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Abstract

Polymetric walls are walls built from bricks in more than one size. Architects and
builders want to built polymetric walls that satisfy certain structural and aesthetical
constraints. In a recent paper by de Jong, Vinduška, Hans and Post these problems
are solved by integer programming techniques, which can be very time consuming for
patterns consisting of more than 40 bricks. Here we give an extremely fast method,
generating patterns of arbitrary size.

1 Introduction

How can we build a brick wall with different sizes of bricks? This problem was recently
discussed by de Jong, Vinduška, Erwin, and Post [4].

Let us try to formulate the requirements put forward by architects and builders. These
are

[R1] The absence of regularity in the patterns, as e.g., periodicity
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Figure 1: An example of a polymetric brick wall from www.metselen.net/fotoalbum.html

[R2] Long horizontal joints, to facilitate the building process

[R3] The absence of long vertical joints, for sturdiness and strength

[R4] Pleasing aesthetics, as e.g., not too many large bricks close together

One can appreciate the fulfilment of all four requirements in Figure 1.
In de Jong, Vinduška, Erwin, and Post[4] these four requirements are met by considering

the construction of a brick wall pattern as a pallet loading problem, which is then solved with
a mixed integer linear program. Here we take a completely different approach, constructing
the patterns as pseudo-self-similar tilings generated by 2-D substitutions. Well known prop-
erties of such tilings automatically yield the fulfilment of [R1], and also more or less [R4].
Requirement [R2] can very easily be built in, so that [R3] becomes the main challenge.

The style of this note will be somewhat informal, for precise definitions and more context
see the papers by Solomyak [9] and Frank [3]. An early paper connecting tilings and 2D-
substitutions is Allouche and Salon [1]. See Section 14 (and the book cover) of Allouche and
Shallit’s monograph [2] for the subclass of tilings generated by multi-dimensional automatic
sequences. Since then the literature on tilings has expanded a lot (cf. [3]).

2 Prouhet-Thue-Morse patterns

The Prouhet-Thue-Morse sequence 0, 1, 1, 0, 1, 0, 0, 1, . . . is the one-dimensional sequence gen-
erated by the substitution 0 → 0 1, 1 → 1 0. It is folklore that in the “same way” one
generates a 2D-sequence (see, e.g., [5]) by the 2D-substitution:

1 0 0 1
0 7→ 0 1, 1 7→ 1 0.

Usually this sequence is then represented in the plane by white and black squares. When we
take 2× 1 and 3× 1 bricks this corresponds to the following substitution rules:

7→ 7→
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The third iteration of this substitution starting from the 2 × 1 brick B21 yields the
following pattern:

Obviously requirement [R3] will be violated, since we obtain vertical segments crossing
the whole pattern. To cope with this, we slightly change the previous substitution to the
substitution τ given by

7→ 7→

Now a fourth order iteration of τ starting from the 2×1 brick yields the pattern in Figure 2.

Figure 2: Skewed 2D-Prouhet-Thue-Morse: τ4(B21).

These skewed P-T-M patterns nicely satisfy [R3], see the following proposition.

Proposition 1. For any n the vertical segments in the patterns τn(B21) and τn(B31) have

length at most 2.

Proof. By induction on n, using the following figure.

3 General patterns

We would like the pattern to be generated by a geometric 2D-substitution, mapping rectan-
gles i × j (bricks Bij) to unions of rectangles (bricks), resulting in a self-similar tiling (see

3



[3] for the basic definitions). However, as already clear from the first P-T-M example above,
such self-similar tilings will violate the bounded vertical segments condition [R3]. Thus we
should rather consider pseudo-self-similar or pseudo-self-affine tilings as studied by Priebe
and Solomyak ([7]). In a self-affine (rectangular) tiling with expansion coefficients λ1 and
λ2, all the bricks (usually called proto-tiles in the literature) are scaled by a factor λ1 in the
x-direction and a factor λ2 in the y-direction, and then are exactly tiled by translations of
the original set of bricks. Note by the way that the P-T-M-substitution is self-similar with
two 1× 1 bricks (expansions λ1 = 2 and λ2 = 2) , but not with a set consisting of the 2× 1
and a 3× 1 brick.

In a pseudo-self-affine tiling the bricks do not tile exactly the expanded bricks, but have
bricks ‘sticking out’ and ‘sticking in’, in a way that still preserves the tiling property. We
will consider a subclass of 2D-substitutions which have the desired properties, which we call
of PP-type, i.e., which have the periodic parallelogram property. With this we mean that
the image of a i× 1 brick is a region as in Figure 3, left. The black horizontal segments have
length iλ1, and the two curves on the left and the right are translated copies of each other.
For a i× j brick this is repeated periodically j times, cf. Figure 3, right.

Figure 3: Left: Image region for a i× 1 brick. Right: Image region for a i× 2 brick.

A simple example of a PP-type substitution with λ1 = λ2 = 2 and the three brick
alphabet A = {B11, B21, B22} is given by

7→ 7→ 7→

The patterns σ3(B11), σ
3(B21) and σ3(B22) are

The pattern σ4(B22) is given in Figure 4.

Let vmax(ij, n) be the maximal length of a vertical segment in σn(Bij) for n ≥ 1 and
Bij ∈ A. For the substitution above vmax(11, 1) = 1, vmax(21, 1) = 2, vmax(22, 1) = 3, and
one can prove that for this substitution

vmax := sup{vmax(ij, n) : Bij ∈ A, n ≥ 1} = vmax(22, 3) = 11,
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Figure 4: σ4(B22).

but in general it is not an easy task to determine the largest possible length vmax of a vertical
segment (which, of course, can be infinite).

The following approach generates patterns satisfying [R3] in an easy way. We say the
pattern σ(Bij) has no crossings if there are no vertical segments consisting of boundaries of
the bricks in σ(Bij) that connect two points on the boundary of the region determined by
σ(Bij). In the substitution above, for example, σ(B11) and σ(B22) do not have a crossing,
but σ(B21) does.

Proposition 2. Let σ be a PP-type substitution with expansions λ1 and λ2. Suppose that

for all Bij the pattern σ(Bij) has no crossings. Let j∗ be the maximal height of the bricks.

Then any vertical segment in any pattern σn(Bij) has length at most 2j∗(λ2 − 1).

Proof. Let [(x, y), (x, y′)] be a vertical segment. The points (x, y) and (x, y′) lie in some
σ(Bij) and σ(Bi′j′). If these are the same, then |y − y′| < j∗(λ2 − 1). If these are different,
then the no crossing property implies that they are neighbors of each other, and the length
of the segment is at most twice the maximal height minus one of a σ(Bij), i.e., at most
2j∗(λ2 − 1).

We give an example with expansions λ1 = 2 and λ2 = 3.

7→ 7→

This substitution is of PP-type, and has no crossings. According to Proposition 2 (with
j∗ = 1), the length of vertical segments in any pattern generated by this substitution is at
most 4. Actually a refinement of the proof of Proposition 2 shows that is even bounded by
3, and this bound is achieved as can be verified in Figure 5.

We end this section with a few remarks on the number of bricks that are needed in
a pattern. To this end one introduces the matrix Mσ, with entries Mσ(ij, i

′j′) which by
definition are equal to the number of times the brick Bi′j′ occurs in the pattern σ(Bij), for
all Bij and Bi′j′ ∈ A (in the literature sometimes the transpose of Mσ is taken as definition).
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Figure 5: A clip from σ5(B21).

Proposition 3. The maximal eigenvalue of Mσ is λ1λ2. The asymptotic frequencies of the

bricks are given by the normalized left eigenvector corresponding to this eigenvalue.

Proof. This proposition is well-known, see e.g. [9]. Here we give a short proof, in a slightly
more general situation. We will assume that just as in the self-similar case σ satisfies for all
Bij ∈ A

Area(σ(Bij)) = λ1λ2 Area(Bij).

Note that our PP-type substitutions satisfy this equation. Now let v be the vector with
entries Area(Bij), and w the vector with entries Area(σ(Bij)). Then, since Area(σ(Bij)) is
the sum of the areas of the Bi′j′ times the number of times Bi′j′ occurs in σ(Bij), we obtain

Mσv = w = λ1λ2v.

Conclusion: v is a right eigenvector of Mσ with the eigenvalue λ1λ2. But since all the
entries of v are strictly positive, λ1λ2 has to be the Perron-Frobenius eigenvalue of Mσ.
The second statement in the proposition is a well-known result (see e.g. [8]), generalized by
Peyrière (see [6]) to higher dimensions: the normalized left eigenvector of Mσ corresponding
to the Perron-Frobenius eigenvalue equals the asymptotic frequency of the bricks in large
patterns.

As a final remark we mention that the PP-property can be extended in the obvious way
to substitutions that in addition have a periodic parallelogram structure in the horizontal
direction. We illustrate this with an example:

7→ 7→
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The expansions are here both 4, there are no crossings, and it is easily shown that vmax = 3.
The patterns σ2(B21) and σ2(B22) are given by

4 Random brick wall patterns

The interpretation of the requirements [R1] (absence of regularity) and [R4] (pleasing aes-
thetics) is of course for a large part a matter of taste, and some might consider the pattern
in Figure 5 too ‘rigid’. One way of making the patterns less rigid is to introduce randomness
in the construction. As an introduction we start with a very simple self-similar example,
which hence does not satisfy requirement [R3]. We take the 1 × 2 and 2 × 2 bricks with a
random substitution rule σ given by

Here random means that each expanded brick is replaced by one of the two possibilities
with probability 1/2, independently of the other replacements. At the next levels, this
random replacement is repeated, independently of the previous levels, and independently of
the other bricks at the same level.

In this simple example the substitution matrix Mσ is non-random, since the two possibil-
ities are just permutations of each other. A simple computation learns that for n = 1, 2, . . .

Mn
σ =

(

2 · 4n−1 4n−1

4n 2 · 4n−1

)

.

Note that different sequences of coin flips will lead to different patterns, so there will be

2 1+6+···+6·4n−1

= 2 2·4n−1

different realizations of σn+1(B22), since the total number of bricks in σn(B22) is equal to
the sum of the two entries in the lower row of Mn

σ . This means that the three realizations
in Figure 6 are picked from a set of 2 2·43−1 = 2127 ≈ 1039 elements!
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Figure 6: Three realizations of σ4(B22).

We next consider a pseudo-self-similar random substitution, where the coin is flipped
with a success probability p for some p ∈ [0, 1]:

1− p

p

1− p

p

Figure 7 shows 2 realizations for p = 1/3 and p = 2/3 each.

Figure 7: Two realizations of σ4(B22); left: with p = 1/3, right: with p = 2/3.

The maximal length of a vertical segment now is a random variable Vmax(ij, n), and
trivially Vmax(22, n) = 2 for all n when p = 1, and so Vmax = 2 in this case. However, for all
p < 1, we have Vmax = ∞ with probability 1. This can be deduced from the fact that there
is a lot of independence between the bricks in σn(Bij), ij = 12 and ij = 22, despite the local
dependencies.

In general the matrix Mσ will be random, and its expectation will give us the mean
growth of the number of bricks in the patterns σn(Bij). In the last example the mean Mσ

equals
(

4(1− p) 2p
8(1− p) 4p

)

,

which has eigenvalues 0 and 4 (independent of p). This can be considered as an instance
of a version of Proposition 3 for random pseudo self-similar tilings. The theory of multi-
type branching processes can be applied to obtain further information on these patterns.
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The basic limit theorem, for instance, tells us that the number of bricks B12 in the pattern
σn(B22) divided by 4n converges almost surely to a random variable W = Wp, which is
positive almost surely.
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