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À Jean-Paul, en toute amitié

Abstract

We investigate the rational approximation of the binary Thue-Morse-Mahler num-

ber. We prove that its continued fraction expansion has infinitely many partial quo-

tients equal to 4 or 5 and infinitely many partial quotients greater than or equal to

50.

1 Introduction and results

Let
t = t1t2t3 · · · = 0110100110010110100101100110100110010110 · · ·
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denote the Thue-Morse word on {0, 1}, that is, the fixed point starting with 0 of the morphism
τ defined by τ(0) = 01 and τ(1) = 10.

Let b ≥ 2 be an integer. In a fundamental paper, Mahler [5] established that the Thue-
Morse-Mahler number

ξt,b =
∑

k≥1

tk
bk

=
1

b2
+

1

b3
+

1

b5
+

1

b8
+

1

b9
+ · · ·

is transcendental (see Dekking [4] for an alternative proof, reproduced in [1, Section 13.4]).
Since the irrationality exponent of ξt,b is equal to 2 (see [3]), the transcendence of ξt,b cannot
be proved by applying Roth’s theorem.

In the present note, we focus on the so-called Thue-Morse constant

ξt := ξt,2 = 0.412454 · · ·

Allouche and Shallit [1, Open Problem 9, p. 403] asked whether ξt has bounded partial
quotients. We make a small contribution to the resolution of this question by showing that
the sequence of partial quotients to ξt does not increase to infinity. Observe that the fact
that the irrationality exponent of ξt equals 2 prevents its sequence of partial quotients to
increase too rapidly to infinity. However, there are uncountably many real numbers having
irrationality exponent equal to 2 and whose sequence of partial quotients is increasing.

A computation (see e.g., [7]) shows that

ξt = [0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, 1, 1, 5, 14,
1, 50, 15, 5, 1, 1, 1, 4, 2, 1, 4, 1, 43, 1, 4, 1, 2, 1, 3, 16, 1, 2, 1, 2, 1, 50, 1,
2, 424, 1, 2, 5, 2, 1, 1, 1, 5, 5, 2, 22, 5, 1, 1, 1, 1274, 3, 5, 2, 1, 1, 1, 4, 1, 1,
15, 154, 7, 2, 1, 2, 2, 1, 2, 1, 1, 50, 1, 4, 1, 2, 867374, 1, 1, 1, 5, 5, 1, 1, 6,
1, 2, 7, 2, 1650, 23, 3, 1, 1, 1, 2, 5, 3, 84, 1, 1, 1, 1284, 2, . . .]

and the determination of the first thousands of partial quotients of ξt suggests that it has
unbounded partial quotients.

Throughout, for n ≥ 0, we denote by

Fn := 22
n

+ 1

the n-th Fermat number.
Our main result is the following.

Theorem 1. For any n ≥ 1 the integers Fn and 22·2
n

Fn are denominators of convergents
to ξt. The Thue-Morse constant ξt has infinitely many partial quotients equal to 4 or 5.
Furthermore, there are infinitely many pairs of consecutive partial quotients both less than
or equal to 5. Finally, ξt has infinitely many partial quotients greater than or equal to 50.

It follows from the fact that the integers 22·2
n

Fn, n ≥ 1, are denominators of convergents
to ξt that the transcendence of ξt is an immediate consequence of the p-adic extension of
Roth’s theorem, established by Ridout [6]. It seems to us that this observation is new.
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The proof of Theorem 1 provides us with an explicit description of infinite families of
convergents to ξt, which can be used to compute very quickly the first partial quotients of
the Thue-Morse constant. In particular, the continued fraction expansions of the rational
numbers rn (defined in (2) below) for n around 15 allow a modest computer to give the exact
sequence of partial quotients of ξt beyond current tables.

We can as well consider the real numbers whose expansion in some integer base b is given
by the Thue-Morse sequence. The combinatorial part remains unchanged. In particular, it
follows from Ridout’s theorem that these numbers are transcendental. However, the rational
approximations we construct are not good enough to be convergents.

2 Proofs

For n ≥ 0, set

ξn :=
2n
∑

j=1

tj2
−j, ζn :=

2n
∑

j=1

(1− tj)2
−j = 1− 2−2n − ξn. (1)

Furthermore, for n ≥ 1, let

rn := ξn(1 + 2−2n + 2−2·2n + 2−3·2n + · · · ) =
ξn

1− 2−2n
(2)

be the rational number whose binary expansion is purely periodic with period t1t2 · · · t2n .

Lemma 2. Let (kn)n≥1 be the sequence defined by k1 = 1 and the recurrence relation

kn+1 = 1 + kn(2
2n−1

− 1) = 1 + kn(Fn−1 − 2),

for n ≥ 1. Then, for n ≥ 1, the rational number rn defined in (2) can be written kn/Fn−1

under its reduced form.

Proof. It follows from (2) that

rn = ξn
22

n

22n − 1
, for n ≥ 1.

Since τn+1(0) = τn(0)τn(1), we get

ξn+1 = ξn +
ζn
22n

.

We deduce from (1) that

ξn+1 = ξn

(

1−
1

22n

)

+
22

n

− 1

22n+1
.

We then get

rn+1 = rn
22

n

− 1

22n + 1
+

1

22n + 1
= rn

Fn − 2

Fn

+
1

Fn

.
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Since Fn − 2 = Fn−1(Fn−1 − 2), k1 = 1 and r1 =
1

3
= k1

F0
, an immediate induction gives

rn+1 =
kn(Fn − 2)

FnFn−1

+
1

Fn

=
kn+1

Fn

,

where kn+1 = 1 + kn(Fn−1 − 2).
It only remains for us to prove that for n ≥ 0 the integers kn+1 and Fn are coprime.

Observe that, for n ≥ 1, we have

Fn − 2 = F0F1 · · · Fn−1,

and gcd(Fm,Fn) = 1 when m 6= n.
Since

kn+1 − 1 = kn(Fn−1 − 2)

we deduce
2kn+1 −Fn = 2kn(Fn−1 − 2)− (Fn − 2)

= (Fn−1 − 2)(2kn −Fn−1)
= (F1 − 2) · · · (Fn−1 − 2)(2k1 −F0),

or, equivalently,

Fn − 2kn+1 =
n−1
∏

j=1

F0F1 · · · Fj−1.

If a prime number p divides simultaneously kn+1 and Fn, it must divide the product

n−1
∏

j=1

F0F1 · · · Fj−1.

This gives a contradiction, since Fn is coprime with the latter product. Consequently, kn+1

and Fn have no common prime divisor. This finishes the proof of the lemma.

Lemma 3. For n ≥ 2, the rational number rn defined in (2) is a convergent to ξt.

Proof. For n ≥ 1, set πn =
∑

2n

j=1

εj
2j
, where (εj)j≥1 is the Thue-Morse sequence on {±1}

beginning with 1. A classical computation shows that

πn =
1

2

n−1
∏

j=0

(

1−
1

22j

)

and we check that 0.175 < πn < 0.1751 if n ≥ 4. Writing the sequences of digits of ξt and
rn as a concatenation of blocks of length 2n from {τn(0), τn(1)}, we get

τn(0)τn(1)τn(1)τn(0) · · ·

and
τn(0)τn(0)τn(0)τn(0) · · · ,
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respectively. Thus,

ξt − rn = 0 +
πn

22n
+

πn

22n+1
+ 0 + · · ·

This gives

0.175(
1

22n
+

1

22n+1
) ≤ ξt − rn

≤ 0.1751(
1

22n
+

1

22n+1
+ · · · )

≤ 0.1751
1

22n
(1 +

1

22n
+

1

22.2n
+ · · · )

≤ 0.1751
1

22n − 1
. (3)

In particular, we get

0 < ξt − rn <
1

2F2
n−1

, for n ≥ 4.

The Legendre theorem (see e.g., [2]) then implies that rn is a convergent to ξt for n ≥ 4. We
further check that r2 and r3 are convergents to ξt.

Lemma 4. For every n ≥ 1, the integer 22·2
n

Fn is the denominator of a convergent to ξt.

Proof. For n ≥ 1, we consider the rational number Rn whose binary expansion has preperiod
τn(0) and period τn(1). Clearly,

Rn = ξn +
1

22n
(1− rn)

and, by (2),

Rn = rn
22

n

− 2

22n
+

1

22n
.

Since, by Lemma 2

rn =
kn

Fn−1

with (kn,Fn−1) = 1,

we finally get that

Rn = kn
22

n

− 2

22nFn−1

+
1

22n
=

Fn−1 + kn(2
2n − 2)

22nFn−1

is under its reduced form.
It remains to estimate the gap between ξt and Rn. Arguing as in the proof of Lemma 3,

we see that

πn

23·2n
< Rn − ξt < πn(

1

23·2n
+

1

24·2n
+ · · · ) =

πn

23·2n
(1 +

1

22n
+ · · · )

=
πn

23·2n
(

22
n

22n − 1
) =

πn

24·2n−1(22n−1 − 1)Fn−1

≤
1

2(22·2n−1Fn−1)2
, for n ≥ 4.

The lemma then follows from Legendre’s theorem and the simple verification that R1, R2

and R3 are convergents to ξt.
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Lemma 5. For n ≥ 1, let cn/(2
3·2n − 1) be the rational number whose binary expansion is

purely periodic of period τn(0)τn(1)τn(1). Then, for n ≥ 3, its numerator and its denomi-
nator are both divisible by 3× (22

n−1

− 1).

Proof. Let w0w1 · · ·w3·2n−1 denote τn(110) if n is even and τn(001) if n is odd. Then, we
check that

cn =
3·2n−1
∑

j=0

wj2
j.

Let An =
∑

2n

j=1
tj2

j−1 and Bn =
∑

2n

j=1
(1 − tj)2

j−1 be the integers associated to τn(0) and
τn(1), respectively. Since

An + Bn = 22
n

− 1, Bn − An =
n−1
∏

j=0

(22
j

− 1) =: Tn, (4)

we deduce that

cn = Bn + 22
n

Bn + 22·2
n

An or An + 22
n

An + 22·2
n

Bn, (5)

depending on the parity of n.
Clearly, 22

n−1

− 1 divides 22
n

− 1 and 23·2
n

− 1. As it divides also Tn, it divides An and
Bn and thus cn.

Furthermore, for n ≥ 1, we have

22
n

≡ 4 (mod 9), if n is odd (6)

and
22

n

≡ 7 (mod 9), if n is even. (7)

It then follows from Eqs. (4) to (7) that 9 divides cn for n ≥ 3. Since 9 also divides 23·2
n

− 1
for n ≥ 2, this proves the lemma.

For n ≥ 1, let p′n/q
′
n denote the rational number cn/(2

3·2n − 1) written in its lowest form.
The lemma asserts that q′n divides (23·2

n

− 1)/(3 × (22
n−1

− 1)). For later use, we observe
that

πn

25·2n
<

cn
23·2n − 1

− ξt <
πn

25·2n
·

22
n

22n − 1
,

and, since

q′n ≤
23·2

n

− 1

3(22n−1 − 1)
≤

25·2
n−1

3
·

22
n−1

22n−1 − 1
,

we deduce that

0 <
p′n
q′n

− ξt <
πn

(3q′n)
2
·

22
n

22n − 1
·

22
n

(22n−1 − 1)2
, (8)

for n ≥ 3.

We can now prove Theorem 1.
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Proof of Theorem 1. The combination of Lemmas 2 to 4 establishes the first assertion of
Theorem 1. Recall that (see e.g., [2]), for ℓ ≥ 1, we have

|qℓξt − pℓ| =
1

qℓ
·

1

[aℓ+1; aℓ+2, . . .] + [0; aℓ, aℓ−1, . . .]
, (9)

where (pℓ/qℓ)ℓ≥0 denotes the sequence of convergents to ξt. By (3) and (9), there exist
arbitrarily large integers ℓ such that

[aℓ+1; aℓ+2, . . .] + [0; aℓ, aℓ−1, . . .]
.
= 1/0.175

.
= 5.71. (10)

Let ℓ be a positive integer for which (10) holds. If aℓ ≥ 2, then aℓ+1 must be equal to 5 and
aℓ+2 is at most 4. If aℓ = 1, then aℓ+1 equals 4 or 5.

Finally, we use Eqs. (3), (9), Lemma 5, and Eq. (8) to deduce that there exist arbitrarily
large integers ℓ such that

[aℓ+1; aℓ+2, . . .] + [0; aℓ, aℓ−1, . . .] ≥ 32/0.1751 ≥ 51.3.

This implies that infinitely many partial quotients are at least equal to 50. This concludes
the proof of the theorem.

3 Acknowledgments

We are grateful to the referee for numerous comments, including the suggestion to study the
rational numbers introduced in Lemma 5.

References

[1] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, 2003.

[2] Y. Bugeaud, Approximation By Algebraic Numbers. Cambridge Tracts in Mathematics
160, Cambridge University Press, 2004.

[3] Y. Bugeaud. On the irrationality exponent of the Thue-Morse-Mahler numbers, Ann.
Institut Fourier (Grenoble) 61 (2011), 2065–2076.

[4] F. M. Dekking, Transcendance du nombre de Thue-Morse, C. R. Acad. Sci. Paris Sér.
I Math. 285 (1977), 157–160.

[5] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgle-
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