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Abstract

Let V (n) denote the number of positive regular integers (mod n) that are ≤ n, and
let Vk(n) be a multidimensional generalization of the arithmetic function V (n). We
find the Dirichlet series of Vk(n) and give the extremal orders of some totients involving
arithmetic functions which generalize the sum-of-divisors function and the Dedekind
function. We also give the extremal orders of other totients regarding arithmetic func-
tions which generalize the sum of the unitary divisors of n and the unitary function
corresponding to φ(n), the Euler function. Finally, we study extremal orders of some
compositions, involving the functions mentioned previously.

1

mailto:apo_brad@yahoo.com
mailto:petrescuandreea@yahoo.com


1 Introduction

Let n > 1 be an integer. An integer a is called regular (mod n) if there exists an integer x such
that a2x ≡ a (mod n) (sequence A143869 in Sloane’s Encyclopedia of Integer Sequences).
Several authors investigated properties of regular integers (mod n). Alkam and Osba [1],
using ring-theoretic considerations, rediscovered some of the statements proved by Morgado
[6, 7], who showed that a > 1 is regular (mod n) if and only if gcd(a, n) is a unitary divisor of
n. Tóth [15] gave direct proofs of some properties, because the proofs of [6, 7] were lengthy
and those of [1] were ring-theoretical.

Let Regn = {a : 1 ≤ a ≤ n and a is regular (mod n)}, and V (n) = #Regn. The function
V is multiplicative and V (pα) = φ(pα) + 1 = pα − pα−1 + 1, where φ is the Euler function.
Consequently, V (n) =

∑

d‖n φ(d), for every n ≥ 1, where d ‖ n means that d is a unitary

divisor of n, that is, d | n and gcd(d, n
d
) = 1. Also φ(n) < V (n) ≤ n, for every n > 1, and

V (n) = n if and only if n is a squarefree; see [7, 15, 1]. Thus, the function V (n) is an analogue
of the Euler function φ(n). The function φ(n) is the sequence A000010 in Sloane’s On-Line
Encyclopedia of Integer Sequences. Also, the function V (n) is the sequence A055653; see
[12].

Apostol and Tóth [4] considered the multidimensional generalization of the function
V (n), Vk(n), where k ≥ 1 is a fixed integer. The function Vk(n) is multiplicative and
Vk(p

α) = φk(p
α) + 1 = pαk − p(α−1)k + 1, where φk is the Jordan function of order k.

Consequently, Vk(n) =
∑

d‖n φk(d), for every n ≥ 1. Also φk(n) < Vk(n) ≤ nk, for every

n > 1 and Vk(n) = nk if and only if n is squarefree; see [4].
Tóth [15] proved results concerning the minimal and maximal orders of the functions V (n)

and V (n)/φ(n). Alkam and Osba [1] investigated the minimal order of V (n). Sándor and
Tóth [10] and Apostol [2] studied the extremal orders of compositions of certain functions.

In Section 2 we present some notation and results involving arithmetical functions. Sec-
tion 3 is devoted to the study of the Dirichlet series of Vk(n). Extremal orders of the function
Vk(n) in connection with σk(n) and ψk(n) are given in Section 4.

In Section 5 we prove some results regarding Vk(n) and unitary analogues of the functions
σk(n) and φk(n).

In Section 6 we give the extremal orders of some compositions of functions from above.
Section 7 provides other limits of compositions of arithmetical functions. We also present

some open problems regarding extremal orders of these compositions.

2 Preliminaries

In what follows let n = pα1
1 · · · pαr

r > 1 be a positive integer and let k ≥ 1 be an integer.
Throughout the paper we will use the following notation:

• p1, p2, . . . — the sequence of the primes;

• σk(n) — the generalization of σ(n), defined by σk(n) =
∏r

i=1
p
(αi+1)k
i −1

pki −1
;
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• ψk(n) — the generalization of ψ(n), defined by ψk(n) = nk
∏

p|n(1 +
1
pk
) ;

• ζ(s) — the Riemann zeta function, ζ(s) =
∏

p

(

1− 1
ps

)−1

, s = σ + it ∈ C and σ > 1;

• φ(n) — the Euler function, φ(n) = n
∏

p|n

(

1− 1
p

)

;

• φk(n) — the Jordan function of order k, φk(n) = nk
∏

p|n

(

1− 1
pk

)

;

• γ — the Euler constant, γ = limn→∞(1 + 1
2
+ . . .+ 1

n
− log n);

• φ∗(n) — the unitary analogue of φ(n), φ∗(n) =
∏k

i=1(p
αi

i − 1);

• σ∗(n) — the unitary analogue of σ(n), σ∗(n) =
∏k

i=1(p
αi

i + 1).

For other arithmetic functions defined by regular integers modulo n we refer to the papers
[5, 14].

Let f(n) be a nonnegative real-valued multiplicative arithmetic function. Let

L = L(f) := lim sup
n→∞

f(n)

log log n

and
ρ(p) = ρ(p, f) := sup

α≥0
f(pα)

for primes p, and consider the product R = R(f) :=
∏

p(1− 1
p
)ρ(p).

In order to prove the properties below we apply the following results:

Lemma 1. (Tóth and Wirsing [16, Corollary 1]). If f is a nonnegative real-valued multi-
plicative arithmetic function such that for each prime p,

(i) ρ(p) = supα≥0(f(p
α)) ≤

(

1− 1
p

)−1

, and

(ii) there is an exponent ep = po(1) ∈ N satisfying f(pep) ≥ 1 + 1
p
,

then lim supn→∞
f(n)

log logn
= eγ

∏

p

(

1− 1
p

)

ρ(p).

Lemma 2. (Tóth and Wirsing [16, Theorem 1]). Suppose that ρ(p) < ∞ for all primes p
and the product R converges unconditionally (i.e., irrespectively of order), improper limits
being allowed, then L ≤ eγR.

Lemma 3. (Tóth and Wirsing [16, Theorem 3]). Suppose that ρ(p) < ∞ for all primes p,
that for each prime p there is an exponent ep = po(1) ∈ N such that

∏

p f(p
ep)ρ(p)−1 > 0 and

that the product R converges, improper limits being allowed. Then L ≥ eγR.
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3 Dirichlet series of Vk(n)

Apostol and Petrescu [3] studied the Dirichlet series of V1(n) := V (n). In what follows we
give the Dirichlet series of Vk(n) for k ≥ 2 and some results involving the Möbius function.

Proposition 4. For every s = σ + it ∈ C with σ > k + 1,

∑

n≥1

Vk(n)

ns
= ζ(s− k)ζ(s)

∏

p

(

1− p2s−k + ps − ps−k

p3s−k
)

.

Proof. Let f(n) = Vk(n)
ns . We have

∑

n≥1

|f(n)| ≤
∑

n≥1

1

nσ−k
<∞,

so the series
∑

n≥1
Vk(n)
ns converges absolutely for σ > k + 1. Since Vk is multiplicative,

∑

n≥1

Vk(n)

ns
=

∏

p

1

1− 1
ps−k

·
∏

p

1

1− 1
ps

·
∏

p

(

1− p2s−k + ps − ps−k

p3s−k
)

,

and the claim follows.

Corollary 5. Let s = σ + it ∈ C, σ > k + 1. Then

∑

n≥1

µ(n)Vk(n)

ns
=

∏

p

(

1− 1

ps−k

)

=
1

ζ(s− k)
.

Also,
∑

n≥1

|µ(n)|Vk(n)
ns

=
∏

p

(

1 +
1

ps−k

)

=
ζ(s− k)

ζ(2s− 2k)
.

Proof. Forf(n) = µ(n)Vk(n)
ns the series

∑

n≥1|f(n)| converges absolutely, so

∑

n≥1

µ(n)Vk(n)

ns
=

∏

p

(

1− 1

ps−k

)

=
1

ζ(s− k)
.

For the second assertion take f(n) = |µ(n)|Vk(n)
ns .
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4 Extremal orders concerning classical generalized arith-

metic functions

For the quotient σk(n)
Vk(n)

, we notice that σk(n)
Vk(n)

≥ 1 for every n ≥ 1. Since

lim
p→∞
p prime

σk(p)

Vk(p)
= lim

p→∞
p prime

pk + 1

pk
= 1,

we get

lim inf
n→∞

σk(n)

Vk(n)
= 1;

hence the minimal order of σk(n)
Vk(n)

is 1. Now consider the quotient

ψk(n)

Vk(n)
.

Since
ψk(n)

Vk(n)
≥ 1

for every n ≥ 1 and
ψk(p)

Vk(p)
=
pk + 1

pk

for every prime p, it is immediate that

lim inf
n→∞

ψk(n)

Vk(n)
= 1.

Thus, the minimal order of ψk(n)
Vk(n)

is 1. It is known that

lim sup
n→∞

σ(n)

V (n)(log log n)2
= e2γ

and

lim sup
n→∞

ψ(n)

V (n)(log log n)2
=

6

π2
e2γ ;

see [2]. Proposition 6 shows that the maximal order of σk(n)
Vk(n)

and ψk(n)
Vk(n)

is 6
π2 e

2γ(log log n)2.

Proposition 6. For k ≥ 2,

lim sup
n→∞

σk(n)

Vk(n)(log log n)2
= lim sup

n→∞

ψk(n)

Vk(n)(log log n)2
=

6

π2
e2γ.
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Proof. Take f(n) =
√

σk(n)
Vk(n)

. Then

f(pα) =

√

p(α+1)k − 1

(pk − 1)(pαk − p(α−1)k + 1)
≤

√

p+ 1

p− 1
= ρ(p) <

(

1− 1

p

)−1

and

f(p2) =

√

p3k − 1

(pk − 1)(p2k − pk + 1)
≥ 1 +

1

p

for every prime p, so (ii) in Lemma 1 is satisfied. We obtain

lim sup
n→∞

√

σk(n)
√

Vk(n) log log n
=

∏

p

√

1− 1

p2
eγ =

√

6

π2
eγ,

so

lim sup
n→∞

σk(n)

Vk(n)(log log n)2
=

6

π2
e2γ .

Since ψk(n) ≤ σk(n) and for the primes p we have ψk(p) = σk(p) = pk + 1, the result for
ψk(n)

Vk(n)(log logn)2
follows from the previous one.

5 Extremal orders concerning unitary analogues of σk
and φk

In what follows we consider the functions σ∗
k(n) and φ

∗
k(n), representing the generalizations

for the sum of the unitary divisors of n and the unitary analogue Euler function, respectively.
Let k ≥ 1 be a fixed integer. We have σ∗

k(n) =
∑

d‖n d
k and σ∗

k(p
α) = pαk + 1. Also,

φ∗
k(n) :=

∑

gcd(a1,...,ak)∈{1,2,...,n}
k

gcd(gcd(a1,a2,...,ak),n)∗=1

1 =
∑

d‖n

dkµ∗(
n

d
),

and hence φ∗
k(p

α) = pαk − 1. Note that

gcd(a, b)∗ = max{d : d|a, d ‖ b}

and µ∗(n) is the unitary analogue of the Möbius function, given by µ∗(n) = (−1)ω(n), where
ω(n) is the number of distinct prime factors of n. The functions σ∗

k(n) and φ
∗
k(n) are multi-

plicative. Let n = pα1
1 · · · pαr

r be the prime factorisation of n > 1. We obtain

φ∗
k(n) = (pα1k

1 − 1) · · · (pαrk
r − 1) and σ∗

k(n) = (pα1k
1 + 1) · · · (pαrk

r + 1).
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Observe that σ∗
k(n) = σk(n) and φ∗

k(n) = φk(n) for all squarefree n. Furthermore, for
every n ≥ 1,

φk(n) ≤ φ∗
k(n) ≤ nk ≤ σ∗

k(n) ≤ σk(n).

Recall that an integer n > 1 is called powerful if it is divisible by the square of each of
its prime factors. A powerful integer is also called a squarefull integer. We give extremal

orders for the quotients
σ∗

k
(n)

Vk(n)
and

φ∗
k
(n)

Vk(n)
, the minimal order of

φ∗
k
(n)

Vk(n)
being studied for powerful

numbers. Since
σ∗

k
(n)

Vk(n)
≥ 1 for every n ≥ 1 and limp→∞

σ∗

k
(p)

Vk(p)
= limp→∞

pk+1
pk

= 1 for prime

numbers p, it follows that lim infn→∞
σ∗

k
(n)

Vk(n)
= 1.

If n is powerful, it is easy to see that
φ∗
k
(n)

Vk(n)
≥ 1, taking into account that

φ∗
k
(pα)

Vk(pα)
≥ 1 for

α ≥ 2. For prime numbers p, we notice that

lim
p→∞

φ∗
k(p

2)

Vk(p2)
= lim

p→∞

p2k − 1

p2k − pk + 1
= 1,

which implies that

lim inf
n→∞

φ∗
k(n)

Vk(n)
= 1,

so the minimal order of
φ∗
k
(n)

Vk(n)
is 1.

For the maximal orders of these quotients we have

Proposition 7. For k ≥ 1,

lim sup
n→∞

σ∗
k(n)

Vk(n) log log n
= lim sup

n→∞

φ∗
k(n)

Vk(n) log log n
= eγ.

Proof. Take f(n) =
σ∗

k
(n)

Vk(n)
in Lemma 2, which is a nonnegative real-valued multiplicative

arithmetic function. We have

f(pα) =
pαk + 1

pαk − p(α−1)k + 1
≤

(

1− 1

p

)−1

= ρ(p) <∞

and R = 1, so

lim sup
n→∞

σ∗
k(n)

Vk(n) log log n
≤ eγ.

Now let g(n) =
φ∗
k
(n)

Vk(n)
. Here

g(pα) =
pαk − 1

pαk − p(α−1)k + 1
≤

(

1− 1

p

)−1

= ρ(p),

and

R =
∏

p

g(p1)(ρ(p))−1 =
∏

p

(pk + 1) · p− 1

p
> 0.
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Hence, by Lemma 3 we have

lim sup
n→∞

φ∗
k(n)

Vk(n) log log n
≥ eγ.

It is obvious that φ∗
k(n) ≤ σ∗

k(n) for every n ≥ 1. We obtain

eγ ≤ lim sup
n→∞

φ∗
k(n)

Vk(n) log log n
≤ lim sup

n→∞

σ∗
k(n)

Vk(n) log log n
≤ eγ,

which shows that

lim sup
n→∞

σ∗
k(n)

Vk(n) log log n
= lim sup

n→∞

φ∗
k(n)

Vk(n) log log n
= eγ,

as desired.

Corollary 8. The maximal order of both
σ∗

k
(n)

Vk(n)
and

φ∗
k
(n)

Vk(n)
is eγ log log n.

6 Extremal orders regarding compositions of arithmeti-

cal functions

We now move to the study of extremal orders of some composite arithmetic functions. We
start with Vk(Vk(n)) and φk(Vk(n)).

We know that Vk(n) ≤ nk for every n ≥ 1, so

Vk(Vk(n))

nk2
≤ (Vk(n))

k

nk2
≤ (nk)k

nk2
= 1

and

lim
p→∞
p prime

Vk(Vk(p))

pk2
= lim

p→∞
p prime

Vk(p
k)

pk2
= lim

p→∞
p prime

pk
2 − p(k−1)k + 1

pk2
= 1,

so the maximal order of Vk(Vk(n)) is n
k2 . Since φk(n) ≤ nk and Vk(n) ≤ nk for any n ≥ 1, we

have φk(Vk(n))

nk2
≤ (Vk(n))

k

nk2
≤ 1. But lim p→∞

p prime

φk(Vk(p))

pk
2 = limp→∞

pk
2
−p(k−1)k

pk
2 = 1, so the maximal

order of φk(Vk(n)) is n
k2 .

The maximal order of V (φ(n)) was investigated in [2]. Using the general idea of that
proof, we show

Proposition 9. The maximal order of Vk(φk(n)) is n
k2.

Proof. We will use Linnik’s theorem which states that if gcd(t, ℓ) = 1, then there exists a
prime p such that p ≡ ℓ (mod t) and p≪ tc, where c is a constant (one can take c ≤ 11).
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Let A =
∏

k<p≤x
p prime

p. Since gcd(A2, A + 1) = 1, by Linnik’s theorem there is a prime

number q such that q ≡ A + 1 (mod A2) and q ≪ (A2)c = A2c, where c satisfies c ≤ 11.
Also, qk ≡ kA + 1 (mod A2). Let q be the least prime satisfying the above condition. We
have φk(q) = qk − 1 = AB, where B = k + sA, for some s. Thus gcd(A,B) = 1, so B is free
of prime factors ≤ x and > k. Since Vk(n) is multiplicative, we have

Vk(φk(q))

qk2
=

Vk(AB)

(AB + 1)k
=
Vk(A)

Ak
· Vk(B)

Bk
· (AB)k

(AB + 1)k
. (1)

Here (AB)k

(AB+1)k
→ 1 as x→ ∞, so it is sufficient to study Vk(A)

Ak and Vk(B)
Bk . Clearly,

Vk(A)

Ak
= 1. (2)

We have A =
∏

k<p≤x p ≤
∏

p≤x p = eO(x). Since B ≪ A10 we obtain B ≪ eO(x), so

logB ≪ x. (3)

If B =
∏r

i=1 q
bi
i is the prime factorization of B, we obtain, taking into account that k ≥ 1

is a fixed integer, that logB =
∑r

i=1 bi log qi > (log x)
∑r

i=1 bi for sufficiently large x. But
∑r

i=1 bi ≥ r, so logB > k log x, implying that r < logB
log x

≪ x
log x

(by (3)). Since

Vk(B)

Bk
>

r
∏

i=1

(

1− 1

qki

)

≥
r
∏

i=1

(

1− 1

qi

)

>

(

1− 1

x

)r

≥
(

1− 1

x

)O( x
log x

)

,

We obtain
Vk(B)

Bk
> 1 +O

(

1

log x

)

. (4)

By (1), (2), (4) and (AB)k

(AB+1)k
→ 1 as x→ ∞, we obtain

Vk(φk(q))

qk2
> 1 +O

(

1

log x

)

. (5)

By relation (5), and since Vk(φk(n))

nk2
≤ (φk(n))

k

nk2
≤ 1, the claim follows.

The maximal order of V (φ∗(n)) is n (see [2]). For the maximal order of Vk(φ
∗(n)) we

give

Proposition 10.

lim sup
n→∞

Vk(φ
∗(n))

nk
= 1.
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Proof. We apply the following lemma:
If a is an integer, a > 1, p is a prime number and f(n) is an arithmetical function

satisfying φ(n) ≤ f(n) ≤ σ(n), one has

lim
p→∞

f(N(a, p))

N(a, p)
= 1, (6)

where N(a, p) = ap−1
a−1

(see, e.g., Suryanarayana [13]).

Since φ∗(n) ≤ n, it follows that Vk(φ
∗(n)) ≤ (φ∗(n))k ≤ nk, so

k
√

Vk(φ∗(n))

n
≤ 1. (7)

Obviously, k
√

Vk(n) meets the conditions of the lemma. We have

lim
p→∞
p prime

k
√

Vk(φ∗(2p))

2p
= lim

p→∞
p prime

k
√

Vk(2p − 1)

2p − 1
= lim

p→∞
p prime

k
√

Vk(N(2, p))

N(2, p)
= 1. (8)

Now (7) and (8) imply lim supn→∞

k
√
Vk(φ∗(n))

n
= 1, and we are done.

Apostol [2] proved that

lim sup
n→∞

σ(φ∗(n))

V (φ∗(n))(log log n)2
= lim sup

n→∞

σ(φ∗(n))

V (φ∗(n))(log log φ∗(n))2
= e2γ

and

lim sup
n→∞

ψ(φ∗(n))

V (φ∗(n))(log log n)2
lim sup
n→∞

ψ(φ∗(n))

V (φ∗(n))(log log φ∗(n))2
=

6

π2
e2γ.

The maximal orders of σk(φ
∗(n))

Vk(φ∗(n))
and ψk(φ

∗(n))
Vk(φ∗(n))

are given by

Proposition 11. For k ≥ 2 we have

(i) lim supn→∞
σk(φ

∗(n))
Vk(φ∗(n))(log logn)2

= lim supn→∞
σk(φ

∗(n))
Vk(φ∗(n))(log log φ∗(n))2

= 6
π2 e

2γ,

(ii) lim supn→∞
ψk(φ

∗(n))
Vk(φ∗(n))(log logn)2

= lim supn→∞
ψk(φ

∗(n))
Vk(φ∗(n))(log log φ∗(n))2

= 6
π2 e

2γ.

Proof. (i) Let

l1 := lim sup
n→∞

σk(φ
∗(n))

Vk(φ∗(n))(log log n)2
and l2 := lim sup

n→∞

σk(φ
∗(n))

Vk(φ∗(n))(log log φ∗(n))2
.

Since φ∗(n) ≤ n for every n ≥ 1, we have

l1 = lim sup
n→∞

σk(φ
∗(n))

Vk(φ∗(n))(log log n)2

≤ l2 = lim sup
n→∞

σk(φ
∗(n))

Vk(φ∗(n))(log log φ∗(n))2

≤ lim sup
m→∞

σk(m)

Vk(m)(log logm)2
=

6

π2
e2γ ,
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by Proposition 6. Since gcd(n, 1) = 1, by Linnik’s theorem, there exists a prime number p
such that p ≡ 1 (mod n) and p ≪ nc. Let pn be the least prime such that pn ≡ 1 (mod n),
for every n. Then n | pn − 1 and pn ≪ nc, so log log pn ∼ log log n.

Observe that a | b implies σk(a)
Vk(a)

≤ σk(b)
Vk(b)

. If pβ | pα (β ≤ α), it is easy to see that
σk(p

β)
Vk(pβ)

≤ σk(p
α)

Vk(pα)
. The general case follows, taking into account that σk(n)

Vk(n)
is multiplicative. So,

σk(φ
∗(pn))

Vk(φ∗(pn))(log log pn)2
=

σk(pn − 1)

Vk(pn − 1)(log log pn)2
∼ σk(pn − 1)

Vk(pn − 1)(log log n)2
.

On the other hand,
σk(pn − 1)

Vk(pn − 1)(log log n)2
≥ σk(n)

Vk(n)(log log n)2
.

Therefore,

lim sup
n→∞

σk(φ
∗(n))

Vk(φ∗(n))(log log n)2
≥ lim sup

n→∞

σk(φ
∗(pn))

Vk(φ∗(pn))(log log pn)2

≥ lim sup
n→∞

σk(n)

Vk(n)(log log n)2
=

6

π2
e2γ .

We obtain 6
π2 e

2γ ≤ l1 ≤ l2 ≤ 6
π2 e

2γ, and hence l1 = l2 =
6
π2 e

2γ.

(ii) The proof is similar to the proof of (i), taking into account that a | b implies ψk(a)
Vk(a)

≤ ψk(b)
Vk(b)

and lim supn→∞
ψk(n)

Vk(n)(log log n)2
= 6

π2 e
2γ , by Proposition 6.

So, the maximal orders of both σk(φ
∗(n))

Vk(φ∗(n))
and ψk(φ

∗(n))
Vk(φ∗(n))

are 6
π2 e

2γ(log log n)2.
In a similar manner, since

lim sup
n→∞

σ∗
k(n)

Vk(n) log log n
= lim sup

n→∞

φ∗
k(n)

Vk(n) log log n
= eγ

(using Proposition 7), the fact that a | b implies
σ∗

k
(a)

Vk(a)
≤ σ∗

k
(b)

Vk(b)
and

φ∗
k
(a)

Vk(a)
≤ φ∗

k
(b)

Vk(b)
, respectively,

it can be shown that

lim sup
n→∞

σ∗
k(φ

∗(n))

Vk(φ∗(n)) log log n
= lim sup

n→∞

σ∗
k(φ

∗(n))

Vk(φ∗(n)) log log φ∗(n)
= eγ

and

lim sup
n→∞

φ∗
k(φ

∗(n))

Vk(φ∗(n)) log log n
= lim sup

n→∞

φ∗
k(φ

∗(n))

Vk(φ∗(n)) log log φ∗(n)
= eγ.

11



7 Open Problems

Open Problem 12. Note that

lim inf
n→∞

Vk(φ(n))

nk
= lim inf

n→∞

Vk(φ
∗(n))

nk
= lim inf

n→∞

φ∗
k(V (n))

nk
= 0.

For nk = p1 · · · pr (the product of the first r primes), we have

Vk(φ(nr))

nkr
=
Vk((p1 − 1) · · · (pr − 1))

pk1 · · · pkr
≤ (p1 − 1)k · · · (pr − 1)k

pk1 · · · pkr
=

(

(1− 1

p1
) · · · (1− 1

pr
)
)k
,

so

lim
r→∞

Vk(φ(nr))

nkr
= lim

r→∞

(

(1− 1

p1
) · · · (1− 1

pr
)
)k

= 0,

similarly the other relations. What are the minimal orders for the Vk(φ(n)), Vk(φ
∗(n)), and

φ∗
k(V (n)) ?

Open Problem 13. Taking nr = p1 · · · pr (the product of the first r primes),

σ∗
k(V (nr))

nkr
=
σ∗
k(p1 · · · pr)
pk1 · · · pkr

=
(pk1 + 1) · · · (pkr + 1)

pk1 · · · pkr
=

(

(1 +
1

p1
) · · · (1 + 1

pr
)
)k → ∞

as r → ∞, so lim supn→∞
σ∗

k
(V (n))

nk = ∞. What is the maximal order for σ∗
k(V (n)) ?
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