and since $\frac{V_{k}\left(\phi_{k}(n)\right)}{n^{k^{2}}} \leq \frac{\left(\phi_{k}(n)\right)^{k}}{n^{k^{2}}} \leq 1$, the claim follows.
The maximal order of $V\left(\phi^{*}(n)\right)$ is n (see [2]). For the maximal order of $V_{k}\left(\phi^{*}(n)\right)$ we give

Proposition 10.

$$
\limsup _{n \rightarrow \infty} \frac{V_{k}\left(\phi^{*}(n)\right)}{n^{k}}=1
$$

Proof. We apply the following lemma:
If a is an integer, $a>1, p$ is a prime number and $f(n)$ is an arithmetical function satisfying $\phi(n) \leq f(n) \leq \sigma(n)$, one has

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{f(N(a, p))}{N(a, p)}=1 \tag{6}
\end{equation*}
$$

where $N(a, p)=\frac{a^{p}-1}{a-1}$ (see, e.g., Suryanarayana [13]).
Since $\phi^{*}(n) \leq n$, it follows that $V_{k}\left(\phi^{*}(n)\right) \leq\left(\phi^{*}(n)\right)^{k} \leq n^{k}$, so

$$
\begin{equation*}
\frac{\sqrt[k]{V_{k}\left(\phi^{*}(n)\right)}}{n} \leq 1 \tag{7}
\end{equation*}
$$

Obviously, $\sqrt[k]{V_{k}(n)}$ meets the conditions of the lemma. We have

$$
\begin{equation*}
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{\sqrt[k]{V_{k}\left(\phi^{*}\left(2^{p}\right)\right)}}{2^{p}}=\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{\sqrt[k]{V_{k}\left(2^{p}-1\right)}}{2^{p}-1}=\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \frac{\sqrt[k]{V_{k}(N(2, p))}}{N(2, p)}=1 . \tag{8}
\end{equation*}
$$

Now (7) and (8) imply $\lim \sup _{n \rightarrow \infty} \frac{\sqrt[k]{V_{k}\left(\phi^{*}(n)\right)}}{n}=1$, and we are done.
Apostol [2] proved that

$$
\limsup _{n \rightarrow \infty} \frac{\sigma\left(\phi^{*}(n)\right)}{V\left(\phi^{*}(n)\right)(\log \log n)^{2}}=\limsup _{n \rightarrow \infty} \frac{\sigma\left(\phi^{*}(n)\right)}{V\left(\phi^{*}(n)\right)\left(\log \log \phi^{*}(n)\right)^{2}}=e^{2 \gamma}
$$

and

$$
\limsup _{n \rightarrow \infty} \frac{\psi\left(\phi^{*}(n)\right)}{V\left(\phi^{*}(n)\right)(\log \log n)^{2}} \limsup _{n \rightarrow \infty} \frac{\psi\left(\phi^{*}(n)\right)}{V\left(\phi^{*}(n)\right)\left(\log \log \phi^{*}(n)\right)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma} .
$$

The maximal orders of $\frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)}$ and $\frac{\psi_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)}$ are given by
Proposition 11. For $k \geq 2$ we have

$$
\text { (i) } \lim \sup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)(\log \log n)^{2}}=\lim \sup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)\left(\log \log \phi^{*}(n)\right)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma}
$$

(ii) $\lim \sup _{n \rightarrow \infty} \frac{\psi_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)(\log \log n)^{2}}=\lim \sup _{n \rightarrow \infty} \frac{\psi_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)\left(\log \log \phi^{*}(n)\right)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma}$.

Proof. (i) Let

$$
l_{1}:=\limsup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)(\log \log n)^{2}} \text { and } l_{2}:=\limsup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)\left(\log \log \phi^{*}(n)\right)^{2}} .
$$

Since $\phi^{*}(n) \leq n$ for every $n \geq 1$, we have

$$
\begin{aligned}
l_{1} & =\limsup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)(\log \log n)^{2}} \\
& \leq l_{2}=\limsup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)\left(\log \log \phi^{*}(n)\right)^{2}} \\
& \leq \limsup _{m \rightarrow \infty} \frac{\sigma_{k}(m)}{V_{k}(m)(\log \log m)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma},
\end{aligned}
$$

by Proposition 6. Since $\operatorname{gcd}(n, 1)=1$, by Linnik's theorem, there exists a prime number p such that $p \equiv 1(\bmod n)$ and $p \ll n^{c}$. Let p_{n} be the least prime such that $p_{n} \equiv 1(\bmod n)$, for every n. Then $n \mid p_{n}-1$ and $p_{n} \ll n^{c}$, so $\log \log p_{n} \sim \log \log n$.

Observe that $a \mid b$ implies $\frac{\sigma_{k}(a)}{V_{k}(a)} \leq \frac{\sigma_{k}(b)}{V_{k}(b)}$. If $p^{\beta} \mid p^{\alpha}(\beta \leq \alpha)$, it is easy to see that $\frac{\sigma_{k}\left(p^{\beta}\right)}{V_{k}\left(p^{\beta}\right)} \leq \frac{\sigma_{k}\left(p^{\alpha}\right)}{V_{k}\left(p^{\alpha}\right)}$. The general case follows, taking into account that $\frac{\sigma_{k}(n)}{V_{k}(n)}$ is multiplicative. So,

$$
\frac{\sigma_{k}\left(\phi^{*}\left(p_{n}\right)\right)}{V_{k}\left(\phi^{*}\left(p_{n}\right)\right)\left(\log \log p_{n}\right)^{2}}=\frac{\sigma_{k}\left(p_{n}-1\right)}{V_{k}\left(p_{n}-1\right)\left(\log \log p_{n}\right)^{2}} \sim \frac{\sigma_{k}\left(p_{n}-1\right)}{V_{k}\left(p_{n}-1\right)(\log \log n)^{2}} .
$$

On the other hand,

$$
\frac{\sigma_{k}\left(p_{n}-1\right)}{V_{k}\left(p_{n}-1\right)(\log \log n)^{2}} \geq \frac{\sigma_{k}(n)}{V_{k}(n)(\log \log n)^{2}} .
$$

Therefore,

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)(\log \log n)^{2}} \geq \limsup _{n \rightarrow \infty} \frac{\sigma_{k}\left(\phi^{*}\left(p_{n}\right)\right)}{V_{k}\left(\phi^{*}\left(p_{n}\right)\right)\left(\log \log p_{n}\right)^{2}} \\
\geq \limsup _{n \rightarrow \infty} \frac{\sigma_{k}(n)}{V_{k}(n)(\log \log n)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma} .
\end{gathered}
$$

We obtain $\frac{6}{\pi^{2}} e^{2 \gamma} \leq l_{1} \leq l_{2} \leq \frac{6}{\pi^{2}} e^{2 \gamma}$, and hence $l_{1}=l_{2}=\frac{6}{\pi^{2}} e^{2 \gamma}$.
(ii) The proof is similar to the proof of (i), taking into account that $a \mid b$ implies $\frac{\psi_{k}(a)}{V_{k}(a)} \leq \frac{\psi_{k}(b)}{V_{k}(b)}$ and $\lim \sup _{n \rightarrow \infty} \frac{\psi_{k}(n)}{V_{k}(n)(\log \log n)^{2}}=\frac{6}{\pi^{2}} e^{2 \gamma}$, by Proposition 6 .

So, the maximal orders of both $\frac{\sigma_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)}$ and $\frac{\psi_{k}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right)}$ are $\frac{6}{\pi^{2}} 2^{2 \gamma}(\log \log n)^{2}$.
In a similar manner, since

$$
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}(n)}{V_{k}(n) \log \log n}=\limsup _{n \rightarrow \infty} \frac{\phi_{k}^{*}(n)}{V_{k}(n) \log \log n}=e^{\gamma}
$$

(using Proposition 7), the fact that $a \mid b$ implies $\frac{\sigma_{k}^{*}(a)}{V_{k}(a)} \leq \frac{\sigma_{k}^{*}(b)}{V_{k}(b)}$ and $\frac{\phi_{k}^{*}(a)}{V_{k}(a)} \leq \frac{\phi_{k}^{*}(b)}{V_{k}(b)}$, respectively, it can be shown that

$$
\limsup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right) \log \log n}=\limsup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right) \log \log \phi^{*}(n)}=e^{\gamma}
$$

and

$$
\limsup _{n \rightarrow \infty} \frac{\phi_{k}^{*}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right) \log \log n}=\limsup _{n \rightarrow \infty} \frac{\phi_{k}^{*}\left(\phi^{*}(n)\right)}{V_{k}\left(\phi^{*}(n)\right) \log \log \phi^{*}(n)}=e^{\gamma} .
$$

7 Open Problems

Open Problem 12. Note that

$$
\liminf _{n \rightarrow \infty} \frac{V_{k}(\phi(n))}{n^{k}}=\liminf _{n \rightarrow \infty} \frac{V_{k}\left(\phi^{*}(n)\right)}{n^{k}}=\liminf _{n \rightarrow \infty} \frac{\phi_{k}^{*}(V(n))}{n^{k}}=0 .
$$

For $n_{k}=p_{1} \cdots p_{r}$ (the product of the first r primes), we have

$$
\frac{V_{k}\left(\phi\left(n_{r}\right)\right)}{n_{r}^{k}}=\frac{V_{k}\left(\left(p_{1}-1\right) \cdots\left(p_{r}-1\right)\right)}{p_{1}^{k} \cdots p_{r}^{k}} \leq \frac{\left(p_{1}-1\right)^{k} \cdots\left(p_{r}-1\right)^{k}}{p_{1}^{k} \cdots p_{r}^{k}}=\left(\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)\right)^{k},
$$

so

$$
\lim _{r \rightarrow \infty} \frac{V_{k}\left(\phi\left(n_{r}\right)\right)}{n_{r}^{k}}=\lim _{r \rightarrow \infty}\left(\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)\right)^{k}=0
$$

similarly the other relations. What are the minimal orders for the $V_{k}(\phi(n)), V_{k}\left(\phi^{*}(n)\right)$, and $\phi_{k}^{*}(V(n))$?

Open Problem 13. Taking $n_{r}=p_{1} \cdots p_{r}$ (the product of the first r primes),

$$
\frac{\sigma_{k}^{*}\left(V\left(n_{r}\right)\right)}{n_{r}^{k}}=\frac{\sigma_{k}^{*}\left(p_{1} \cdots p_{r}\right)}{p_{1}^{k} \cdots p_{r}^{k}}=\frac{\left(p_{1}^{k}+1\right) \cdots\left(p_{r}^{k}+1\right)}{p_{1}^{k} \cdots p_{r}^{k}}=\left(\left(1+\frac{1}{p_{1}}\right) \cdots\left(1+\frac{1}{p_{r}}\right)\right)^{k} \rightarrow \infty
$$

as $r \rightarrow \infty$, so $\lim \sup _{n \rightarrow \infty} \frac{\sigma_{k}^{*}(V(n))}{n^{k}}=\infty$. What is the maximal order for $\sigma_{k}^{*}(V(n))$?

8 Acknowledgments

The authors would like to thank the referees for helpful suggestions.

References

[1] O. Alkam and E. Osba, On the regular elements in \mathbb{Z}_{n}, Turk. J. Math. 32 (2008), 1-9.
[2] B. Apostol, Extremal orders of some functions connected to regular integers modulo n, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 21 (2013), to appear.
[3] B. Apostol and L. Petrescu, On the number of regular integers $(\bmod n)$, J. Algebra Number Theory Acad. 2 (2012), 337-352.
[4] B. Apostol and L. Tóth, Some remarks on regular integers modulo n, preprint, http://arxiv.org/abs/1304.2699.
[5] P. Haukkanen and L. Tóth, An analogue of Ramanujan's sum with respect to regular integers $(\bmod r)$, Ramanujan J. 27 (2012), 71-88.
[6] J. Morgado, A property of the Euler ϕ-function concerning the integers which are regular modulo n, Portugal. Math. 33 (1974), 185-191.
[7] J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica 33 (1972), 1-5.
[8] J. Sándor, Geometric Theorems, Diophantine Equations, and Arithmetic Functions, American Research Press, 2002.
[9] J. Sándor and B. Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, 2004.
[10] J. Sándor and L. Tóth, Extremal orders of compositions of certain arithmetical functions, Integers 8 (2008), \# A34.
[11] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Marcel Dekker, 1989.
[12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[13] D. Suryanarayana, On a class of sequences of integers, Amer. Math. Monthly 84 (1977), 728-730.
[14] L. Tóth, A gcd-sum function over regular integers modulo n, J. Integer Seq. 12 (2009), Article 09.2.5.
[15] L. Tóth, Regular integers $(\bmod n)$, Annales Univ. Sci. Budapest., Sect Comp. 29 (2008), 263-275.
[16] L. Tóth and E. Wirsing, The maximal order of a class of multiplicative arithmetical functions, Annales Univ. Sci. Budapest., Sect Comp. 22 (2003), 353-364.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11N37.
Keywords: arithmetical function, composition, regular integer $(\bmod n)$, extremal order.
(Concerned with sequences $\underline{\text { A000010 }}, \underline{A 000203, ~} \underline{A 055653, ~ a n d ~} \underline{\text { A143869.) }}$

Received April 25 2013; revised versions received July 9 2013; July 30 2013; August 52013. Published in Journal of Integer Sequences, August 82013.

Return to Journal of Integer Sequences home page.

