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Abstract

In 2008, Kurosaki gave a new construction of a (bi-)infinite squarefree word over
three letters. We show that in fact Kurosaki’s word avoids (7/4)+-powers, which, as
shown by Dejean, is optimal over a 3-letter alphabet.

1 Introduction

In 1906, Thue [8] constructed an infinite word over a 3-letter alphabet that avoided squares,
i.e., repetitions of the form xx. In 1935, Arshon [1, 2] independently rediscovered this and
gave another construction of an infinite squarefree word. In 1972, Dejean [3] generalized
Thue’s notion of repetition to fractional powers. She constructed an infinite ternary word
avoiding (7/4)+-powers, i.e., repetitions of the form xα, where α > 7/4. Furthermore, she
showed that this was optimal over a ternary alphabet. In 2001, Klepinin and Sukhanov
[5] examined Arshon’s word in more depth and showed that it also avoided (7/4)+-powers
(Krieger [6] extended this result by analyzing Arshon words over larger alphabets.) In 2008,
Kurosaki [7] gave a new construction of a squarefree word. In this short note, we show that
Kurosaki’s word also avoids (7/4)+-powers.

Let us now recall some basic definitions. Let Σ be a finite alphabet and let x be a word
over Σ. We denote the length of x by |x|. Write x = x1x2 · · · xn, where each xi ∈ Σ. The
word x has a period p if xi = xi+p for all i. The exponent of x is the quantity |x|/p, where
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p is the least period of x. If x has exponent α, we say that x is an α-power. A 2-power is
also called a square. A word y (finite or infinite) avoids α-powers (resp. avoids α+-powers)
if every factor of y has exponent less than (resp. at most) α.

2 Kurosaki’s word avoids (7/4)+-powers

We now give the definition of Kurosaki’s word. We will use the notation from his paper. We
define functions σ, ρ : {1, 2, 3}∗ → {1, 2, 3}∗ as follows: If a is a word over {1, 2, 3}, then

• σ(a) is the word obtained by exchanging 1’s and 2’s in a;

• ρ(a) is the word obtained by exchanging 2’s and 3’s in a.

We define the function ϕ : {1, 2, 3}∗ → {1, 2, 3}∗ as follows:

ϕ(a) = σ(a)aρ(a)

Consider the finite words ϕn(2), for n = 1, 2, . . .. These words do not converge to a one-
sided infinite word as n tends to infinity; however, since ϕn(2) appears as the middle third
of ϕn+1(2) for all n, we see that this sequence of words defines, in the limit, a two-sided, or
bi-infinite, word. It is this bi-infinite word

· · · 123213231 213123132 312132123 · · ·

that we refer to as Kurosaki’s word (see A217522 in Sloane’s Encyclopedia).
Following Kurosaki, we write ϕn(2) = {ani }

3n−1
i=0 . Proofs of Theorem 1, Lemma 2 and

Lemma 3 can be found in [7].

Theorem 1. {ani }
3n−1
i=0 is squarefree for all n ≥ 1.

Lemma 2. Each triple of the form an3ka
n
3k+1a

n
3k+2, k = 0, 1, . . . , 3n−1−1, is some permutation

of 123.

From now on, when we use the term triple we mean a permutation of 123 occurring at a
position congruent to 0 modulo 3 in ϕn(2). Next we define the operator f , which extracts

the middle term of each triple: f(ϕn(2)) = {an3i+1}
3n−1

−1
i=0 .

Lemma 3. The sequence f(ϕn(2)) = {an3i+1}
3n−1

−1
i=0 is equal to ϕn−1(2) = {an−1

i }3
n−1

−1
i=0 .

Lemma 4. {ani }
3n−1
i=0 has no factors of the form a3qa3q+1 · · · a3q+11 such that a3q = a3q+3 =

a3q+6 = a3q+9.

Proof. For convenience we omit the superscript n from the terms ani . Let a3qa3q+1 · · · a3q+11 be
a factor of {ani }

3n−1
i=0 . As a3qa3q+1a3q+2, a3q+3a3q+4a3q+5, a3q+6a3q+7a3q+8 and a3q+9a3q+10a3q+11

are permutations of 123 (Lemma 2), it is not difficult to see that having a3q = a3q+3 = a3q+6 =
a3q+9 creates a square of length 6 or 12, in contradiction to Theorem 1.
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We now establish the main result.

Theorem 5. {ani }
3n−1
i=0 is (7/4)+-power-free for all n ≥ 1.

Proof. We will prove that ϕn(2) = {ani }
3n−1
i=0 does not contain a (7/4)+-power of the form

xyx, where |x| + |y| = s, |x| = r and r/s > 3/4. We prove this by induction on n,
considering various cases for the possible lengths of s. We first check the base cases n =
1, 2, 3. Clearly ϕ1(2) = 123 and ϕ2(2) = 213123132 avoid (7/4)+-powers, and by observation
ϕ3(2) = 123213231213123132312132123 avoids (7/4)+-powers. So we assume ϕn(2) avoids
(7/4)+-powers and we show that ϕn+1(2) is (7/4)+-power-free.

Case 1. s ≡ 0 (mod 3)

Suppose towards a contradiction that ϕn+1(2) contains a (7/4)+-power of the form xyx,
where |x|+ |y| = s, |x| = r, r/s > 3/4 and s ≡ 0 (mod 3). Let us write

xyx = apap+1 · · · ap+s−1ap+sap+s+1 · · · ap+s+r−1,

where ap+i = ap+s+i for 0 ≤ i ≤ r − 1. Again, for convenience we omit the superscript n
from the terms ani . If p ≡ r ≡ 0 (mod 3), then f(ϕn+1(2)) contains a (7/4)+-power and by
Lemma 3 the word ϕn(2) contains a (7/4)+-power, a contradiction to our assumption.

We will show that the repetition xyx can always be extended to the left to give a (7/4)+-
power that has the same period s, but now starts at a position congruent to 0 modulo 3.
A similar argument shows that the repetition can also be extended to the right so that its
ending position is congruent to 2 modulo 3, and therefore that the argument of the previous
paragraph can be applied to obtain a contradiction.

If p ≡ 1 (mod 3), let p = 3q + 1. The first two terms of x form a suffix of the triple
a3qa3q+1a3q+2. Lemma 2 allows us to uniquely determine a3q from a3q+1 and a3q+2. Similarly,
the values of a3q+s+1 and a3q+s+2 uniquely determine the value of a3q+s. Since a3q+1a3q+2 =
a3q+s+1a3q+s+2, we have a3q = a3q+s. Thus ap−1ap · · · ap+s+r−1 is a (7/4)+-power with period
s starting at position 3q.

If p ≡ 2 (mod 3), let p = 3q + 2. In order to determine the two elements preced-
ing a3q+2, we look at the triple succeeding a3q+2, namely a3q+3a3q+4a3q+5. By Lemma 2,
a3qa3q+1a3q+2 is some permutation of a3q+3a3q+4a3q+5. We must have either a3q+2 = a3q+4

or a3q+2 = a3q+5 (for otherwise we would have a square, contrary to Theorem 1). With-
out loss of generality, suppose a3q+2 = a3q+4; we will determine the values of a3q and
a3q+1. If a3q+1 = a3q+3, then a3q+1a3q+2a3q+3a3q+4 is a square, contrary to Theorem 1, so
it must be that a3q+1 = a3q+5, which implies a3q = a3q+3. In other words, a3qa3q+1 is
uniquely determined by a3q+2a3q+3a3q+4a3q+5. Similarly, a3q+sa3q+s+1 is uniquely determined
by a3q+s+2a3q+s+3a3q+s+4a3q+s+5. We deduce that ap−2ap · · · ap+s+r−1 is a (7/4)+-power with
period s starting at position 3q.

Case 2. s < 14 and s 6≡ 0 (mod 3)

As ϕn(2) is (7/4)+-power-free by the induction hypothesis, it is not hard to see that
σ(ϕn(2)) and ρ(ϕn(2)) are also (7/4)+-power-free. Therefore, if ϕn+1(2) contains a (7/4)+-
power, it must be a factor of σ(ϕn(2))ϕn(2) or ϕn(2)ρ(ϕn(2)). Note that here we only
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consider n ≥ 3, as the smaller values of n are dealt with in our base cases, and |ϕn(2)| ≥ 27,
so if ϕn+1(2) contains a (7/4)+-power it cannot extend from σ(ϕn(2)) over into ρ(ϕn(2)).
Furthermore, if s < 14, then we may assume that the entire repetition xyx has length at
most ⌈13(7/4)⌉ = 23.

Observe that for even n, ϕn(2) has the form

213123132123213231321231 · · · 312321312132123213123132,

so

σ(ϕn(2))ϕn(2) = · · · 321312321231213123213231 · 213123132123213231321231 · · ·

and

ϕn(2)ρ(ϕn(2)) = · · · 312321312132123213123132 · 312132123132312321231321 · · · ,

where the single dots represent the boundaries between σ(ϕn(2)), ϕn(2) and ρ(ϕn(2)).
Similarly, for odd n, ϕn(2) has the form

123213231213123132312132 · · · 213231213123132312132123,

so

σ(ϕn(2))ϕn(2) = · · · 123132123213231321231213 · 123213231213123132312132 · · ·

and

ϕn(2)ρ(ϕn(2)) = · · · 213231213123132312132123 · 132312321312132123213123 · · · .

It suffices to check the factors of length at most 23 crossing the indicated boundaries; by
inspection we are able to conclude that ϕn+1(2) is (7/4)+-power-free for s < 14.

Case 3. s ≥ 14 and s 6≡ 0 (mod 3)

This case is further divided into six subcases. We will prove this case for p ≡ 1 (mod 3),
where p is the starting index of our (7/4)+-power and s ≡ 2 (mod 3). The proofs for the
other five cases are similar, all involving use of Lemma 4. Suppose towards a contradiction
that ϕn+1(2) contains a (7/4)+-power of the form xyx, where |x|+ |y| = s, |x| = r and s ≡ 2
(mod 3). We can write this as a3q+1a3q+2 · · · a3q+sa3q+s+1a3q+s+2 · · · a3q+s+r, where a3q+i =
a3q+s+i for 1 ≤ i ≤ r. Now consider the triples a3qa3q+1a3q+2 and a3q+s+1a3q+s+2a3q+s+3. As
a3q+1 = a3q+s+1 and a3q+2 = a3q+s+2 and both a3qa3q+1a3q+2 and a3q+s+1a3q+s+2a3q+s+3 are
permutations of 123, it must be that a3q = a3q+s+3. Continuing in this manner we see that
a3q = a3(q+1) = · · · = a3(q+j), where j ≤ r is maximal and j ≡ 0 (mod 3). This is easy to see
using the diagram below, where the lines signify that the terms are equivalent.

a3q

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

a3q+1 a3q+2 a3q+3

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

a3q+4 a3q+5 a3q+6 · · · a3q+r−2 a3q+r−1 a3q+r

a3q+s+1 a3q+s+2 a3q+s+3 a3q+s+4 a3q+s+5 a3q+s+6 · · · a3q+s+r−2 a3q+s+r−1 a3q+s+r

However, as s ≥ 14 it follows that r ≥ 11 and that j ≥ 3, so we always have a3q = a3(q+1) =
a3(q+2) = a3(q+3), in contradiction to Lemma 4.
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3 Conclusion

Kurosaki also gives an alternate definition of his sequence. In this other formulation, the
n-th term of the sequence is computed by a finite automaton that reads the balanced ternary
representation of n. This representation is a base-3 representation with digit set {−1, 0, 1}.
Kurosaki says that his sequence can be viewed as an analogue of the classical Thue–Morse
sequence for the balanced ternary numeration system. His sequence certainly seems to have
many interesting properties and perhaps should be better known.

We would also like to mention that Daniel Goč has verified the main result of this paper
by a computer calculation using the techniques described by Goč, Henshall, and Shallit [4].
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(Concerned with sequence A217522.)
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