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Abstract

Lambda words are sequences obtained by encoding the differences between ordered

elements of the form i + jθ, where i and j are non-negative integers and 1 < θ < 2.

Lambda words are right-infinite words defined over an infinite alphabet that have

connections with Sturmian words, Christoffel words, and interspersion arrays. We show

that Lambda words are infinite rich words. Furthermore, any Lambda word may be

mapped onto a right-infinite word over a three-letter alphabet. Although the mapping

preserves palindromes and non-palindromes of the Lambda word, the resulting Gamma

word is not rich.

1 Introduction

Here we formalize the Lambda word [9], which is a sequence formed by encoding the differ-
ences between ordered elements of the form i + jθ, where i and j are non-negative integers
and θ is irrational, 1 < θ < 2. For example, when θ = φ =

√
5+1
2

, the ordering begins

(0 + 0φ) < (1 + 0φ) < (0 + 1φ) < (2 + 0φ) < (1 + 1φ) < · · · .

Taking differences from (0, 1, φ, 2, 1 + φ, . . .) we get

1, φ− 1, 2− φ, φ− 1, . . . .

There are four differences so far, but two of them are the same, and so the sequence of
differences may be represented by the integer sequence, (0, 1, 2, 1, . . .). This is the beginning
of Λφ, the Lambda word generated by φ (A216763). Showing more terms,

Λφ = (0, 1, 2, 1, 2, 3, 2, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 3, 4, 3, 4, . . .).
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A Lambda word is defined over an infinite alphabet A of non-negative integers. Lambda
words are related to Christoffel words [4] and Sturmian words [3, 12]. As we will show, they
may be derived from interspersion arrays [23]. Lambda words developed from considerations
of certain palindromic tonal spaces that contain important musical scales [10]. The main
result of this paper is to show that Lambda words are rich words [19, 8].

Lambda words exhibit the following properties:

1. A Lambda word is a right-infinite word defined over an infinite alphabet [9, p. 46].

2. There are no recurrent letters (a fortiori, no recurrent factors) in a Lambda word.

3. The number of occurrences of any letter in a Lambda word may be calculated by means
of convergents in the continued fraction expansion of θ.

4. Palindromes in a Lambda word are on alphabets of no more than three letters.

5. A Lambda word is rich.

6. There exists a projection that maps a Lambda word onto a right-infinite word over a
three-letter alphabet that preserves palindromes and non-palindromes.

In this paper, after definitions in §2, the structure of the Lambda word is outlined through
examples in §3. In §4, properties of continued fractions are discussed. In §5, we demonstrate
statements (2) and (3), and in §6, statement (4). The central result of the paper is to prove
statement (5) in §7. Statement (6) is demonstrated in §8. We define Lambda words after
some basic notation and definitions.

2 The Lambda word

Following Lothaire [27], we say that A is a set of symbols, finite or infinite. The symbols
are referred to as letters. A finite or infinite sequence of letters from A is a word. A
finite word over the alphabet A is an element of A ∗, the free monoid generated by A .
The monoid operation is concatenation where it is understood that the empty word, ǫ, is
a member of A ∗ and serves as the identity element. If w is a word over A ∗ and w = uv,
then u is a prefix and v a suffix respectively of w. Both u and v are factors of w, as is x if
w = uxv. The set of factors of a finite or infinite word w is denoted by F(w). A right-infinite

word over A is a map h from the set of non-negative integers into A forming an infinite
sequence, h(0), h(1), . . . , h(n), . . ., written with or without commas. If w = x1x2 · · · xk where
x1, x2, . . . xk ∈ A then the reversal of w is w̃ = xk · · · x2x1. A palindrome is a word p such
that p = p̃.

In what follows, A denotes an infinite alphabet of non-negative integers, elements of
N0 = {0, 1, 2, 3, . . .}. For letters x, y ∈ A we write x ≺ y to indicate lexicographic order,
which, here, coincides with numerical order.

We define θ ∈ R \Q, 1 < θ < 2 and the set

S(θ) = {i+ jθ | i, j ∈ N0}.
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Sθ will denote the strictly increasing sequence obtained by sorting the elements of S(θ) in
ascending order. The n-th term of Sθ is denoted by sn = in + jnθ.

The first-order difference sequence of a given sequence A is written as ∆A. In particular,
we will be interested in the difference sequence ∆Sθ where the n-th term is denoted by
δθ(n) = sn+1 − sn. The differences δθ(n) are generally decreasing as n increases, but not
strictly. Moreover, because ∆Sθ contains repetitions, we may assign each element of ∆Sθ

to an integer (an element in A ) through a bijective mapping λ: Let λ(δθ(0)) = 0. If n1 is
the least value such that δθ(n1) 6= δθ(0), then λ(δθ(n1)) = 1. Then λ(δθ(n2)) = 2, where
n2 is the least value such that δθ(n2) is unequal to either δθ(n1) or δθ(n0), and so on. More
than a simple coding of differences, the mapping λ contains a deeper significance through a
connection with the continued fraction expansion of θ, to be discussed in §4.1.

Finally, Λθ = (λ(δθ(0)), λ(δθ(1)), λ(δθ(2)), λ(δθ(3)), . . .). That is, Λθ is the word ob-
tained from the sequence of differences in ∆Sθ, encoded by λ. We refer to Λθ as the Lambda

word generated by θ.

3 Examples of Lambda words

Let ϑ = log2 3. The table below presents Λϑ (A216448) as the encoded differences of the
ascending sequence Sϑ.

n 0 1 2 3 4 5 6 7
Sϑ 0 + 0ϑ 1 + 0ϑ 0 + 1ϑ 2 + 0ϑ 1 + 1ϑ 3 + 0ϑ 0 + 2ϑ 2 + 1ϑ
∆Sϑ 1− 0ϑ −1 + 1ϑ 2− 1ϑ −1 + 1ϑ 2− 1ϑ −3 + 2ϑ 2− 1ϑ
Λϑ 0 1 2 1 2 3 2

Because 1 − 0ϑ is the “0-th” difference in ∆Sϑ, it maps, under λ, to 0. When n is 1
or 3, δϑ(n) = −1 + 1ϑ. Then λ(δϑ(1)) = λ(δϑ(3)) = 1. Similarly, λ(δϑ(2)) = λ(δϑ(4)) =
λ(δϑ(6)) = 2, and λ(δϑ(5)) = 3, and so on.

According to Kimberling [24], the sequence of integers in from Sθ is the signature of θ,
whereas jn gives the signature of 1/θ. Kimberling also introduces the interspersion array.
Figure 1 shows the interspersion array associated with the signature sequence of 1/ϑ−1. We
modify Kimberling’s definition of the array so as to include zero [23, p. 313]: An array
A = (aij), i ≥ 0, j ≥ 0, of non-negative integers is an interspersion if

1. the rows of A comprise a partition of the non-negative integers;

2. every row of A is an increasing sequence;

3. every column of A is an increasing (possibly finite) sequence;

4. if (uj) and (vj) are distinct rows of A and if p and q are any indices for which up <
vq < up+1, then up+1 < vq+1 < up+2.

According to Kimberling and Brown [25], an array such as the one shown in Figure 1
is transposable, because substituting 1/θ for θ yields the transpose of the array. Adding
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one to each element in column one produces A022330, and the same addition on elements
of the first row gives A022331. The relationship between transposable interspersions and
Lambda words is this: Connecting the elements of the Figure 1 array in ascending order
determines a sequence of vectors that begins (1, 0), (−1, 1), (2,−1), (−1, 1), and these are
also the coefficients for the successive elements of the difference sequence ∆Sϑ. Labeling each
distinct vector starting with 0 yields Λϑ = (0, 1, 2, 1, . . .). (See A167267 for a transposable
interspersion of the signature sequence of φ.)

0 1 3 5 8 12 16 21 27 33 40 47
2 4 7 10 14 19 24 30 37 44 52
6 9 13 17 22 28 34 41 49
11 15 20 25 31 38 45 53
18 23 29 35 42 50
26 32 39 46 54
36 43 51
48

0 → 1 1 → 2 2 → 3 3 → 4 4 → 5 5 → 6 6 → 7 7 → 8
(1, 0) (−1, 1) (2,−1) (−1, 1) (2,−1) (−3, 2) (2,−1) (2,−1)
0 1 2 1 2 3 2 2

Figure 1: Interspersion array for sequence i(ϑ−1) and its path of vectors.

Λϑ = 0, 1, 2, 1, 2, 3, 2, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 5, 3, 3, 4, 3, 3, 5, 3,
3, 3, 5, 3, 3, 5, 3, 3, 3, 5, 3, 3, 5, 6, 5, 3, 3, 5, 3, 3, 5, 6, 5, 3, 3, 5, 6, 5, 3, 5, 6, 5, 3, 3, 5, 6,
5, 3, 5, 6, 5, 6, 5, 3, 5, 6, 5, 3, 5, 6, 5, 6, 5, 3, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 3, 5, 6, 5, 6, 5, 5, 6,
5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 5, 7, 5, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 5,
7, 5, 5, 6, 5, 6, 5, 5, 7, 5, 5, 6, 5, 5, 7, 5, 5, 6, 5, 6, 5, 5, 7, 5, 5, 6, 5, 5, 7, 5, 5, 7, 5, 5, 6, 5,
5, 7, 5, 5, 6, 5, 5, 7, 5, 5, 7, 5, 5, 6, 5, 5, 7, 5, 5, 7, 5, 5, . . .

Figure 2: Graph of first 200 elements of Λϑ.

Figure 2 provides a graphical representation of the first 200 elements of Λϑ. It shows
that Λϑ gradually increases with n, but with repetitions and switchbacks, allowing for an
abundance of palindromes. Figure 2 suggests other properties of Lambda words. For exam-
ple, each integer appears a finite number of times: After smaller integers die out, larger ones
take their place.
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Of particular interest is A216763, the Fibonacci Lambda word, Λφ, where φ =
√
5+1
2

.
Figure 3 presents its first 196 elements. Because of the slow convergence of the continued
fraction of φ, successive members of Λφ differ by at most unity.

Λφ = 0, 1, 2, 1, 2, 3, 2, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4,
3, 4, 5, 4, 4, 5, 4, 3, 4, 5, 4, 4, 5, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 5, 4, 5, 6, 5, 4, 5, 4, 4, 5, 4,
5, 6, 5, 4, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 4, 5, 6, 5, 4, 5, 6, 5, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 5, 6,
5, 4, 5, 6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 4, 5, 6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 5,
6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 5, 6, 5, 6, 7, 6,
5, 6, 5, 6, 7, 6, 5, 6, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, . . .

Figure 3: Graph of first 196 elements of Λφ.

The Lambda word generated by π − 2, A216764, presents a very different profile, as
shown in Figure 4. The continued fraction expansion, [1, 7, 15, 1, 292, . . .], converges relatively
rapidly. Note that the greatest difference between successive values so far is 7, which follows
from the value of the second partial quotient of the expansion. Further on, the word will
exhibit differences of 15, 292, and so on.

Λπ−2 = 0, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1,
1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 9, 8, 1, 1, 1, 1, 1, 1, 8, 9, 8, 9, 8, 1, 1, 1, 1, 1, 8, 9, 8, 9, 8, 9, 8,
1, 1, 1, 1, 8, 9, 8, 9, 8, 9, 8, 9, 8, 1, 1, 1, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 1, 1, 8, 9, 8, 9, 8, 9, 8,
9, 8, 9, 8, 9, 8, 1, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
8, 8, 10, 8, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 8, 10,8, 8, 10, 8, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 8,
10, 8, 8, 10, 8, 8, 10, 8, 8, 9, 8, 9, 8, 9, 8, 9, 8, . . .

Figure 4: Graph of first 193 elements of Λπ−2.
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4 Lambda words and continued fractions

The structure of a Lambda word is determined by the continued fraction expansion of θ, its
generating value. We demonstrate some of these relationships here, beginning with a theorem
about differences in ∆Sθ. Standard theorems regarding continued fractions can be found in
many texts [11, 22, 29, 26]. If [t0; t1, . . . , tk, . . .] is a continued fraction, then the tk are its
partial quotients and c0 = [t0], c1 = [t0; t1], c2 = [t0; t1, t2], etc., are its principal convergents.
There are two formal convergents for any continued fraction: c−2 = 0/1 and c−1 = 1/0. If
ck = ak/bk, then gcd(ak, bk) = 1. Moreover, ck+1 = (tk+1ak + ak−1)/(tk+1bk + bk−1). If tk > 1
we define integer t such that 1 ≤ t < tk. Then [t0; t1, . . . , tk−1, t] is an intermediate convergent

of the continued fraction. In this paper, the term “convergent” means a principal convergent
or an intermediate convergent. Khinchin [26] devises the term “best approximation of the
second kind” for a rational p/q of some real number θ if |qθ−p| < |q′θ−p′| whenever p ≥ p′.
(A best approximation of the first kind involves the value |θ − p/q| and plays no role here.
A “best approximation” will refer to one of the second kind.)

In addition to the best “two-sided” approximations described, Richards [30] further de-
fines a best one-sided approximation: Take p/q < θ. If 0 < qθ−p < q′θ−p′ whenever q ≥ q′,
then p/q is a best lower, or left, approximation. For any best left approximation it follows
that p = ⌊qθ⌋. When p/q is a best higher, or right approximation, θ < p/q, and q = ⌊p/θ⌋.
With 1 < θ < 2, any intermediate convergent is a best one-sided approximation and (with a
single exception) any principal convergent is a best two-sided approximation. Certainly, any
best two-sided approximation is the best on its side as well. (The exception is in the case of
the formal convergent 0/1. It is not a best left approximation because the convergent 1/1 is
also less than θ and has the same denominator.)

Theorem 1. |A−Bθ| ∈ ∆Sθ ⇐⇒ A/B is a best approximation (of the second kind) of θ.

Proof. (See also [11, Theorem 1].)
⇒. We prove the case δθ(n) = Bθ − A, i.e., A < Bθ.

δθ(n) = sn+1 − sn = (in+1 + jn+1θ)− (in + jnθ) = Bθ − A.

Then (jn+1 − jn)θ = Bθ and in − in+1 = A, and so sn+1 ≥ Bθ and sn ≥ A. Define g such
that

g = (sn+1 − Bθ) = (sn − A). (1)

Then g ∈ Sθ. Assume Bθ − A > 0 but A/B is not a best left approximation. Then
there exist successive best left approximations p/q and p′/q′ with q ≤ B < q′ such that
qθ − p < Bθ − A.

Then
0 < qθ − p < Bθ − A.

Adding A+ g we obtain

A+ g < A+ g − p+ qθ < Bθ + g.

Clearly, A+ g − p+ qθ = sn′ ∈ Sθ, and so, by (1), sn < sn′ < sn+1. Contradiction. (For the
case δθ(n) = A− Bθ, redefine g as ĝ = (sn+1 − A) = (sn − Bθ).)
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⇐. The second part of the proof is again by contradiction: Assume A/B is a best left
approximation. Now assume that A = sn and Bθ = sn+k with k > 1. Then we must have
sn+1 = i+ jθ such that

A < i+ jθ < Bθ (2)

Then j < B. Because ⌊Bθ⌋ = A, we see that i < A.
Subtracting A from (2) we obtain

0 < jθ − (A− i) < Bθ − A. (3)

Because A/B is a best left approximation, there is no integer k such that jθ−k < Bθ−A. In
particular, jθ−(A−i) 6< Bθ−A. contradicting (3). Then if A/B is a best left approximation,
δθ(n) = (Bθ − A), therefore (Bθ − A) ∈ ∆Sθ.

4.1 The mapping λ formalized

The continued fraction allows for an algorithmic form of the mapping λ: In the case of
the formal convergent 1/0, define λ(1 − 0θ) = λ(δθ(0)) = 0. Otherwise, for each distinct
difference |A−Bθ|, express A/B as a finite continued fraction [1; t1, t2, . . . , tk]. Then λ may
be computed as

λ|A− Bθ| =
k∑

i=0

ti.

|A− Bϑ| A/B [1; t1, . . . , tk]
∑k

i=0 ti
1 1/0 0

ϑ− 1 1/1 [1] 1
2− ϑ 2/1 [1, 1] 2
2ϑ− 3 3/2 [1, 1, 1] 3
5− 3ϑ 5/3 [1, 1, 1, 1] 4
8− 5ϑ 8/5 [1, 1, 1, 2] 5
7ϑ− 11 11/7 [1, 1, 1, 2, 1] 6
12ϑ− 19 19/12 [1, 1, 1, 2, 2] 7
27− 17ϑ 27/17 [1, 1, 1, 2, 2, 1] 8
46− 29ϑ 46/29 [1, 1, 1, 2, 2, 2] 9
65− 41ϑ 65/41 [1, 1, 1, 2, 2, 3] 10

Figure 5: Computing λ|A−Bϑ| by sums of partial quotients.

Figure 5 shows the first eleven convergents of the continued fraction expansion of ϑ =
log2 3 under λ. Every non-negative integer is equal to exactly one of the summations, which
is guaranteed for all θ by the second half of the proof of Theorem 1. As a result, the mapping
λ associates the difference |A− Bθ| with the row of the Stern-Brocot tree on which A/B is
found [32, 20, pp. 116–117].
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4.2 The Hurwitz chain

In what follows we will make use of an oft-noted connection between Farey series, continued
fractions, and mediants [17, 30]. If a/b < c/d are consecutive fractions in a Farey series
then bc − ad = 1 = gcd(a, b) = gcd(c, d). Then we say that (a/b, c/d) form a Farey pair.
Whenever a/b < θ < c/d, the Farey pair is also a pair of best left-right approximations of θ.
The Hurwitz chain for θ contains all such pairs (a/b, c/d) [21]. If (a/b, c/d) belongs to the
Hurwitz chain for θ, then, if a/b is an intermediate convergent, c/d is the previous principal
convergent and conversely. Otherwise, a/b and c/d are consecutive principal convergents.
The mediant of these fractions, (a+ c)/(b+ d) falls between them and is also a convergent.
This implies that (a+ c)/(b+ d) forms a member of the Hurwitz chain for θ with either a/b
or c/d.

Let A/B and p/q be a pair of best left-right approximations of θ such that |A − Bθ| >
|p−qθ|. Then either (A/B, p/q) or (p/q, A/B) belongs to the Hurwitz chain for θ. If A/B is a
principal convergent, then p/q is the principal convergent that immediately follows A/B, and
if A/B is an intermediate convergent, then p/q is the principal convergent that immediately
precedes A/B. Furthermore, q > B when A/B is a principal convergent, q < B otherwise.
Either way, (A+ p)/(B + q) is the first convergent that succeeds both.

5 Counting letters

A recurrent factor of an infinite word is a factor that appears infinitely often. Here we show
that there are no recurrent letters, consequently, no recurrent factors in a Lambda word. We
let λ|A−Bθ| = x and let |Λθ|x represent the number of times the letter x occurs in Λθ.

Theorem 2. |Λθ|x = pq.

Proof. We prove the theorem for A/B < θ; the proof for A/B > θ is left as an exercise.
First, let us define

X = Bθ − A
Y = p − qθ
Z = (B + q)θ − (A+ p)

Then Z = X − Y . It follows that A/B < (A+ p)/(B + q) < θ < p/q. Furthermore, Y < X
and Z < X. We define a subset S(θ)x of S(θ) such that

S(θ)x = {sn | δθ(n) = X where λ(X) = x}.

That is, sn ∈ S(θ)x ⇐⇒ sn +X = sn+1. We will show that there are pq elements in S(θ)x,
and so |Λθ|x = pq. In order to do so, we prove that

S(θ)x = {a+ bθ | A ≤ a < (A+ p); 0 ≤ b < q} (4)

Because sn ∈ S(θ) it immediately follows that 0 ≤ b.
Further, sn +X ∈ S(θ) implies a+ bθ + (Bθ − A) ∈ S(θ) and so A ≤ a.
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If sn ∈ S(θ)x and b− q ≥ 0, then it would follow that sn + Y = a+ bθ+ (p− qθ) ∈ S(θ).
But Y < X and so sn < sn+Y < sn+X, that is, sn+1 6= sn+X. Thus, sn /∈ S(θ)x, contrary
to hypothesis. Therefore b < q.

If a ≥ A + p, then a + bθ + ((B + q)θ − (A + p)) = sn + Z ∈ S(θ). But Z < X and so
sn < sn + Z < sn +X, contradicting sn+1 = sn +X. Then a < A+ p.

Therefore A ≤ a < (A + p) and 0 ≤ b < q and so there are pq elements in S(θ)x, i.e.,
|Λθ|x = pq.

We note that, when A/B > θ, we have

S(θ)x = {a+ bθ | 0 ≤ a < p;B ≤ b < B + q}. (5)

6 Two-Letter factors of Lambda words

To determine the limit on the number of different letters in palindromes in a Lambda word,
we explore the two-letter factors of the word, which we define as members of the set F2(Λθ).
For x, y ∈ A , we determine the conditions under which xy ∈ F2(Λθ).

6.1 Letter repetitions

To begin, we investigate the two-letter factors of the form xx = x2. Let t be the greatest
integer such that xt is a factor of Λθ. Let tk be the k-th partial quotient of the continued
fraction expansion of θ = [1; t1, . . . , tk, . . .].

Theorem 3. If x = λ|A − Bθ| where A/B is an intermediate convergent, xx /∈ F2(Λθ). If

A/B is the principal convergent ak/bk, xx ∈ F2(Λθ). There are two special cases when A/B
is a−1/b−1 or a0/b0.

Proof. Let |A − Bθ| = X. If a xx is a factor of Λθ, then S(θ)x would have to include both
a+ bθ and a+ bθ+X. If xt is a factor, then a+ bθ+ (t− 1)X must be an element of S(θ)x.
We can solve for t by invoking the conditions on a and b in S(θ)x, as shown in (4) and (5).

A ≤ a+ (t− 1)A < A+ p
0 ≤ b+ (t− 1)B < q

}
by (4)

0 ≤ a+ (t− 1)A < p
B ≤ b+ (t− 1)B < B + q

}
by (5)

We are interested in the maximal value for t, so we substitute minimal values for a and b,
which simplifies to two results

t < 1 +
p

A
and t < 1 +

q

B
. (6)

When A/B is an intermediate convergent, p/q is the previous principal convergent, and
so B > q (and A > p). Therefore t < 1 + (q/B) < 2, i.e., t = 1. Therefore, when A/B is an
intermediate convergent xx /∈ F2(Λθ).
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If A/B is a principal convergent, then it is associated with the partial quotient tk, and p/q
is the the next convergent, associated with tk+1. Let p

′/q′ represent the principal convergent
that immediately precedes A/B. Then q/B = tk+1 + (q′/B). Whenever k > 0, q′/B ≤ 1,
and so we can solve for t: t < 1 + tk+1 + (q′/B). Then t = 1 + tk+1. (Alternatively,
t < 1 + tk+1 + (p′/A) yields the same result for k > 0.) Because tk+1 ≥ 1, then t > 1 and so
whenever A/B is a principal convergent, xx ∈ F2(Λθ).

There are two special cases that involve principal convergents when k = −1 or 0. In both
cases, t = tk+1: For k = −1, A/B = 1/0, p/q = 1/1. The first inequality of (6) resolves to
t < 2, but the second entails division by zero and is rejected. Then t = tk+1 = t0 = 1 and
xx /∈ F2(Λθ). For k = 0, A/B = 1/1, p/q = (1 + t1)/t1 The inequalities in (6) resolve to
t < 2+ t1 and t < 1+ t1. Both must be satisfied but the second is more restrictive, so again
t = t1 = tk+1 Then xx ∈ F2(Λθ) whenever t1 ≥ 2.

6.2 Square-free two-letter factors

For u, v,∈ A u 6= v, we examine conditions under which uv ∈ F2(Λθ). We let r be a word
over A such that r ∈ F(Λθ). We begin by examining cases of pairs of letters (u, v) with
u ≺ v such that vru /∈ F(Λθ).

Recall that X − Y = Z. We define W = X + Y . We write a/b⊕ c/d = (a+ c)/(b+ d) to
indicate that the fraction on the right side is the mediant of the two on the left. Similarly,
a/b ⊖ c/d = (a − c)/(b − d). We define a function f on the difference |A − Bθ| such that
f |A − Bθ| = A/B. The pair (f(X), f(Y )) is a member of the Hurwitz chain for θ. Then
f(X)⊕ f(Y ) = f(Z) and so (f(Y ), f(Z)) is also a member of the Hurwitz chain. It follows
that f(X)⊖ f(Y ) = f(W ) and so either (f(W ), f(X)) or (f(W ), f(X)) is a member of the
Hurwitz chain as well. Certainly f(W ), f(X), f(Y ), and f(Z) are all convergents to θ, and
so by Theorem 1, W , X, Y , and Z, are differences in ∆Sθ. See Figure 6.

Differences
W = X + Y = | (B − q)θ − (A− p) |
X = | Bθ − A |
Y = | p − qθ |
Z = X − Y = | (B + q)θ − (A+ p) |

Ratios
f(W ) = f(X)⊖ f(Y ) = | A− p | / | B − q |
f(X) = A/B
f(Y ) = p/q
f(Z) = f(X)⊕ f(Y ) = (A+ p)/(B + q)

Letters
λ(W ) = w
λ(X) = x
λ(Y ) = y
λ(Z) = z

Figure 6: Differences, ratios, and letters that govern potential two-letter factors.
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The following theorem provides groundwork for Theorem 5, which will show that uv is a
factor if and only if f((U), f(V )) belongs to the Hurwitz chain for θ. As before, for difference
U , we let λ(U) = u.

Let r be a (possibly empty) factor of Λθ.

Theorem 4. If (f(X), f(Y )) belongs to the Hurwitz chain for θ, zrw /∈ F(Λθ). Furthermore,

wz /∈ F2(Λθ).

Proof. We prove the first part of the theorem by showing that the difference W never comes
after Z in ∆Sθ. We prove the case X = A− Bθ:

W = X + Y
X = A − Bθ
Y = qθ − p
Z = (A+ p) − (B + q)θ

The smallest member of Sθ for which δθ(n) = Z is (B + q)θ. Therefore, if W appears
after Z, then there exists δθ(m) = W such that sm ≥ A + p > (B + q)θ. Consequently,
sm > (B + q)θ − Y = p + Bθ. But sm < sm + Y < sm +X < sm +W and at least one of
these is true: sm + Y ∈ Sθ and/or sm +X ∈ Sθ. Then W 6= δθ(m) whenever sm ≥ (B + q)θ.
Therefore zrw /∈ F(Λθ).

It is also true that wz is not a factor. The first part of the proof has shown that δθ(n) 6= W
when sn > (B + q)θ and so we need only show that if sm = (B + q)θ, then δθ(m− 1) 6= W .
Clearly, (B + q)θ − Y ∈ Sθ. However, (B + q)θ −W < (B + q)θ − Y < (B + q)θ = sm and
so W 6= δθ(m− 1).

Certainly if z′ � z then z′rw is not a factor of Λθ.

Theorem 3 revealed the conditions under which x2 ∈ F2(Λθ). The following theorem
demonstrates the conditions under which xy ∈ F2(Λθ) is comprised of different letters. Let
u = λ(U), v = λ(V ), and u 6= v.

Theorem 5. uv ∈ F2(Λθ) ⇐⇒ (f(U), f(V )) belongs to the Hurwitz chain for θ.

Proof. Theorem 4 has limited membership in F2(Λθ) for a fixed {x, y} to a pair of letters in
{w, x, y, z}. Then U, V ∈ {W,X, Y, Z}. Let U = |A∗ −B∗θ|, V = |p∗ − q∗θ|. By Theorem 1,
A∗/B∗ and p∗/q∗ are convergents.

⇒ Assume uv ∈ F2(Λθ). If (f(U), f(V )) does not belong to the Hurwitz chain then at
least one of these is false:

1. |A∗q∗ −B∗p∗| = 1

2. f(U) and f(V ) lie on opposite sides of θ.

We test both conditions. Assume |A∗q∗ − B∗p∗| 6= 1. Because |Aq − Bp| = 1, then
|A∗q∗ −B∗p∗| = 1 for all pairs of {f(W ), f(X), f(Y ), f(Z), } except the pair {f(W ), f(Z)}.
But Theorem 4 has already shown that neither zw nor wz belong to F2(Λθ), therefore
condition 1 is true, that is, |A∗q∗ −B∗p∗| = 1.
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Now assume that f(U) and f(V ) are both greater than θ. Let δθ(n) = U , δθ(n+1) = V ,
with U > V (otherwise relabel U ↔ V ). If uv ∈ F2(Λθ), then we have contiguous elements
sn, sn + U, sn + U + V . If sn = a+ bθ, then b ≥ B∗ + q∗, so sn + V ∈ sθ, but sn < sn + V <
sn + U + V , which implies that U = V , a contradiction. Similarly when f(U) and f(V )
are both less than θ. Therefore both conditions are true and so uv ∈ F2(Λθ) implies that
(f(U), f(V )) is a member of the Hurwitz chain.

⇐ Now assume (f(U), f(V )) is a member of the Hurwitz chain for θ. We show that
uv ∈ F2(Λθ). We let (f(U), f(V )) = (f(X), f(Y )), remembering that (f(X), f(Y )) may
represent any member of the Hurwitz chain for θ. The limits on S(θ)x in Theorem 2 will be
utilized to show that max(S(θ)x) + X ∈ S(θ)y and so xy = uv ∈ F2(Λθ). Let P/Q be the
principal convergent that immediately follows p/q. Again letting X = Bθ − A, Y = p− qθ,

max(S(θ)x) +X = (A+ p− 1 + (q − 1)θ) + (Bθ − A) = p− 1 + (B + q − 1)θ.

Then
p− 1 + (B + q − 1)θ ∈ S(θ))y = {a+ bθ | 0 ≤ a < P ; q ≤ b < q +Q}

because 0 ≤ p− 1 < P and q ≤ (B + q − 1) < q +Q. Then uv ∈ F2(Λθ. We can also show
that max(S(θ)x)− Y ∈ S(θ)y and so vu also belongs to F2(Λθ).

For a fixed (f(X), f(Y )), members of the Hurwitz chain for θ always include both
(f(Y ), f(Z)) and (f(X), f(Y )). If f(W ) is on the same side of θ as f(X), then (f(W ), f(Y ))
belongs to the Hurwitz chain. Otherwise, (f(W ), f(X)) does. Then there are six two-letter
square-free factors over {w, x, y, z}: yz, xy, wx (or wy), and their reversals.

Corollary 6. Palindromes in Λθ are over alphabets of at most three letters.

Proof. By Theorem 4 it follows that if z′ � z then z′rw /∈ F(Λθ) and so z′rwr̃z′ /∈ F(Λθ) and
wr̃z′rw /∈ F(Λθ). Then any palindrome in Λθ is over some alphabet X = {x, y, z} ⊂ A .

7 Rich words

The topic of palindromic complexity [1, 14, 15] concerns the question of the number of distinct
palindromes contained in a word of length k. Words that achieve the maximal number of
palindromes have been known alternately as “rich” words [1, 7, 19] or “full” words [5, 6]. We
will use the term “rich” here, as it seems to be found more in current usage. It is known [13]
that a word of length k contains at most k + 1 distinct palindromes (including the empty
word). A word that achieves this maximal number of distinct palindromes is a rich word
[19]. Alternately, a rich word contains k non-empty distinct palindromes. Thus, the word
“large” is rich, as each of its five letters is a palindrome. The word “small” is also rich,
because “s”, “m”, “a” “l” and “ll” constitute five non-empty palindromes. On the other
hand, “edge” is not rich as it contains only three distinct non-empty palindromes. All words
of up to length three are rich.

Droubay, Justin, and Pirillo [13] demonstrate an equivalent definition of rich words: A
word is rich if each of its prefixes terminates with a uni-occurrent palindromic suffix (ups).
For example, the relevant prefixes of the rich word “indeed” are “i”, “in”, “ind”, “inde”,

12



“indee”, “indeed”, and the empty word. The italics capture the uni-occurrent palindromic
suffixes. Because the reverse of a rich word is also rich, we can also say that a word is rich
if each suffix contains a uni-occurrent palindromic prefix.

It follows that a word is rich if all of its factors are rich, which extends the concept to
include infinite rich words. A right-infinite word is rich if each prefix of the word terminates
in a ups. Recent studies of rich words have examined Sturmian [28], episturmian [18], and
other words on finite alphabets. The results here extend the topic to the Lambda word, a
word defined over an an infinite alphabet. By way of motivation, we again examine Λϑ where
ϑ = log2 3. The beginning of this sequence was shown in Figure 2. As Figure 7 shows, all of
its first twelve prefixes end with a ups.

0 0
1 0, 1
2 0, 1, 2
3 0, 1, 2, 1
4 0, 1, 2, 1, 2
5 0, 1, 2, 1, 2, 3
6 0, 1, 2, 1, 2, 3, 2
7 0, 1, 2, 1, 2, 3, 2, 2
8 0, 1, 2, 1, 2, 3, 2, 2, 3
9 0, 1, 2, 1, 2, 3, 2, 2, 3, 2
10 0, 1, 2, 1, 2, 3, 2, 2, 3, 2, 3
11 0, 1, 2, 1, 2, 3, 2, 2, 3, 2, 3, 4

Figure 7: Uni-occurrent palindromic suffixes in the first twelve prefixes of Λϑ.

The following proposition and four lemmas set up Theorem 12, which proves that Λθ is
rich. We will show that every prefix of Λθ is terminated by a ups.

7.1 Additive complements

Two definitions are required: If c + c′ = h, then c′ is the complement of c with respect
to h. A strictly increasing sequence C = (c1, . . . , cn) where complements are defined with
respect to c1 + cn, is said to be a sequence of additive complements (or simply, “sequence of
complements”) if c′ ∈ C whenever c ∈ C. It follows that if ca < cb, then ca

′ > cb
′ and also

that ck
′ = cn+1−k where 1 ≤ k ≤ n.

Proposition 7. (Trivial). C is a sequence of complements iff ∆C is a palindrome.

The proof is immediate from the definitions.

7.2 Beatty sequences

Setting k ∈ N allows for two values that approximate θ:

⌊kθ⌋

k
< θ <

k

⌊k(θ−1)⌋
.
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These approximations include the “best approximations of the second kind” but form a
larger set, comprised of the best left approximation for every denominator k, and the best
right one for every numerator k. We also have

⌊kθ⌋ < kθ

⌊k(θ−1)⌋θ < k.
(7)

Summing the values in (7) gives rise to two integer sequences:

K(−) = ⌊kθ⌋+ k

K(+) = ⌊k(θ−1)⌋+ k

where k runs through the positive integers.
For the next lemma, we utilize the notion of complementary Beatty sequences, the word

“complement” here used in a sense distinct from above. A Beatty sequence [2, 16] is an
infinite sequence of integers ⌊kα⌋ where α is an irrational number. Complementary Beatty
Sequences ⌊kα⌋ and ⌊kβ⌋ are formed whenever 1/α+1/β = 1. Any positive integer belongs
to exactly one of ⌊kα⌋ or to ⌊kβ⌋.

Lemma 8. K(−) and K(+) form a complementary pair of Beatty sequences.

Proof. If α = (θ + 1), we get the Beatty Sequence ⌊kα⌋ = ⌊k(θ + 1)⌋ = ⌊kθ + k⌋ =
⌊kθ⌋+ k = K(−). Solving 1/(θ + 1)+ 1/β = 1 for β gives θ+1

θ
, which yields Beatty Sequence

⌊kβ⌋ = ⌊k( θ+1
θ
)⌋ = ⌊kθ

θ
+ k

θ
⌋ = k+ ⌊k

θ
⌋ = K(+). Consequently, every positive integer belongs

either to K(−) or to K(+).

7.3 Nuclear sequences and palindromes

We utilize the limits shown in (7) to form two classes of contiguous subsequences of Sθ,
indexed by K(−) or K(+):

NK(−) = (sn | ⌊kθ⌋ ≤ sn ≤ kθ)

NK(+) = (sn | ⌊k(θ−1)⌋θ ≤ sn ≤ k)

LettingK = K(−)∪K(+), then NK refers to a member of either of these types of “nuclear”
sequences. (It is not difficult to show that the nuclear sequences cover Sθ, i.e., for all n, there
is at least one K such that sn ∈ NK . The result is not required in what follows.)

Lemma 9. NK is a sequence of complements.

Proof. We prove that both NK(−) and NK(+) are complementary sequences. We begin with
NK(−) = (sn | ⌊kθ⌋ ≤ sn ≤ kθ). Let s′n represent the complement of sn. That is,

sn + s′n = ⌊kθ⌋+ kθ. (8)
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Clearly if sn ∈ NK(−) , ⌊kθ⌋ ≤ s′n ≤ kθ. Now we show that s′n ∈ Sθ. Let sn = i + jθ,
s′n = i′ + j′θ. Then ⌊kθ⌋ ≤ i + jθ ≤ kθ. This implies ⌊kθ⌋ = ⌊i + jθ⌋, which gives i ≤ ⌊kθ⌋
and j ≤ k. Rewrite Equation (8) as

i+ i′ + (j + j′)θ = ⌊kθ⌋+ kθ

Because θ is irrational,
0 ≤ i+ i′ = ⌊kθ⌋
0 ≤ j + j′ = k.

Then, 0 ≤ i′ ≤ ⌊kθ⌋ and 0 ≤ j′ ≤ k, which means s′n = i′+j′θ ∈ Sθ and therefore s′n ∈ NK(−)

whenever sn ∈ NK(−) . Then NK(−) is a sequence of complements.
Next we prove the same for NK(+) = (sn | ⌊k(θ−1)⌋θ ≤ sn ≤ k). Rewrite Equation (8) as

sn + s′n = ⌊k(θ−1)⌋θ + k. (9)

and so if sn ∈ NK(+) , ⌊k(θ
−1)⌋θ ≤ s′n ≤ k.

If sn = i + jθ ∈ NK(+) we have i + jθ < k, and so i ≤ k. Dividing the inequality
⌊k(θ−1)⌋θ ≤ i + jθ ≤ k through by θ we get ⌊k

θ
⌋ ≤ i

θ
+ j ≤ k

θ
, and so ⌊k

θ
⌋ = ⌊ i

θ
+ j⌋, or

j ≤ ⌊k
θ
⌋. Then

0 ≤ i+ i′ = k

0 ≤ j + j′ = ⌊k(θ−1)⌋.

Therefore both i′ ≥ 0 and j′ ≥ 0, and so s′n = i′+j′θ ∈ Sθ and NK(+) is also a sequence of
complements. Thus for all K, NK is a sequence of complements of Sθ. Then, by Proposition
7, ∆NK is a palindrome.

We refer to ∆NK as a nuclear palindrome.

7.4 Maximal sequences and palindromes

In general, it is possible to expand a nuclear palindrome, adding elements symmetrically to
the left and the right as we will demonstrate below. First we simplify our notation and let

A =

{
min(NK(−))

max(NK(+))
Bθ =

{
max(NK(−))

min(NK(+))

It follows that A+Bθ = min(NK)+max(Nk) that is, complements in NK are defined with
respect to A+Bθ. Furthermore, A+B = K. We can, in general, find longer complementary
sequences of A + Bθ. Whenever i + jθ ∈ NK , 0 ≤ i ≤ A and 0 ≤ j ≤ B. However, these
limits hold on i and j whenever sn < max(NK+1). Then let

TK = (sn | max(NK) ≤ sn < max(NK+1))

T ′
K = (sn | s′n ∈ TK)

where, again, complements are defined with respect to A+Bθ. Clearly, the sequences (TK)
and (T ′

K) have the same number of elements and min(T ′
K) + max(TK) = A + Bθ. Let

CK = T ′
K ∪Nk ∪ TK . We call CK a “maximal” sequence.
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Lemma 10. CK is a sequence of complements.

Proof. Like NK , CK is a contiguous sequence of complements with respect to A + Bθ. If
sn ∈ NK , then s′n ∈ NK . If sn ∈ TK (resp. T ′

K), then s′n ∈ T ′
K (resp. TK).

Consequently, by Proposition 7, ∆CK is a (maximal) palindrome.

7.5 Medial subpalindromes

For palindrome p, if p = xp′x̃ and p′ 6= ǫ, then p′ is a medial subpalindrome of p. (The term
“central factor” is also used [13, p. 2]). It is easy to see that p′ itself is a palindrome.
Clearly, ∆(NK) is a medial subpalindrome of ∆(CK) because

∆(CK) = ∆T ′
K ∪∆(NK) ∪∆TK = ∆̃TK ∪∆(NK) ∪∆TK .

(The reversal of ∆TK is ∆T ′
K .)

Let ∆M be a medial subpalindrome of ∆(CK) such that

∆NK ⊆ ∆M ⊆ ∆CK . (10)

Let SM = (sm | 0 ≤ sm ≤ max(M)). Then ∆SM is a non-empty prefix of ∆Sθ and
max(M) > 0.

Lemma 11. The palindrome ∆M is a ups of ∆SM .

Proof. Clearly, ∆NK is a medial subpalindrome in ∆M and ∆M is a palindromic suffix of
∆SM . Therefore if ∆NK is uni-occurrent in ∆SM then ∆M is also. The maximal values
for i and jθ in SM are A and Bθ. Then ∆NK is uni-occurrent in ∆SM and ∆M is a ups in
∆SM .

Theorem 12. Λθ is a rich word.

Proof. From (10) it follows that max(NK) ≤ max(M) ≤ max(CK). Then max(M) is any
member of TK . Furthermore, for any sn > 0, there is exactly one TK such that sn ∈ TK

because max(TK) < max(NK+1) = min(TK+1). Therefore every (non-empty) prefix of ∆SM

of ∆Sθ ends with ups ∆M . The bijection λ guarantees that Λθ is a rich word.

8 A projection of Λθ onto Γθ, a word over a three-letter

alphabet

In Corollary 6, we found that any palindrome in Λθ is over a three-letter alphabet X =
{x, y, z} ⊂ A . This suggests that we may map any Lambda word onto a word with only
three symbols that preserves both palindromes and non-palindromes of the Lambda word.
We construct a mapping γ such that γ(W ) = γ(Z). We also require γ(X) 6= γ(Y ), where,
as before f(X) and f(Y ) form a member of the Hurwitz chain for θ. Finally, both γ(X) and
γ(Y ) must be distinct from γ(Z).
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A/B λ|A−Bϑ| γ|A−Bϑ|
1/0 0 0
1/1 1 1
2/1 2 2
3/2 3 0
5/3 4 1
8/5 5 2
11/7 6 1
19/12 7 0
27/17 8 1
46/29 9 2
65/41 10 1
84/53 11 2

Figure 8: The mappings λ|A−Bϑ| and γ|A−Bϑ|.

Let A/B be a convergent of θ and let ak/bk be the principal convergent that immediately
precedes A/B. Then the pair (A/B, ak/bk) forms a member of the Hurwitz chain for θ. We
assign seed values to the first member of the chain (1/1, 1/0):

γ|a−1 − b−1θ| = γ(1− 0θ) = 0
γ|a0 − b0θ| = γ(−1 + 1θ) = 1

and then define recursively:

γ|A−Bθ| = 3− (γ|ak − bkθ|+ γ|(A− ak)− (B − bk)θ|). (11)

Because f(A/B) = f(ak/bk) ⊕ f ((A− ak)/(B − bk)), we can interpret (11) as γ(Z) =
3− (γ(Y ) + γ(X). We can rearrange (11) into

γ|(A− ak)− (B − bk)θ| = 3− (γ|A−Bθ|+ γ|ak − bkθ|) (12)

which may be construed as γ(W ) = 3− (γ(X) + γ(Y )). The set {γ(X), γ(Y ), γ(Z)} maps
bijectively onto {0, 1, 2} and so does {γ(W ), γ(X), γ(Y )}. Therefore,

γ(W ) + γ(X) + γ(Y ) = γ(X) + γ(Y ) + γ(Z) = 3.

Moreover, for a fixed (X, Y ), γ(W ) = γ(Z) as required. Letting ϑ = log2 3, Figure 8 shows
the projection of the infinite alphabet A of Λϑ onto {0, 1, 2}.

When θ = φ, the “golden” ratio, we can rewrite (11) and (12) as

γ|ak+1 − bk+1φ| = 3− (γ|ak − bkφ|+ γ|ak−1 − bk−1φ|) = γ|ak−2 − bk−2|φ.

Because γ|a0 − b0θ| = 1, it follows that γ|ak − bkφ| ≡ k + 1 (mod 3). That is, the successive
values for γ|A − Bφ| repeat the pattern (0, 1, 2). With any other value of θ, intermediate
convergents may come between ak/bk and ak+1/bk+1. If γ|ak − bkθ| = n, then, under γ,
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the images of the intermediate convergents that follow alternate between n+ 1 (mod 3) and
n− 1 (mod 3). When θ is a quadratic irrational, the successive values for γ|A − Bθ| are
eventually cyclic, whereas other values of θ exhibit no cyclic patterns. This, of course, reflects
the patterning of partial quotients in the continued fraction expansions of these values.

The mapping γ partitions the set of convergents of θ into three classes, in contrast to the
well-observed partitioning into two classes that depends on whether A/B is greater than or
less than θ. The properties of this tripartite classification could warrant further investigation.

The mapping defined in (11) projects Λθ onto the Gamma word generated by θ, Γθ, a
word defined over {0, 1, 2}. The table below illustrates that projection when θ = ϑ = log2 3:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Λϑ 0 1 2 1 2 3 2 2 3 2 3 4 3 2 3 4 3
Γϑ 0 1 2 1 2 0 2 2 0 2 0 1 0 2 0 1 0
n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Λϑ 3 4 3 4 3 3 4 3 3 5 3 3 4 3 3 5 3
Γϑ 0 1 0 1 0 0 1 0 0 2 0 0 1 0 0 2 0

Although Γθ preserves palindromes and non-palindromes of Λθ, Γθ is itself not rich: If
any factor of a word is not rich, the word itself is not rich. The first six-letter factor of Γϑ,
012120, has no uni-occurrent palindromic suffix and is therefore not rich, a property that Γϑ

inherits. Certainly there are recurrent factors in the Gamma word but it is not known if all
factors of all Gamma words are recurrent.
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Ann. 44 (1894), 417–436.

[22] B. Jones, The Theory of Numbers, Holt, Rinehart, and Winston, 1955.

[23] C. Kimberling, Interspersions and dispersions, Proc. Amer. Math. Soc. 117 (1993),
313–321.

[24] C. Kimberling, Fractal sequences and interspersions, Ars Combin. 45 (1997), 157–168.

[25] C. Kimberling and J. Brown, Partial complements and transposable dispersions, J.

Integer. Seq. 7 (2004), Article 04.1.6.

[26] A. Khinchin, Continued Fractions, trans. ed. by H. Eagle. Original Russian edition,
1935. Univ. Chicago Press, 1964.

[27] M. Lothaire, Algebraic Combinatorics on Words, Encyc. Math. Appl., Vol. 90, Cam-
bridge Univ. Press, 2002.

[28] A. Luca, A. Glen, and L. Q. Zamboni, Rich, Sturmian, and trapezoidal words, Theoret.
Comput. Sci. 407 (2008), 569–573.

[29] C. D. Olds, Continued Fractions, Random House, 1963.

[30] I. Richards, Continued fractions without tears, Math. Mag. 54 (1981) 163–171.

[31] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
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