

Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.5

Extremal Orders of Certain Functions Associated with Regular Integers (mod n)

Brăduţ Apostol "Spiru Haret" Pedagogical High School 1 Timotei Cipariu St. RO — 620004 Focşani Romania apo_brad@yahoo.com

Lucian Petrescu "Henri Coandă" Technical College 2 Tineretului St. RO — 820235 Tulcea Romania petrescuandreea@yahoo.com

Abstract

Let V(n) denote the number of positive regular integers (mod n) that are $\leq n$, and let $V_k(n)$ be a multidimensional generalization of the arithmetic function V(n). We find the Dirichlet series of $V_k(n)$ and give the extremal orders of some totients involving arithmetic functions which generalize the sum-of-divisors function and the Dedekind function. We also give the extremal orders of other totients regarding arithmetic functions which generalize the sum of the unitary divisors of n and the unitary function corresponding to $\phi(n)$, the Euler function. Finally, we study extremal orders of some compositions, involving the functions mentioned previously.

1 Introduction

Let n > 1 be an integer. An integer a is called regular (mod n) if there exists an integer x such that $a^2x \equiv a \pmod{n}$ (sequence <u>A143869</u> in Sloane's *Encyclopedia of Integer Sequences*). Several authors investigated properties of regular integers (mod n). Alkam and Osba [1], using ring-theoretic considerations, rediscovered some of the statements proved by Morgado [6, 7], who showed that a > 1 is regular (mod n) if and only if gcd(a, n) is a unitary divisor of n. Toth [15] gave direct proofs of some properties, because the proofs of [6, 7] were lengthy and those of [1] were ring-theoretical.

Let $\operatorname{Reg}_n = \{a : 1 \le a \le n \text{ and } a \text{ is regular } (\operatorname{mod} n)\}$, and $V(n) = \#\operatorname{Reg}_n$. The function V is multiplicative and $V(p^{\alpha}) = \phi(p^{\alpha}) + 1 = p^{\alpha} - p^{\alpha-1} + 1$, where ϕ is the Euler function. Consequently, $V(n) = \sum_{d \parallel n} \phi(d)$, for every $n \ge 1$, where $d \parallel n$ means that d is a unitary divisor of n, that is, $d \mid n$ and $\operatorname{gcd}(d, \frac{n}{d}) = 1$. Also $\phi(n) < V(n) \le n$, for every n > 1, and V(n) = n if and only if n is a squarefree; see [7, 15, 1]. Thus, the function V(n) is an analogue of the Euler function $\phi(n)$. The function $\phi(n)$ is the sequence A000010 in Sloane's On-Line Encyclopedia of Integer Sequences. Also, the function V(n) is the sequence A055653; see [12].

Apostol and Tóth [4] considered the multidimensional generalization of the function V(n), $V_k(n)$, where $k \ge 1$ is a fixed integer. The function $V_k(n)$ is multiplicative and $V_k(p^{\alpha}) = \phi_k(p^{\alpha}) + 1 = p^{\alpha k} - p^{(\alpha-1)k} + 1$, where ϕ_k is the Jordan function of order k. Consequently, $V_k(n) = \sum_{d \parallel n} \phi_k(d)$, for every $n \ge 1$. Also $\phi_k(n) < V_k(n) \le n^k$, for every n > 1 and $V_k(n) = n^k$ if and only if n is squarefree; see [4].

Tóth [15] proved results concerning the minimal and maximal orders of the functions V(n)and $V(n)/\phi(n)$. Alkam and Osba [1] investigated the minimal order of V(n). Sándor and Tóth [10] and Apostol [2] studied the extremal orders of compositions of certain functions.

In Section 2 we present some notation and results involving arithmetical functions. Section 3 is devoted to the study of the Dirichlet series of $V_k(n)$. Extremal orders of the function $V_k(n)$ in connection with $\sigma_k(n)$ and $\psi_k(n)$ are given in Section 4.

In Section 5 we prove some results regarding $V_k(n)$ and unitary analogues of the functions $\sigma_k(n)$ and $\phi_k(n)$.

In Section 6 we give the extremal orders of some compositions of functions from above.

Section 7 provides other limits of compositions of arithmetical functions. We also present some open problems regarding extremal orders of these compositions.

2 Preliminaries

In what follows let $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} > 1$ be a positive integer and let $k \ge 1$ be an integer. Throughout the paper we will use the following notation:

- p_1, p_2, \ldots the sequence of the primes;
- $\sigma_k(n)$ the generalization of $\sigma(n)$, defined by $\sigma_k(n) = \prod_{i=1}^r \frac{p_i^{(\alpha_i+1)k} 1}{p_i^k 1}$;

- $\psi_k(n)$ the generalization of $\psi(n)$, defined by $\psi_k(n) = n^k \prod_{p|n} (1 + \frac{1}{p^k})$;
- $\zeta(s)$ the Riemann zeta function, $\zeta(s) = \prod_p \left(1 \frac{1}{p^s}\right)^{-1}$, $s = \sigma + it \in \mathbb{C}$ and $\sigma > 1$;
- $\phi(n)$ the Euler function, $\phi(n) = n \prod_{p|n} \left(1 \frac{1}{p}\right);$
- $\phi_k(n)$ the Jordan function of order k, $\phi_k(n) = n^k \prod_{p|n} \left(1 \frac{1}{p^k}\right);$
- γ the Euler constant, $\gamma = \lim_{n \to \infty} (1 + \frac{1}{2} + \ldots + \frac{1}{n} \log n);$
- $\phi^*(n)$ the unitary analogue of $\phi(n)$, $\phi^*(n) = \prod_{i=1}^k (p_i^{\alpha_i} 1)$;
- $\sigma^*(n)$ the unitary analogue of $\sigma(n)$, $\sigma^*(n) = \prod_{i=1}^k (p_i^{\alpha_i} + 1)$.

For other arithmetic functions defined by regular integers modulo n we refer to the papers [5, 14].

Let f(n) be a nonnegative real-valued multiplicative arithmetic function. Let

$$L = L(f) := \limsup_{n \to \infty} \frac{f(n)}{\log \log n}$$

and

$$\rho(p) = \rho(p, f) := \sup_{\alpha \ge 0} f(p^{\alpha})$$

for primes p, and consider the product $R = R(f) := \prod_p (1 - \frac{1}{p})\rho(p)$.

In order to prove the properties below we apply the following results:

Lemma 1. (Tóth and Wirsing [16, Corollary 1]). If f is a nonnegative real-valued multiplicative arithmetic function such that for each prime p,

(*i*)
$$\rho(p) = \sup_{\alpha \ge 0} (f(p^{\alpha})) \le \left(1 - \frac{1}{p}\right)^{-1}$$
, and

(ii) there is an exponent $e_p = p^{o(1)} \in \mathbb{N}$ satisfying $f(p^{e_p}) \ge 1 + \frac{1}{p}$,

then $\limsup_{n \to \infty} \frac{f(n)}{\log \log n} = e^{\gamma} \prod_p \left(1 - \frac{1}{p}\right) \rho(p).$

Lemma 2. (Tóth and Wirsing [16, Theorem 1]). Suppose that $\rho(p) < \infty$ for all primes p and the product R converges unconditionally (i.e., irrespectively of order), improper limits being allowed, then $L \leq e^{\gamma} R$.

Lemma 3. (Tóth and Wirsing [16, Theorem 3]). Suppose that $\rho(p) < \infty$ for all primes p, that for each prime p there is an exponent $e_p = p^{o(1)} \in \mathbb{N}$ such that $\prod_p f(p^{e_p})\rho(p)^{-1} > 0$ and that the product R converges, improper limits being allowed. Then $L \ge e^{\gamma}R$.

3 Dirichlet series of $V_k(n)$

Apostol and Petrescu [3] studied the Dirichlet series of $V_1(n) := V(n)$. In what follows we give the Dirichlet series of $V_k(n)$ for $k \ge 2$ and some results involving the Möbius function.

Proposition 4. For every $s = \sigma + it \in \mathbb{C}$ with $\sigma > k + 1$,

$$\sum_{n \ge 1} \frac{V_k(n)}{n^s} = \zeta(s-k)\zeta(s) \prod_p \left(1 - \frac{p^{2s-k} + p^s - p^{s-k}}{p^{3s-k}}\right).$$

Proof. Let $f(n) = \frac{V_k(n)}{n^s}$. We have

$$\sum_{n \ge 1} |f(n)| \le \sum_{n \ge 1} \frac{1}{n^{\sigma-k}} < \infty,$$

so the series $\sum_{n\geq 1} \frac{V_k(n)}{n^s}$ converges absolutely for $\sigma > k+1$. Since V_k is multiplicative,

$$\sum_{n\geq 1} \frac{V_k(n)}{n^s} = \prod_p \frac{1}{1 - \frac{1}{p^{s-k}}} \cdot \prod_p \frac{1}{1 - \frac{1}{p^s}} \cdot \prod_p \left(1 - \frac{p^{2s-k} + p^s - p^{s-k}}{p^{3s-k}}\right),$$

and the claim follows.

Corollary 5. Let $s = \sigma + it \in \mathbb{C}$, $\sigma > k + 1$. Then

$$\sum_{n \ge 1} \frac{\mu(n)V_k(n)}{n^s} = \prod_p \left(1 - \frac{1}{p^{s-k}}\right) = \frac{1}{\zeta(s-k)}$$

Also,

$$\sum_{n \ge 1} \frac{|\mu(n)| V_k(n)}{n^s} = \prod_p \left(1 + \frac{1}{p^{s-k}} \right) = \frac{\zeta(s-k)}{\zeta(2s-2k)}.$$

Proof. For $f(n) = \frac{\mu(n)V_k(n)}{n^s}$ the series $\sum_{n\geq 1} |f(n)|$ converges absolutely, so

$$\sum_{n \ge 1} \frac{\mu(n)V_k(n)}{n^s} = \prod_p \left(1 - \frac{1}{p^{s-k}}\right) = \frac{1}{\zeta(s-k)}$$

For the second assertion take $f(n) = \frac{|\mu(n)|V_k(n)|}{n^s}$.

4 Extremal orders concerning classical generalized arithmetic functions

For the quotient $\frac{\sigma_k(n)}{V_k(n)}$, we notice that $\frac{\sigma_k(n)}{V_k(n)} \ge 1$ for every $n \ge 1$. Since

$$\lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{\sigma_k(p)}{V_k(p)} = \lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{p^k + 1}{p^k} = 1,$$

we get

$$\liminf_{n \to \infty} \frac{\sigma_k(n)}{V_k(n)} = 1;$$

hence the minimal order of $\frac{\sigma_k(n)}{V_k(n)}$ is 1. Now consider the quotient

$$\frac{\psi_k(n)}{V_k(n)}.$$

Since

$$\frac{\psi_k(n)}{V_k(n)} \ge 1$$

for every $n \ge 1$ and

$$\frac{\psi_k(p)}{V_k(p)} = \frac{p^k + 1}{p^k}$$

for every prime p, it is immediate that

$$\liminf_{n \to \infty} \frac{\psi_k(n)}{V_k(n)} = 1.$$

Thus, the minimal order of $\frac{\psi_k(n)}{V_k(n)}$ is 1. It is known that

$$\limsup_{n \to \infty} \frac{\sigma(n)}{V(n)(\log \log n)^2} = e^{2\gamma}$$

and

$$\limsup_{n \to \infty} \frac{\psi(n)}{V(n)(\log \log n)^2} = \frac{6}{\pi^2} e^{2\gamma};$$

see [2]. Proposition 6 shows that the maximal order of $\frac{\sigma_k(n)}{V_k(n)}$ and $\frac{\psi_k(n)}{V_k(n)}$ is $\frac{6}{\pi^2}e^{2\gamma}(\log \log n)^2$. **Proposition 6.** For $k \ge 2$,

$$\limsup_{n \to \infty} \frac{\sigma_k(n)}{V_k(n)(\log \log n)^2} = \limsup_{n \to \infty} \frac{\psi_k(n)}{V_k(n)(\log \log n)^2} = \frac{6}{\pi^2} e^{2\gamma}.$$

Proof. Take $f(n) = \sqrt{\frac{\sigma_k(n)}{V_k(n)}}$. Then

$$f(p^{\alpha}) = \sqrt{\frac{p^{(\alpha+1)k} - 1}{(p^k - 1)(p^{\alpha k} - p^{(\alpha-1)k} + 1)}} \le \sqrt{\frac{p+1}{p-1}} = \rho(p) < \left(1 - \frac{1}{p}\right)^{-1}$$

and

$$f(p^2) = \sqrt{\frac{p^{3k} - 1}{(p^k - 1)(p^{2k} - p^k + 1)}} \ge 1 + \frac{1}{p}$$

for every prime p, so (ii) in Lemma 1 is satisfied. We obtain

$$\limsup_{n \to \infty} \frac{\sqrt{\sigma_k(n)}}{\sqrt{V_k(n)} \log \log n} = \prod_p \sqrt{1 - \frac{1}{p^2}} e^{\gamma} = \sqrt{\frac{6}{\pi^2}} e^{\gamma},$$

 \mathbf{SO}

$$\limsup_{n \to \infty} \frac{\sigma_k(n)}{V_k(n)(\log \log n)^2} = \frac{6}{\pi^2} e^{2\gamma}.$$

Since $\psi_k(n) \leq \sigma_k(n)$ and for the primes p we have $\psi_k(p) = \sigma_k(p) = p^k + 1$, the result for $\frac{\psi_k(n)}{V_k(n)(\log \log n)^2}$ follows from the previous one.

5 Extremal orders concerning unitary analogues of σ_k and ϕ_k

In what follows we consider the functions $\sigma_k^*(n)$ and $\phi_k^*(n)$, representing the generalizations for the sum of the unitary divisors of n and the unitary analogue Euler function, respectively. Let $k \ge 1$ be a fixed integer. We have $\sigma_k^*(n) = \sum_{d \parallel n} d^k$ and $\sigma_k^*(p^{\alpha}) = p^{\alpha k} + 1$. Also,

$$\phi_k^*(n) := \sum_{\substack{\gcd(a_1, \dots, a_k) \in \{1, 2, \dots, n\}^k \\ \gcd(\gcd(a_1, a_2, \dots, a_k), n)_* = 1}} 1 = \sum_{d \parallel n} d^k \mu^*(\frac{n}{d}),$$

and hence $\phi_k^*(p^{\alpha}) = p^{\alpha k} - 1$. Note that

$$gcd(a,b)_* = \max\{d: d \mid a, d \parallel b\}$$

and $\mu^*(n)$ is the unitary analogue of the Möbius function, given by $\mu^*(n) = (-1)^{\omega(n)}$, where $\omega(n)$ is the number of distinct prime factors of n. The functions $\sigma_k^*(n)$ and $\phi_k^*(n)$ are multiplicative. Let $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ be the prime factorisation of n > 1. We obtain

$$\phi_k^*(n) = (p_1^{\alpha_1 k} - 1) \cdots (p_r^{\alpha_r k} - 1)$$
 and $\sigma_k^*(n) = (p_1^{\alpha_1 k} + 1) \cdots (p_r^{\alpha_r k} + 1).$

Observe that $\sigma_k^*(n) = \sigma_k(n)$ and $\phi_k^*(n) = \phi_k(n)$ for all squarefree n. Furthermore, for every $n \ge 1$,

$$\phi_k(n) \le \phi_k^*(n) \le n^k \le \sigma_k^*(n) \le \sigma_k(n).$$

Recall that an integer n > 1 is called powerful if it is divisible by the square of each of its prime factors. A powerful integer is also called a squarefull integer. We give extremal orders for the quotients $\frac{\sigma_k^*(n)}{V_k(n)}$ and $\frac{\phi_k^*(n)}{V_k(n)}$, the minimal order of $\frac{\phi_k^*(n)}{V_k(n)}$ being studied for powerful numbers. Since $\frac{\sigma_k^*(n)}{V_k(n)} \ge 1$ for every $n \ge 1$ and $\lim_{p\to\infty} \frac{\sigma_k^*(p)}{V_k(p)} = \lim_{p\to\infty} \frac{p^k+1}{p^k} = 1$ for prime numbers p, it follows that $\liminf_{n\to\infty} \frac{\sigma_k^*(n)}{V_k(n)} = 1$.

If n is powerful, it is easy to see that $\frac{\phi_k^*(n)}{V_k(n)} \ge 1$, taking into account that $\frac{\phi_k^*(p^{\alpha})}{V_k(p^{\alpha})} \ge 1$ for $\alpha \ge 2$. For prime numbers p, we notice that

$$\lim_{p \to \infty} \frac{\phi_k^*(p^2)}{V_k(p^2)} = \lim_{p \to \infty} \frac{p^{2k} - 1}{p^{2k} - p^k + 1} = 1,$$

which implies that

$$\liminf_{n \to \infty} \frac{\phi_k^*(n)}{V_k(n)} = 1,$$

so the minimal order of $\frac{\phi_k^*(n)}{V_k(n)}$ is 1. For the maximal orders of these quotients we have

Proposition 7. For $k \ge 1$,

$$\limsup_{n \to \infty} \frac{\sigma_k^*(n)}{V_k(n) \log \log n} = \limsup_{n \to \infty} \frac{\phi_k^*(n)}{V_k(n) \log \log n} = e^{\gamma}$$

Proof. Take $f(n) = \frac{\sigma_k^*(n)}{V_k(n)}$ in Lemma 2, which is a nonnegative real-valued multiplicative arithmetic function. We have

$$f(p^{\alpha}) = \frac{p^{\alpha k} + 1}{p^{\alpha k} - p^{(\alpha - 1)k} + 1} \le \left(1 - \frac{1}{p}\right)^{-1} = \rho(p) < \infty$$

and R = 1, so

$$\limsup_{n \to \infty} \frac{\sigma_k^*(n)}{V_k(n) \log \log n} \le e^{\gamma}.$$

Now let $g(n) = \frac{\phi_k^*(n)}{V_k(n)}$. Here

$$g(p^{\alpha}) = \frac{p^{\alpha k} - 1}{p^{\alpha k} - p^{(\alpha - 1)k} + 1} \le \left(1 - \frac{1}{p}\right)^{-1} = \rho(p),$$

and

$$R = \prod_{p} g(p^{1})(\rho(p))^{-1} = \prod_{p} (p^{k} + 1) \cdot \frac{p - 1}{p} > 0.$$

Hence, by Lemma 3 we have

$$\limsup_{n \to \infty} \frac{\phi_k^*(n)}{V_k(n) \log \log n} \ge e^{\gamma}.$$

It is obvious that $\phi_k^*(n) \leq \sigma_k^*(n)$ for every $n \geq 1$. We obtain

$$e^{\gamma} \leq \limsup_{n \to \infty} \frac{\phi_k^*(n)}{V_k(n) \log \log n} \leq \limsup_{n \to \infty} \frac{\sigma_k^*(n)}{V_k(n) \log \log n} \leq e^{\gamma},$$

which shows that

$$\limsup_{n \to \infty} \frac{\sigma_k^*(n)}{V_k(n) \log \log n} = \limsup_{n \to \infty} \frac{\phi_k^*(n)}{V_k(n) \log \log n} = e^{\gamma},$$

as desired.

Corollary 8. The maximal order of both $\frac{\sigma_k^*(n)}{V_k(n)}$ and $\frac{\phi_k^*(n)}{V_k(n)}$ is $e^{\gamma} \log \log n$.

6 Extremal orders regarding compositions of arithmetical functions

We now move to the study of extremal orders of some composite arithmetic functions. We start with $V_k(V_k(n))$ and $\phi_k(V_k(n))$.

We know that $V_k(n) \leq n^k$ for every $n \geq 1$, so

$$\frac{V_k(V_k(n))}{n^{k^2}} \le \frac{(V_k(n))^k}{n^{k^2}} \le \frac{(n^k)^k}{n^{k^2}} = 1$$

and

$$\lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{V_k(V_k(p))}{p^{k^2}} = \lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{V_k(p^k)}{p^{k^2}} = \lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{p^{k^2} - p^{(k-1)k} + 1}{p^{k^2}} = 1,$$

so the maximal order of $V_k(V_k(n))$ is n^{k^2} . Since $\phi_k(n) \leq n^k$ and $V_k(n) \leq n^k$ for any $n \geq 1$, we have $\frac{\phi_k(V_k(n))}{n^{k^2}} \leq \frac{(V_k(n))^k}{n^{k^2}} \leq 1$. But $\lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{\phi_k(V_k(p))}{p^{k^2}} = \lim_{p \to \infty} \frac{p^{k^2} - p^{(k-1)k}}{p^{k^2}} = 1$, so the maximal order of $\phi_k(V_k(n))$ is n^{k^2} .

The maximal order of $V(\phi(n))$ was investigated in [2]. Using the general idea of that proof, we show

Proposition 9. The maximal order of $V_k(\phi_k(n))$ is n^{k^2} .

Proof. We will use Linnik's theorem which states that if $gcd(t, \ell) = 1$, then there exists a prime p such that $p \equiv \ell \pmod{t}$ and $p \ll t^c$, where c is a constant (one can take $c \leq 11$).

Let $A = \prod_{\substack{k . Since <math>gcd(A^2, A + 1) = 1$, by Linnik's theorem there is a prime number q such that $q \equiv A + 1 \pmod{A^2}$ and $q \ll (A^2)^c = A^{2c}$, where c satisfies $c \le 11$. Also, $q^k \equiv kA + 1 \pmod{A^2}$. Let q be the least prime satisfying the above condition. We have $\phi_k(q) = q^k - 1 = AB$, where B = k + sA, for some s. Thus gcd(A, B) = 1, so B is free of prime factors $\le x$ and > k. Since $V_k(n)$ is multiplicative, we have

$$\frac{V_k(\phi_k(q))}{q^{k^2}} = \frac{V_k(AB)}{(AB+1)^k} = \frac{V_k(A)}{A^k} \cdot \frac{V_k(B)}{B^k} \cdot \frac{(AB)^k}{(AB+1)^k}.$$
 (1)

Here $\frac{(AB)^k}{(AB+1)^k} \to 1$ as $x \to \infty$, so it is sufficient to study $\frac{V_k(A)}{A^k}$ and $\frac{V_k(B)}{B^k}$. Clearly,

$$\frac{V_k(A)}{A^k} = 1. \tag{2}$$

We have $A = \prod_{k . Since <math>B \ll A^{10}$ we obtain $B \ll e^{O(x)}$, so

$$\log B \ll x. \tag{3}$$

If $B = \prod_{i=1}^{r} q_i^{b_i}$ is the prime factorization of B, we obtain, taking into account that $k \ge 1$ is a fixed integer, that $\log B = \sum_{i=1}^{r} b_i \log q_i > (\log x) \sum_{i=1}^{r} b_i$ for sufficiently large x. But $\sum_{i=1}^{r} b_i \ge r$, so $\log B > k \log x$, implying that $r < \frac{\log B}{\log x} \ll \frac{x}{\log x}$ (by (3)). Since

$$\frac{V_k(B)}{B^k} > \prod_{i=1}^r \left(1 - \frac{1}{q_i^k}\right) \ge \prod_{i=1}^r \left(1 - \frac{1}{q_i}\right) > \left(1 - \frac{1}{x}\right)^r \ge \left(1 - \frac{1}{x}\right)^{O(\frac{x}{\log x})},$$

We obtain

$$\frac{V_k(B)}{B^k} > 1 + O\left(\frac{1}{\log x}\right). \tag{4}$$

By (1), (2), (4) and $\frac{(AB)^k}{(AB+1)^k} \to 1$ as $x \to \infty$, we obtain

$$\frac{V_k(\phi_k(q))}{q^{k^2}} > 1 + O\left(\frac{1}{\log x}\right).$$
(5)

By relation (5), and since $\frac{V_k(\phi_k(n))}{n^{k^2}} \leq \frac{(\phi_k(n))^k}{n^{k^2}} \leq 1$, the claim follows.

The maximal order of $V(\phi^*(n))$ is n (see [2]). For the maximal order of $V_k(\phi^*(n))$ we give

Proposition 10.

$$\limsup_{n \to \infty} \frac{V_k(\phi^*(n))}{n^k} = 1$$

Proof. We apply the following lemma:

If a is an integer, a > 1, p is a prime number and f(n) is an arithmetical function satisfying $\phi(n) \leq f(n) \leq \sigma(n)$, one has

$$\lim_{p \to \infty} \frac{f(N(a, p))}{N(a, p)} = 1,$$
(6)

where $N(a, p) = \frac{a^{p-1}}{a-1}$ (see, e.g., Suryanarayana [13]). Since $\phi^*(n) \leq n$, it follows that $V_k(\phi^*(n)) \leq (\phi^*(n))^k \leq n^k$, so

$$\frac{\sqrt[k]{V_k(\phi^*(n))}}{n} \le 1.$$
(7)

Obviously, $\sqrt[k]{V_k(n)}$ meets the conditions of the lemma. We have

$$\lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{\sqrt[k]{V_k(\phi^*(2^p))}}{2^p} = \lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{\sqrt[k]{V_k(2^p - 1)}}{2^p - 1} = \lim_{\substack{p \to \infty \\ p \text{ prime}}} \frac{\sqrt[k]{V_k(N(2, p))}}{N(2, p)} = 1.$$
(8)

Now (7) and (8) imply $\limsup_{n\to\infty} \frac{\sqrt[k]{V_k(\phi^*(n))}}{n} = 1$, and we are done.

Apostol [2] proved that

$$\limsup_{n \to \infty} \frac{\sigma(\phi^*(n))}{V(\phi^*(n))(\log \log n)^2} = \limsup_{n \to \infty} \frac{\sigma(\phi^*(n))}{V(\phi^*(n))(\log \log \phi^*(n))^2} = e^{2\gamma}$$

and

$$\limsup_{n \to \infty} \frac{\psi(\phi^*(n))}{V(\phi^*(n))(\log \log n)^2} \limsup_{n \to \infty} \frac{\psi(\phi^*(n))}{V(\phi^*(n))(\log \log \phi^*(n))^2} = \frac{6}{\pi^2} e^{2\gamma}.$$

The maximal orders of $\frac{\sigma_k(\phi^*(n))}{V_k(\phi^*(n))}$ and $\frac{\psi_k(\phi^*(n))}{V_k(\phi^*(n))}$ are given by

Proposition 11. For $k \ge 2$ we have

(i)
$$\limsup_{n \to \infty} \frac{\sigma_k(\phi^*(n))}{V_k(\phi^*(n))(\log \log n)^2} = \limsup_{n \to \infty} \frac{\sigma_k(\phi^*(n))}{V_k(\phi^*(n))(\log \log \phi^*(n))^2} = \frac{6}{\pi^2} e^{2\gamma},$$

(ii)
$$\limsup_{n \to \infty} \frac{\psi_k(\phi^*(n))}{V_k(\phi^*(n))(\log \log n)^2} = \limsup_{n \to \infty} \frac{\psi_k(\phi^*(n))}{V_k(\phi^*(n))(\log \log \phi^*(n))^2} = \frac{6}{\pi^2} e^{2\gamma}.$$

Proof. (i) Let

$$l_1 := \limsup_{n \to \infty} \frac{\sigma_k(\phi^*(n))}{V_k(\phi^*(n))(\log \log n)^2} \text{ and } l_2 := \limsup_{n \to \infty} \frac{\sigma_k(\phi^*(n))}{V_k(\phi^*(n))(\log \log \phi^*(n))^2}$$

Since $\phi^*(n) \leq n$ for every $n \geq 1$, we have

$$l_{1} = \limsup_{n \to \infty} \frac{\sigma_{k}(\phi^{*}(n))}{V_{k}(\phi^{*}(n))(\log \log n)^{2}}$$

$$\leq l_{2} = \limsup_{n \to \infty} \frac{\sigma_{k}(\phi^{*}(n))}{V_{k}(\phi^{*}(n))(\log \log \phi^{*}(n))^{2}}$$

$$\leq \limsup_{m \to \infty} \frac{\sigma_{k}(m)}{V_{k}(m)(\log \log m)^{2}} = \frac{6}{\pi^{2}}e^{2\gamma},$$

by Proposition 6. Since gcd(n, 1) = 1, by Linnik's theorem, there exists a prime number p such that $p \equiv 1 \pmod{n}$ and $p \ll n^c$. Let p_n be the least prime such that $p_n \equiv 1 \pmod{n}$, for every n. Then $n \mid p_n - 1$ and $p_n \ll n^c$, so $\log \log p_n \sim \log \log n$.

for every *n*. Then $n \mid p_n - 1$ and $p_n \ll n^c$, so $\log \log p_n \sim \log \log n$. Observe that $a \mid b$ implies $\frac{\sigma_k(a)}{V_k(a)} \leq \frac{\sigma_k(b)}{V_k(b)}$. If $p^{\beta} \mid p^{\alpha} \ (\beta \leq \alpha)$, it is easy to see that $\frac{\sigma_k(p^{\beta})}{V_k(p^{\beta})} \leq \frac{\sigma_k(p^{\alpha})}{V_k(p^{\alpha})}$. The general case follows, taking into account that $\frac{\sigma_k(n)}{V_k(n)}$ is multiplicative. So,

$$\frac{\sigma_k(\phi^*(p_n))}{V_k(\phi^*(p_n))(\log\log p_n)^2} = \frac{\sigma_k(p_n-1)}{V_k(p_n-1)(\log\log p_n)^2} \sim \frac{\sigma_k(p_n-1)}{V_k(p_n-1)(\log\log n)^2}$$

On the other hand,

$$\frac{\sigma_k(p_n-1)}{V_k(p_n-1)(\log\log n)^2} \ge \frac{\sigma_k(n)}{V_k(n)(\log\log n)^2}$$

Therefore,

$$\limsup_{n \to \infty} \frac{\sigma_k(\phi^*(n))}{V_k(\phi^*(n))(\log \log n)^2} \ge \limsup_{n \to \infty} \frac{\sigma_k(\phi^*(p_n))}{V_k(\phi^*(p_n))(\log \log p_n)^2}$$
$$\ge \limsup_{n \to \infty} \frac{\sigma_k(n)}{V_k(n)(\log \log n)^2} = \frac{6}{\pi^2} e^{2\gamma}.$$
We obtain $\frac{6}{\pi^2} e^{2\gamma} \le l_1 \le l_2 \le \frac{6}{\pi^2} e^{2\gamma}$, and hence $l_1 = l_2 = \frac{6}{\pi^2} e^{2\gamma}$.

(ii) The proof is similar to the proof of (i), taking into account that $a \mid b$ implies $\frac{\psi_k(a)}{V_k(a)} \leq \frac{\psi_k(b)}{V_k(b)}$ and $\limsup_{n \to \infty} \frac{\psi_k(n)}{V_k(n)(\log \log n)^2} = \frac{6}{\pi^2} e^{2\gamma}$, by Proposition 6.

So, the maximal orders of both $\frac{\sigma_k(\phi^*(n))}{V_k(\phi^*(n))}$ and $\frac{\psi_k(\phi^*(n))}{V_k(\phi^*(n))}$ are $\frac{6}{\pi^2}e^{2\gamma}(\log\log n)^2$. In a similar manner, since

$$\limsup_{n \to \infty} \frac{\sigma_k^*(n)}{V_k(n) \log \log n} = \limsup_{n \to \infty} \frac{\phi_k^*(n)}{V_k(n) \log \log n} = e^{\gamma}$$

(using Proposition 7), the fact that $a \mid b$ implies $\frac{\sigma_k^*(a)}{V_k(a)} \leq \frac{\sigma_k^*(b)}{V_k(b)}$ and $\frac{\phi_k^*(a)}{V_k(a)} \leq \frac{\phi_k^*(b)}{V_k(b)}$, respectively, it can be shown that

$$\limsup_{n \to \infty} \frac{\sigma_k^*(\phi^*(n))}{V_k(\phi^*(n)) \log \log n} = \limsup_{n \to \infty} \frac{\sigma_k^*(\phi^*(n))}{V_k(\phi^*(n)) \log \log \phi^*(n)} = e^{\gamma}$$

and

$$\limsup_{n \to \infty} \frac{\phi_k^*(\phi^*(n))}{V_k(\phi^*(n)) \log \log n} = \limsup_{n \to \infty} \frac{\phi_k^*(\phi^*(n))}{V_k(\phi^*(n)) \log \log \phi^*(n)} = e^{\gamma}.$$

7 Open Problems

Open Problem 12. Note that

$$\liminf_{n \to \infty} \frac{V_k(\phi(n))}{n^k} = \liminf_{n \to \infty} \frac{V_k(\phi^*(n))}{n^k} = \liminf_{n \to \infty} \frac{\phi_k^*(V(n))}{n^k} = 0$$

For $n_k = p_1 \cdots p_r$ (the product of the first r primes), we have

$$\frac{V_k(\phi(n_r))}{n_r^k} = \frac{V_k((p_1-1)\cdots(p_r-1))}{p_1^k\cdots p_r^k} \le \frac{(p_1-1)^k\cdots(p_r-1)^k}{p_1^k\cdots p_r^k} = \left((1-\frac{1}{p_1})\cdots(1-\frac{1}{p_r})\right)^k,$$

 \mathbf{SO}

$$\lim_{r \to \infty} \frac{V_k(\phi(n_r))}{n_r^k} = \lim_{r \to \infty} \left((1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_r}) \right)^k = 0,$$

similarly the other relations. What are the minimal orders for the $V_k(\phi(n))$, $V_k(\phi^*(n))$, and $\phi_k^*(V(n))$?

Open Problem 13. Taking $n_r = p_1 \cdots p_r$ (the product of the first r primes),

$$\frac{\sigma_k^*(V(n_r))}{n_r^k} = \frac{\sigma_k^*(p_1 \cdots p_r)}{p_1^k \cdots p_r^k} = \frac{(p_1^k + 1) \cdots (p_r^k + 1)}{p_1^k \cdots p_r^k} = \left((1 + \frac{1}{p_1}) \cdots (1 + \frac{1}{p_r})\right)^k \to \infty$$

as $r \to \infty$, so $\limsup_{n \to \infty} \frac{\sigma_k^*(V(n))}{n^k} = \infty$. What is the maximal order for $\sigma_k^*(V(n))$?

8 Acknowledgments

The authors would like to thank the referees for helpful suggestions.

References

- [1] O. Alkam and E. Osba, On the regular elements in \mathbb{Z}_n , Turk. J. Math. **32** (2008), 1–9.
- [2] B. Apostol, Extremal orders of some functions connected to regular integers modulo n, An. Stiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. **21** (2013), to appear.
- [3] B. Apostol and L. Petrescu, On the number of regular integers (mod n), J. Algebra Number Theory Acad. 2 (2012), 337–352.
- [4] B. Apostol and L. Tóth, Some remarks on regular integers modulo n, preprint, http://arxiv.org/abs/1304.2699.
- [5] P. Haukkanen and L. Tóth, An analogue of Ramanujan's sum with respect to regular integers (mod r), Ramanujan J. 27 (2012), 71–88.

- [6] J. Morgado, A property of the Euler \u03c6-function concerning the integers which are regular modulo n, Portugal. Math. 33 (1974), 185–191.
- [7] J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica 33 (1972), 1–5.
- [8] J. Sándor, *Geometric Theorems, Diophantine Equations, and Arithmetic Functions,* American Research Press, 2002.
- [9] J. Sándor and B. Crstici, *Handbook of Number Theory II*, Kluwer Academic Publishers, 2004.
- [10] J. Sándor and L. Tóth, Extremal orders of compositions of certain arithmetical functions, *Integers* 8 (2008), # A34.
- [11] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Marcel Dekker, 1989.
- [12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
- [13] D. Suryanarayana, On a class of sequences of integers, Amer. Math. Monthly 84 (1977), 728–730.
- [14] L. Tóth, A gcd-sum function over regular integers modulo n, J. Integer Seq. 12 (2009), Article 09.2.5.
- [15] L. Tóth, Regular integers (mod n), Annales Univ. Sci. Budapest., Sect Comp. 29 (2008), 263–275.
- [16] L. Tóth and E. Wirsing, The maximal order of a class of multiplicative arithmetical functions, Annales Univ. Sci. Budapest., Sect Comp. 22 (2003), 353–364.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11N37. Keywords: arithmetical function, composition, regular integer (mod n), extremal order.

(Concerned with sequences $\underline{A000010}$, $\underline{A000203}$, $\underline{A055653}$, and $\underline{A143869}$.)

Received April 25 2013; revised versions received July 9 2013; July 30 2013; August 5 2013. Published in *Journal of Integer Sequences*, August 8 2013.

Return to Journal of Integer Sequences home page.